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Abstract— This letter proposes a threat discrimination method-
ology for distinguishing between sensor replay attacks and sensor
bias faults, based on the specially designed watermark integrated
with adaptive estimation. For each threat type, a watermark is
designed based on the changes that the threat imposes on the sys-
tem. Threat discrimination conditions are rigorously investigated
to characterize quantitatively the class of attacks and faults that
can be discriminated by the proposed scheme. A numerical simu-
lation is presented to illustrate the effectiveness of our approach.

Index Terms— Threat discrimination, replay attack, sen-
sor bias fault, Cyber-physical systems

I. INTRODUCTION

CYber-physical systems (CPS) are widely utilized in modern au-
tomation processes. Unfortunately, vulnerabilities to malicious

cyber threats increase greatly due to the complex integration of
computing, communication and control in CPS [1]–[3]. Developing
malicious cyber attack detection and identification techniques is
crucially important.

Replay attacks are commonly used in practical systems due to the
simplicity in implementation and some key stealthiness properties.
For example, the Stuxnet attack on the Iranian nuclear facilities
was a type of replay attacks. The attacker steals access to the
communication links and records data from the normal operation and
then replays it to the supervisory system [4]. Hence, replay attacks
possess high stealthiness as a result of the used malicious attack data
taken from the normal system operation. Moreover, replay attacks can
hide other types of non-stealthy cyber attacks. In more detail, the non-
stealthy attacks occurring during the replaying procedure of a replay
attack can remain concealed from typical anomaly detectors due to
the cover provided by the replay attack. In addition, identification
of replay attacks and sensor bias faults is more challenges since
they both occur in the sensor-to-controller channels of a CPS, which
motives this paper to consider replay attacks and sensor bias faults.

In the past decade, detection methodologies for integrity attacks
[5]–[7] based on dynamic models has been rigorously investigated,
and are divided into two categories [3]: a) active detection ap-
proaches, such as the moving target method [8] and the watermark
approach [5], [9], and b) extension of anomaly diagnosis approaches,
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such as the ones in [10]–[12]. A key issue not yet adequately
addressed is the threat discrimination problem between attacks and
other anomalies such as physical faults. Typical anomaly detectors
may be able to detect and locate anomalies in CPS, but are not capable
to distinguish between different types of the occurring anomalies.
Threat discrimination fills this gap, aiming to identify the threat type,
namely to determine whether a cyber attack or another anomaly (e.g.,
physical faults) is occurring. Threat discrimination is important for
practical CPS, since it helps the operators to make correct decisions
and take suitable and different remediation actions for attacks and
faults, respectively. Naturally, targeted cyber attack events are more
dangerous, which may require immediate response actions. Hence,
the accommodation strategies against cyber attacks and physical
faults are usually different. Ignoring a “small” fault in a sensor
might not affect the system safe operation. However, an attack on
a sensor might require to shut down the whole process to avoid
catastrophic consequences. Physical maintenance, such as replacing
communication cables, can be effective in preventing physical faults,
but cannot remediate the issues caused by cyber attacks. Updating
communication protocols and firewalls are the general prevention
approaches against cyber attacks. More approaches for preventing and
mitigating cyber attacks can be found in [3]. Moreover, the threat dis-
crimination problem between replay attacks and physical sensor bias
faults remains an open problem. The stealthiness characteristics of
replay attacks prevents typical anomaly detectors from distinguishing
between replay attacks and sensor faults. On the other hand, typical
fault isolation schemes mainly focus on gaining information about the
location of the faults whereas the threat type discrimination problem
is usually overseen.

This letter proposes an approach for discriminating between the
occurrence of replay attacks and sensor faults. Specifically, a linear
parameterization form of the replay attacks is proposed for the
first time, contributing to attack parameter estimation. The designed
adaptive observer provides a procedure for estimating the outputs of
the system in the nominal scenario, which is novel in the attack case
and in the fault case. Also, for the residual and threshold generation,
two signal processors (integrated with the watermarks) are introduced
and are designed for the replay attack case and the sensor fault
case distinctively in order to design suitable residual generator and
threshold signals. Finally, the discrimination ability is also rigorously
investigated to characterize quantitatively the class of attacks and
faults that can be identified by the proposed methodology.

II. PROBLEM FORMULATION

In this paper, we consider a type of typical CPS depicted in Fig. 1,
which consists of a linear time-invariant physical plant P , a sensor
data communication network Ns, an output-feedback controller C
and an anomaly detector D. The closed-loop CPS in the nominal
case (no attacks and faults), is described by

Wn :

{
ẋn = Axn +BKỹn,
ỹn = yn = Cxn,

(1)

where xn ∈ Rnp is the state, and yn ∈ Rny is the output.
The variable ỹn ∈ Rny indicates the output of Ns. Moreover,



Fig. 1. Diagram of CPS under sensor replay attacks and physical faults.

A ∈ Rnp×np , B ∈ Rnp×nu , K ∈ Rnu×ny and C ∈ Rny×np are
known matrices, A+BKC is a Hurwitz matrix and the pair (A,C)
is observable. In this paper, we consider two types of threats: 1) a
replay attack in Ns; and 2) constant sensor bias faults. In addition,
we consider that an anomaly is detected at a time Td by the anomaly
detector D in Fig. 1.

1) Replay Attack Scenarios: In general, replay attacks are
equipped with recording and replaying functionalities [5]. For the
considered replay attack in this letter, the adversary first records yn
communicated through the network Ns starting at a time Ta − T
and for a recording time T . Then, the replaying procedure starts at
Ta and ends at Ta+T . Therefore, the replaying attack signal during
[Ta, Ta+T ) is the output ofWn during the time interval [Ta−T, Ta).
Thus, the virtual attack model [5] is

W ′n :

{
ẋ′n = Ax′n +BKỹ′n,
ỹ′n = y′n(t) = Cx′n,

(2)

where x′n(t) , xn(t−T ), ỹ′n(t) , ỹn(t−T ) and y′n(t) , yn(t−T ).
Let xa, ya and ỹa denote the state, output and the received output
of Wn in the replaying procedure of the replay attack. Then, we
have ỹa = ỹ′n = y′n, and by defining a virtual attack signal a(t) ,
y′n(t) − Cxa(t), the system Wn in the replaying procedure of a
replay attack is described by

Wa :

{
ẋa = Axa +BKỹa,
ỹa = Cxa + a(t).

(3)

In terms of xa and x′n, we can derive from (2) and (3) that
a(t) = CeA(t−Td)(x′n(Td) − xa(Td)), which indicates that a(t)
can be linearly parameterized as

a(t) = Fa(t)θa, ∀ t ∈ [Ta, Ta + T ) , (4)

where Fa(t) , CeA(t−Td) (known) and θa , x′n(Td)− xa(Td) is
the unknown attack parameter vector and is supposed to satisfy the
following assumption.

Assumption 1. The attack parameter θa is constant and bounded by
a scalar σa > 0 known by the defender, i.e.,

θa ∈ Θa , {θ ∈ Rnp | |θ| ≤ σa}. (5)

2) Sensor Bias Fault Scenarios: In this work, we consider that
one/ multiple sensor bias faults occur at time Tf . In the presence of
the sensor bias faults, Wn in (1) is described for t ≥ Tf by:

Wf :

{
ẋf = Axf +BKỹf ,

ỹf = yf = Cxf + F f (t)θf ,
(6)

where xf is the state of the plant under the fault, F f (t) is a known
ny × ny matrix, and θf ∈ Rny represents the unknown constant
fault vector. In this paper, we consider the special case of constant
bias faults, in which case, F f (t) = Iny×ny .

Remark 1. The discrimination scheme can also be applied to the
case of time-varying sensor faults that can be linearly parameterized
exactly as F f (t)θf , given that F f (t) is known by the defender
and is also sufficiently different from Fa(t). The reason is that the
discrimination scheme relies on adaptive approximation methods for
estimating the unknown parameters θa and θf , and hence, the matrix
Fa and F f should be sufficiently different to allow the creation of
a sufficient mismatch for threat discrimination. ∇

Assumption 2. The fault parameter θf is constant and bounded by
a scalar σf > 0 known by the defender, i.e.,

θf ∈ Θf , {θ ∈ Rny | |θ| ≤ σf}. (7)

The bounds of θa and θf are restricted in Assumptions 1 and 2
respectively, which may be conservatively estimated in the following
and do not need to be very precise. To guarantee the stealthiness
of the replay attack, θa must be bounded. Physical sensor faults are
always bounded in practice (see e.g., [13], [14]) and hence, θf is
bounded as well. Moreover, Θa and Θf are used as the regions
of the projection operators in the adaptive estimators, guaranteeing
the boundedness of the generated estimates. Therefore, only possibly
large bounds of θa and θf are needed by the defender. Such bounds
are also required in many fault diagnosis literature such as [13]–[15].
Regarding the approach to obtain the bounds of θa and θf , since
|θa| = |x′n(Td)−xa(Td)|, σa in (5) typically may be obtained based
on a priori knowledge of the physical bounds of the system states.
Also, σf in (7) may be obtained by exploiting a priori knowledge
of the sensor bias deviation based on the technical characteristics of
the sensors.

Regarding the threat scenarios considered in this paper, we have
the following assumption.

Assumption 3. It is assumed that only one type threat occurs during
a threat event, namely, 1) the replay attack scenario and 2) the sensor
bias fault scenario.

Assumption 3 is made for focusing the presentation to the scope
of this letter. Note that replay attacks typically last for a limited
time duration, i.e., t ∈ [Ta−T, Ta +T ], and hence the case that the
sensor fault(s) appear after the replay attack, i.e., Tf ≥ Ta+T , is also
covered implicitly by Assumption 3. In addition, the developed threat
discrimination scheme can also handle the case that the sensor fault(s)
appear before the replay attack, i.e., Tf ≤ Ta−T . As for the case that
a bias fault occurs during a replay attack, i.e., Tf ∈ [Ta−T, Ta+T ],
the probability of this case is very low in practice since a replay attack
can only endure for a relatively short time. In such a case, both Wa

in (3) and Wf in (6) cannot exactly describe the system and the
developed discrimination methodology cannot be used. Therefore,
new techniques are needed for identifying this threat case.

3) Objective: We suppose that a threat has been detected by the
anomaly detector D in Fig. 1 at time Td using additive watermarks
[5] in control inputs or multiplicative watermarks [9] in sensor
measurements, where Td ≥ Ta and Td ≥ Tf . However, the type
of such a threat cannot be identified by D. The objective of this
paper is to design an methodology to identify which type of threat
has occurred. Note that at the initiation time instant Td, the applied
watermarks for the detection purpose are removed and hence do not
affect the threat discrimination schemes. The exclusion-logic-based
approach is used to isolate different faults in previous works, such
as [14]. However, it cannot handle the stealthy replay attacks since
ỹa(t) is close to ỹn(t). In this paper, watermarks are introduced and
integrated with the exclusion-logic-based approach to deal with this
problem.



Fig. 2. Schematic diagram of the proposed threat discrimination
approach.

III. THREAT DISCRIMINATION

In this section, we propose an approach to identify replay attacks
and sensor faults, and also design and analyze estimators and signal
processors with watermarks. We start by presenting an observer used
for analytical purpose:

On : ζ̇n(t) = Aζζn(t) + Lζ ỹn(t), (8)

where ζn ∈ Rnp is the state of the observer in the nominal case,
Aζ , A− L0C with L0 being designed such that Aζ is a Hurwitz
matrix, and Lζ = L0 + BK. In the threat case, On is described
by O : ζ̇ = Aζζ + Lζ ỹ where ζ is the state in the threat case.
The changes of ζ and ỹ due to the threat are defined respectively as
∆ζ , ζ − ζn and ∆ỹ , ỹ − ỹn. From O and On, we obtain

∆ζ(t) = eAζ(t−Td)∆ζ(Td) +

∫ t

Td

eAζ(t−τ)Lζ∆ỹ(τ)dτ. (9)

The threat discrimination methodology is depicted in Fig. 2,
which integrates adaptive estimators and signal processors possessing
watermarks. Two estimators corresponding to the replay attack case
and the sensor fault case are designed to estimate ∆ỹ and ∆ζ. Signal
processors with watermarks are developed based on the estimate of
∆ζ and produce corresponding adaptive thresholds. The exclusion-
logic-based approach is then applied to make the identification
decision.

A. Threat Discrimination Estimator Design

Two distinct adaptive estimators, activated at Td and corresponding
to the attack threat case and the fault case respectively, are designed
for estimating xn. To this end,Wa in (3) andWf in (6) are presented
in a unified form as follows:

W :

{
ẋ = Ax+BKỹ,
ỹ = Cx+ F (t)θ,

(10)

where Fθ ∈ {Faθa, F fθf}. In addition, in order to present the
approach to estimate xn, the following lemma is needed:

Lemma 1. Consider an auxiliary system defined as follows:

Ω̇ = A0Ω +BKF (t), Ω(Td) = 0, (11)

where F ∈ {Fa, F f}, Ω ∈ Rnp×np when F = Fa or Ω ∈ Rnp×ny
when F = F f , and A0 , A+BKC is a Hurwitz matrix. Consider
also a state variable z and its corresponding output ỹnz defined as

z , x− Ωθ, ỹnz , Cz, (12)

where x and θ ∈ {θa, θf} are given in (10). Then,

xn(t) = z(t) + enz(t), ∀ t ≥ Td, (13)

where xn is given in (1) and enz(t) , eA0(t−Td)∆x(Td).

Proof. From (11), (12) and ż = ẋ − Ω̇θ, we have ż = A0z. From
(1) and enz = xn − z, we can derive ėnz = A0enz . It indicates

that enz converges to zero exponentially due to the Hurwitz matrix
A0, and thus, z is an estimate of xn. It follows from (11) and (12)
that z(Td) = x(Td) and enz(Td) = ∆x(Td). Hence, the result (13)
follows.

According to Lemma 1, z is an estimate1 of xn since enz goes
to zero exponentially. Hence, the estimation procedure for xn is
achieved through estimating z in (12) in the sequel. We start by
proposing an adaptive estimator for W corresponding to the threat
i ∈ {a, f} as follows:

Ei :


˙̂xi = Ax̂i +BKỹ − L(ỹ − ˆ̃yi) + Ωi

˙̂
θi,

Ω̇i = A0Ωi + LF i, Ωi(Td) = 0,
ˆ̃yi = Cx̂i + F i(t)θ̂i,
˙̂
θi = PΘi{γ

i(CΩi + F i(t)))T (ỹ − ˆ̃yi)},

(14)

where x̂i, ˆ̃yi and θ̂i are the estimates of x, ỹ and θ in the i-th threat
case, respectively, and x̂i(Td) = 0. The gain L , BK such that
A+LC = A0 and Ωi has the form of Ω defined in (11). Moreover,
the projection operator PΘi restricts θ̂i to the convex region Θi (to
guarantee the stability of the estimation error system for the adaptive
estimator (14) in the presence of modeling uncertainties) [16]. Since
Θi is a hypersphere of radius σi, the mathematical representation
of PΘi is same as the one in [13]. The θ̂i(Td) is chosen such that
θ̂i(Td) ∈ Θi, and γi > 0 is the learning rate.

Remark 2. The estimation vector θ̂i provides useful information for
threat discrimination. For example, considering the estimator Ei, the
uniform bound of θ− θ̂i in the i-th threat case is smaller than in the
j-th threat case due to the correct matching of Ei to the occurred i-th
threat case, which helps in discriminating between the i-th and the
j-th threat cases. However, for both sensor faults and replay attacks,
it cannot be guaranteed that θ̂i will converge to the true value θ in
the absence of a restrictively persistent excitation condition. Note that
we do not assume or require persistency of excitation. ∇
Remark 3. Compared with typical adaptive observers, the form of
the adaptive observer Ei in (14) is able to provide estimates of xn
and ỹn. The estimate of ỹn, detailed discussed in Theorem 1, can
be used to construct control signals, allowing to mitigate the effects
of the attacks and faults, which will be dealt with in future work. ∇

We now investigate the stability and the learning capability of Ei.
Based on (12), and using x̂i and θ̂i, we define the following variables:

ẑi , x̂i − Ωiθ̂i, ˆ̃yin , Cẑi, (15)

where ẑi and ˆ̃yin are estimates of z and ỹnz in (12) in the i-th threat
case, respectively. Moreover, according to Lemma 1, both ẑi and z
are estimates of xn, and ỹnz and ˆ̃yin are estimates of ỹn. Also, we
define the estimation errors:

eix , x− x̂i, eiy , ỹ − ˆ̃yi = Ceix + Fθ − F iθ̂i,
ēix , z − ẑi, ēiy , ỹnz − ˆ̃yin=Cēix=Ceix + CΩiθ̂i − CΩθ,

θ̃i , θi − θ̂i, ∀ i ∈ {a, f}.

Since θ is a constant vector, it follows from (12) that ż = ẋ − Ω̇θ.
Also, it follows from (15) that ˙̂zi = ˙̂xi − Ω̇iθ̂i −Ωi

˙̂
θi. Thus, based

on (10) and (14), we can obtain

˙̄eix = A(x− x̂i) + L(ỹ − ˆ̃yi)− Ω̇θ + Ω̇iθ̂i,

and based on Ω̇ in (11) and Ω̇i in (14), we have ˙̄eix = A0ē
i
x. In

addition, we define the following mismatch function between the j-

1For a signal vector x(t) ∈ Rn, x̂(t) ∈ Rn is considered to be an estimate
of x(t) if limt→∞(x(t)− x̂(t)) = 0.



th threat and the i-th estimator:

dij , CΩjθj + F jθj − CΩiθ̂i − F iθ̂i, ∀ i, j = {a, f}. (16)

It follows that ēiy can be written as

ēiy = eiy − Fθ + F iθ̂i + CΩiθ̂i − CΩθ = eiy − dij .

Therefore, the estimation error system can be obtained as

˙̄eix = A0ē
i
x, ē

i
y = Cēix = eiy − dij , (17)

˙̃
θi = PΘi

{
γ(CΩi + F i(t)))T

}
eiy. (18)

The stability and learning properties of the estimator Ei are described
in the following theorem.

Theorem 1. Consider the system W in (10) with the pair (A,C)
being observable, the replay attack and the sensor bias fault satisfying
Assumptions 1 and 2, respectively. Moreover, suppose that Assump-
tion 3 holds, and that a threat is detected at time Td (Td > Ta or
Td > Tf ). Then, both estimators Ei in (14), i ∈ {a, f}, guarantee
that the errors eix, eiy and θ̃i are uniformly bounded. Moreover, in
the occurring i-th threat, the i-th estimator satisfies:

lim
t→∞

(xn(t)− ẑi(t)) = 0, lim
t→∞

(ỹn(t)− ˆ̃yin(t)) = 0, (19)

where ẑi and ˆ̃yin are defined in (15) and xn and ỹn are given in
(1). Also, in the i-th threat case, there exist η0 > 0 and a bounded
function ηi such that eiy satisfies∫ t

Td

|eiy(τ)|2 dτ ≤ η0 + 2

∫ t

Td

|ηi(τ)|2 dτ, ∀ t ≥ Td. (20)

Proof. Since A0 is a Hurwitz matrix, ēix in (17) converges to zero
asymptotically. Thus, ēix ∈ L∞ and ēiy(t) ∈ L∞. Due to the
parameter projection, θ̂i, θ̃i ∈ L∞. In addition, (14) indicates that
Ωi ∈ L∞. From eix = ēix+(Ωθ−Ωiθi) and eiy = ēiy−dij and based
on Assumptions 1 and 2, we can conclude that eix = x− x̂i ∈ L∞
and eiy = ỹ − ˆ̃yi ∈ L∞.

Regarding xn − ẑi and ỹn − ˆ̃yin, we have xn − ẑi = xn − z +
z − ẑi. According to Lemma 1, limt→∞(xn − z) = 0. Since A0

is a Hurwitz matrix, it follows from (17) that limt→∞(z − ẑi) =
limt→∞ ēix = 0. Thus, we have limt→∞(xn − ẑi) = 0 and
limt→∞(ỹn − ˆ̃yin) = limt→∞ C(xn − ẑi) = 0. Hence, (19)
follows.

The third part of the theorem concerns the learning capability of
the estimator Ei in the i-th threat case (the estimator matches the
threat case). Let ēix , ξi1 + ξi2 for t > Td. Then, it follows from (17)
that ξ̇i1 = A0ξ

i
1, ξ

i
1(Td) = 0, and ξ̇i2 = A0ξ

i
2, ξ

i
2(Td) = ēix(Td).

Thus, eiy can be written as

eiy = C(ξi1 + ξi2) + (CΩi + F i(t))θ̃i.

Considering a Lyapunov function candidate V = 1
2γ (θ̃i)T θ̃i +∫∞

t |Cξ
i
2|2dτ , its time derivative along (18) and the trajectory of

ξi2(t) is

V̇ = − 1

γ
(θ̃i)T

˙̂
θi + |Cξi2|2

=
1

γ
(θ̃i)TPΘi{γ(CΩi + F i)}T eiy(t) + |Cξi2|2.

By following the logic in [16] to deal with the projection operator
PΘi , we obtain 1

γ (θ̃i)TPΘi{γ(CΩi + F i)}T eiy ≤ (θ̃i)T {(CΩi +

F i)}T eiy . By using eiy obtained previously and completing the

squares, V̇ ≤ −|eiy|2/2+ |Cξi1|2. Thus, by letting ηi(t) , |Cξi1(t)|,
we can deduce that

V (t)− V (Td) ≤ −
∫ t

Td

|eiy|2/2dτ +

∫ t

Td

|ηi|2 dτ, ∀ t ≥ Td,

where ηi , |Cξi1|. Due to the boundedness of ēix and θ̃i, ξi1 and ηi

are also bounded. Therefore, by letting η0 , 2V (Td), the inequality
(20) follows.

Remark 4. The estimator Ei guarantees that eix, eiy and θ̃i are
uniformly bounded in both threat cases (attack case and fault case),
which indicates that the unmatched threat case j does not cause
divergence of the estimation errors of the estimator Ei (i 6= j) and
hence stability is guaranteed. It should be noted that for the estimator
Ei, the uniform bounds of eix, eiy and θ̃i are smaller in the i-th threat
case than in the j-th threat case due to the correct matching of the
structure of Ei to the occurred threat case. ∇

B. Signal Processors with Watermarks
Signal processors and watermarks are proposed in this section. We

start by constructing the estimate of ∆ỹ , ỹ − ỹn by using the
estimates obtained from Ei in (14). Since in the i-th threat case, ˆ̃yin
in (14) is an estimate of ỹn (see (19) in Theorem 1), based on the
definition of ∆ỹ and by using ˆ̃yin, an estimate of ∆ỹ is proposed as

∆ˆ̃yi , ỹ − ˆ̃yin = ∆ỹ + Cenz + ēiy, (21)

where ỹn = ỹnz + Cenz is used. It can be easily verified that
limt→∞(∆ˆ̃yi − ∆ỹ) = 0 since enz and ēiy converge to zero as
t goes infinity. Next, the following signal processors are used for
threat discrimination:

Si :

{
ẋiw = Aζx

i
w + Lζw

i(t), (22a)

ρi(t) = C∆ζ̂i(t)− Cxiw, (22b)

where xiw ∈ Rnp is a vector signal used for compensation purposes,
ρi ∈ Rny is the output vector, and ∆ζ̂i is constructed based on ∆ζ
in (9) (∆ζ(Td) is ignored for simplicity) as follows:

∆ζ̂i(t) =

∫ t

Td

eAζ(t−τ)Lζ∆ˆ̃yi(τ)dτ. (23)

The compensation system (22a) starts at time Td, and xiw(Td) =
0. The task of xiw is to generate distinguishable outputs ρi in the
fault case and the attack case, respectively. More specifically, wi is
designed such that xiw is able to completely compensate for ∆ỹ in
the i-th threat case, but cannot compensate for ∆ỹ in the j-th threat
case, j 6= i. In order to achieve the above task, the input signal wi,
referred to as “watermark”, is designed as

wi , (CΩi + F i)θ̂i, i ∈ {a, f}. (24)

Thus, from ∆ỹ = ỹj − ỹn, j ∈ {a, f}, we obtain

wi = ∆ỹ + Cenz − dij , i, j ∈ {a, f}, (25)

where enz is given after (11), and dij is defined in (16) and represents
the compensation error for ∆ỹ. By solving the differential equation
(22a) and using (23), ρi in (22b) is obtained as ρi(t) = Cg(t,∆ˆ̃y−
wi) where

g(t,∆ˆ̃y − wi) ,
∫ t

Td

eAζ(t−τ)Lζ(∆ˆ̃y − wi)dτ. (26)

Before presenting the main theorem, a fact is given [13]: for a
Hurwitz matrix A and a fixed time t0, there exist two scalars k > 0
and λ > 0 such that

|eA(t−t0)| ≤ ε(k, λ, t, t0) , ke−λ(t−t0). (27)



Theorem 2. Consider the system Wn in (1) with the pair (A,C)
being observable, the replay attack and the sensor bias fault satisfying
Assumptions 1 and 2, respectively. Also, consider the output ρi of
the signal processor Si (22) with the watermark wi(t) in (24) where
i ∈ {a, f}. Moreover, suppose that Assumption 3 holds.
(i) If the i-th threat case has occurred, then the s-th element of ρi(t)
with s ∈ {1, · · · , ny}, satisfies |ρis(t)| ≤ ρ̄is(t, Td) for t ≥ Td,
where

ρ̄is(t, Td) , |Cs| · |Lζ |·∫ t

Td

ε(kζ , λζ , t, τ)
(
|C|εix(τ) + |CΩi + F i|δi(τ)

)
dτ. (28)

In (28), Cs indicates the s-th row of C, εix(t) ,
|x(Td)|ε(k0, λ0, t, Td) and δi(t) ≥ |θi − θ̂i(t)|. Moreover,
the function ε along with the pairs (k0, λ0) and (kζ , λζ) are
specified in (27) with respect to A0 and Aζ , respectively.
(ii) If the i-th threat has occurred, and there exists at least one
s ∈ {1, · · · , ny} and a time instant ti ≥ Td such that

|Csg(ti, dji)| ≥ ρ̄js(ti, Td)

+ |Cs| · |LζC|
∫ ti

Td

ε(kζ , λζ , t
i, τ)εjx(τ)dτ, ∀ j 6= i. (29)

Then, the i-th threat case can be discriminated.

Proof. Some bounds that will be used in the sequel are first
presented. At the initial time instant Td, we have

∣∣∣ēix(Td)
∣∣∣ =

|z(Td)− ẑ(Td)| = |x(Td)− x̂(Td)| = |x(Td)|. According to (27),
for ēix = eA0(t−Td)x(Td), we have∣∣∣ēix(t)

∣∣∣ ≤ |x(Td)| ε(k0, λ0, t, Td) = εix(t). (30)

Furthermore, for ēiy(t) = Cēix(t), by using (17) we have∣∣∣ēiy(t)
∣∣∣ =

∣∣∣Cēix(t)
∣∣∣ ≤ |C|εix(t). (31)

(i) In the i-th threat case, i ∈ {a, f}, it follows from (21) and (25)
that

∆ˆ̃y − wi = ēiy + dii,

where dii = (CΩi + F i)θ̃i. Then, ρi = Cg(t, ēiy + dii). By using
(31) and |dii| ≤ |CΩi + F i|δi, the s-th element of ρi satisfies

|ρis| ≤ |Cs| · |Lζ | ·
∫ t

Td

ε(kζ , λζ , t, τ)
(
|C|εix +

∣∣∣CΩi + F i
∣∣∣ δi) dτ.

Thus, ρ̄is(t, Td) in (28) is obtained.
(ii) Considering the i-th threat case and the j-th threat discrimination
scheme, it follows from (21) and (25) that

∆ˆ̃y − wj = ējy + dji.

Then, ρj = Cg(t, ējy + dji). In order to identify the i-th threat, the
j-th threat must be excluded and hence, the inequality |ρjs(t)| >
ρ̄js(t, Td) must hold at some time ti > Td and for some s ∈
{1, · · · , ny}. By using the inverse triangle inequality, we have

|ρjs(ti)| ≥ |Csg(ti, dji)| − |Csg(ti, ējy)|,

where from (31) and ρi(t) = Cg(t,∆ˆ̃y − wi), we have

|Csg(ti, ējy)| ≤ |Cs| · |LζC| ·
∫ ti

Td

ε(kζ , λζ , t
i, τ)εjxdτ.

Thus, the sufficient condition (29) is obtained.

According to Theorem 2, the threat discrimination logic is given
based on the exclusion-logic as follows: if there is a time tf such that

|ρa(tf )| > ρ̄a(tf , Td), then the detected threat is identified as sensor
bias fault(s), and if there is a time ta such that |ρf (ta)| > ρ̄f (ta, Td),
then the detected threat is identified as a replay attack. In the presence
of a false alarm at time instant Td, the residuals ρas(t) and ρfs (t)

remain below their corresponding thresholds ρ̄as(t, Td) and ρ̄fs (t, Td)
for all s ∈ {1, · · · , ny}. Hence, no decision regarding the threat type
can be made based on the threat discrimination logic. Algorithm 1
is given in the sequel to summarize the designed details of the threat
discrimination methodology.

Algorithm 1 Threat Discrimination Algorithm
1: procedure OBSERVER On(L0) . in (8)
2: Aζ = A− L0C is a Hurwitz matrix;
3: end procedure
4: procedure ADAPTIVE ESTIMATOR Ei(L) . in (14)
5: L = BK;
6: end procedure
7: procedure SIGNAL PROCESSOR Si (wi) . in (22)
8: Watermark wi(t) = (CΩi(t) + F i(t))θ̂i(t); . in (24)
9: Residual ρi(t) = Cg(t,∆ˆ̃y − wi); . in (26)

10: Threshold ρ̄is(t, Td); . in (28)
11: end procedure
12: Decision logic:
13: if |ρa(tf )| > ρ̄a(tf , Td) then sensor fault is identified
14: else if |ρf (ta)| > ρ̄f (ta, Td) then replay attack is identified
15: end if

Remark 5. Optimizing the gain matrix L0 of the observer On in
(8) provides a potential way to improve the threat discrimination
ability. By optimizing the matrix L0, the threshold ρ̄is in (28) in
Theorem 2 can be minimized whereas the residual gi(ti, dji) in (29)
can be maximized. Hence, in this way, the discrimination ability of
the developed discrimination methodology can be improved. ∇
Remark 6. The condition (29) in Theorem 2 indicates that the
mismatch term dij in (16) should be sufficiently large to allow the
discrimination between the replay attack and the sensor fault. Based
on the definition of dij in (16), F f and Fa need to be “sufficiently
different” to guarantee the requirement for dij . The case of constant
sensor bias faults, leading to F f = Iny×ny , is an example of such a
“sufficient difference”. As indicated in Remark 1, the scheme can also
be applied to time-varying faults F f (t)θf given that some additional
conditions are satisfied. ∇
Remark 7. This paper utilizes the difference between the distribution
matrices Fa of the replay attack and F f of the sensor bias faults
to discriminate between the replay attack scenario and the sensor
bias fault scenario. The specially designed adaptive estimators Ei
and the signal processors Si with the watermarks wi (i ∈ {a, f}) are
integrated to formulate the threat discrimination approach. Compared
with the fault isolation literature [13], [14], [17] and the replay attack
detection literature [5], [7], [9], this paper derives for the first time
the linear parameterization form of replay attacks by introducing the
virtual attack signal. In addition, by using the adaptive estimators and
the watermarks, this paper is able to utilize the difference between
the distribution matrices Fa and F f to discriminate the threats. ∇

IV. SIMULATION RESULTS

In this section, an illustrative simulation example is presented. The
matrices of the plant (1) are given as follows:

A =

[
0 1 0
0 −1 1
0 0 −1

]
, B =

[
−1.67 0 0

0 −1.93 0
0 0 1

]
, C =

[
1 0 0
0 1 0

]
.



Moreover, the gain matrices K and L0 are:

K =

[
−0.18 0.60
−0.02 −0.67
0.03 −0.42

]
, L0 =

[
−0.3 −1.0
−0.04 1.29
0.03 −0.42

]
.

Regarding Assumptions 1 and 2, σa in (5) and σf in (7) are given
by σa = 10 and σf = 20. For the simulation purpose, the threat
information is given as follows: a) the attacker starts recording the
data at Ta−T = 0.5s and then the attacker starts replaying the data
at Ta = 50s. Thus, both the recording and the replaying procedures
last for T = 49.5s; b) the sensor bias faults occur at Tf = 49s,
and the constant faults are given by θf = [12, 13]T . According to
Assumption 3, these two threat scenarios are considered separately.

We consider that a threat is detected at Td = 50.2s. The learning
rate is set to γ = 0.5 and the initial conditions are set as θ̂a(Td) =
[0, 0, 0]T and θ̂f (Td) = [0, 0]T . Moreover, the parameters for
obtaining the threshold (28) are given as follows: λ = λζ = 0.3,
k0 = kζ = 3.66, |x(Td)| ≤ 10 and δa(t) = δf (t) = 10. In each
threat case, the identification results are respectively shown in Figs.
3 and 4.

1) Attack Case: In this simulation, only the replay attack is
performed. It can be seen from Fig. 3 that ρ̂a1(t) and ρ̂a2(t) generated
by the attack discrimination scheme are lower than their thresholds
ˆ̄ρa1(t, Td) and ˆ̄ρa2(t, Td) respectively. The residual ρ̂f1 (t) generated
by the fault discrimination scheme exceeds its threshold ˆ̄ρf1 (t, Td)
at t = ta, and hence, the fault type is excluded, indicating that the
threat is an attack.
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Fig. 3. Time responses of residuals and thresholds in the attack case.

2) Fault Case: In this simulation, the sensor bias fault is per-
formed. Fig. 4 shows that ρ̂f1 (t) and ρ̂f2 (t) generated by the fault
discrimination scheme are lower than their thresholds ˆ̄ρf1 (t, Td) and
ˆ̄ρf2 (t, Td) respectively, whereas, the residual ρ̂a1(t) generated by
the attack discrimination scheme exceeds its threshold ˆ̄ρa1(t, Td) at
t = tf and hence, the attack case is excluded, indicating that the
threat is a fault.
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Fig. 4. Time responses of residuals and thresholds in the fault case.

V. CONCLUSION

A threat discrimination methodology for identifying the occurring
threat type between sensor replay attacks and sensor bias faults
has been proposed in this letter. Adaptive estimators and signal
processors with watermarks have been integrated to formulate the
threat discrimination framework. Threat discrimination conditions
are rigorously investigated to characterize quantitatively the class of
attacks and faults that can be identified by the proposed scheme.

Future work will be devoted to deal with the threat discrimination
problems under disturbances. Also, we will focus on developing
a unified threat discrimination framework, allowing to discriminate
between general cyber attacks and physical faults.
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