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Abstract

Inter-individual variation in mean leukocyte telomere length (LTL) is associated with cancer and

several age-associated diseases. Here, in a genome-wide meta-analysis of 37,684 individuals with

replication of selected variants in a further 10,739 individuals, we identified seven loci, including

five novel loci, associated with mean LTL (P<5x10−8). Five of the loci contain genes (TERC,

TERT, NAF1, OBFC1, RTEL1) that are known to be involved in telomere biology. Lead SNPs at

two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic

pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all seven

loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the

alleles associated with shorter LTL with increased risk of CAD (21% (95% CI: 5–35%) per

standard deviation in LTL, p=0.014). Our findings support a causal role of telomere length

variation in some age-related diseases.

Telomeres are the protein bound DNA repeat structures at the ends of chromosomes, which

have an important role in maintaining genomic stability1. Furthermore, they play a critical

role in regulating cellular replicative capacity2. During somatic cell replication, telomere

length (TL) progressively shortens due to the inability of DNA polymerase to fully replicate

the 3’ end of the DNA strand. Once a critically short TL is reached, the cell is triggered to

enter replicative senescence and subsequently cell death1, 2. Conversely, in germ cells and
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other stem cells requiring renewal, TL is maintained by the enzyme telomerase, a

ribonucleoprotein which contains the RNA template TERC and a reverse transcriptase

TERT3. Both longer and shorter TL are associated with increased risk of certain cancers4, 5,

and reactivation of telomerase, which by-passes cellular senescence, is a common

requirement for oncogenic progression6. Therefore, TL is an important determinant of

telomere function.

Mean TL shows considerable inter-individual variability and has high heritability with

estimates varying between 44–80%7–9. Most of these studies have measured mean TL in

blood leukocytes. However, there is evidence that within an individual, mean TL of

leukocytes (LTL) and other tissues is highly correlated10, 11. In cross-sectional population

studies mean LTL is longer in women than in men and is inversely associated with age

(declining by between 20–40 base-pairs (bp) per year)9, 12–14. Furthermore, shorter age-and

sex-adjusted mean LTL has been found to be associated with risk of several age-related

diseases, including CAD12–15 and has been advanced as a marker of biological ageing16.

However, the extent to which the association of shorter LTL with age-related disorders is

causal in nature remains unclear. Identifying genetic variants that affect TL and testing their

association with disease could clarify any causal role.

So far, common variants at two loci on Chr3q26 (TERC)17–19 and Chr10q24.33 (OBFC1)18,

that explain <1% of the variance in TL, have shown a replicated association with mean LTL

in genome-wide association (GWA) studies. To identify further genetic determinants of LTL

we conducted a large scale GWA meta-analysis of 37,684 individuals from 15 cohorts,

followed by replication of selected variants in a further 10,739 individuals from 6 additional

cohorts.

Details of the studies included in the GWA meta-analysis and in the replication phase are

given in Supplementary Note and key characteristics summarised in Supplementary Tables

1a and 1b, respectively. All subjects were of European descent, the majority of the cohorts

were population-based and three of the replication cohorts were additional subjects from

studies used in the meta-analysis. The genotyping platforms and the imputation method (to

HapMap 2 build 36) used by each GWA cohort are summarised in Supplementary Table 2.

Mean LTL was measured in each cohort using a quantitative PCR method and is expressed

as a T/S ratio (Online Methods, Supplementary Note).

LTL, adjusted for age, sex, and any study-specific covariates was then analysed for

association with genotype using linear regression within each study and results adjusted for

genomic inflation control factors (Supplementary Table 2). An inverse-variance weighted

meta-analysis for 2,362,330 SNPs (Online Methods) was performed with further correction

for the overall genomic inflation control factor (λ = 1.007). The quantile-quantile plot for

the meta-analysis is shown in Supplementary Figure 1.

SNPs in 7 loci showed association with mean LTL at genome-wide significance (P<5x10−8,

Fig 1, Table 1, Fig 2 and Supplementary Fig 2). The association of the lead SNP on

chromosome 2p16.2 (rs11125529) was very close to the threshold for genome-wide

significance , while the lead SNP in a further locus on 16q23.3 (rs2967374) fell just short of
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this threshold (Table 1). We therefore sought further validation of these two loci. We

confirmed the association of rs11125529 but not of rs2967374 (Table 1). The combined P

value from the GWA meta-analyses and replication cohorts for rs11125529 was 7.50x10−10.

There was no evidence of sex-dependent effects or additional independent signals at any of

these loci (Online Methods, Supplementary Tables 3 and 4).

Details of key genes in each locus associated with LTL and their location in relation to the

lead SNP are given in Supplementary Table 5. The most significantly associated locus we

found was the previously reported TERC locus on 3q26 (Figs 1 and 2, Table 1)17. In

addition to this, four further loci – 5p15.33 (TERT), 4q32.2 (NAF1, nuclear assembly factor

1), 10q24.33 (OBFC1, oligonucleotide/oligosaccharide-binding fold containing 1)18 and

20q13.3 (RTEL1, regulator of telomere elongation helicase 1) - harbour genes that encode

proteins with known function in telomere biology3, 20–23. NAF1 is a protein which is

required for H/ACA box snoRNA assembly, the RNA family to which TERC belongs20.

Therefore, the three most significantly-associated loci (3q26, 5p15.33 and 4q32.2) harbour

genes involved in the formation and activity of telomerase. We therefore examined whether

the lead SNPs at these loci as well as the other identified loci associate with leukocyte

telomerase activity in available data from 208 individuals. We did not find significant

association of any of the variants with telomerase activity (Supplementary Table 6).

However, the study only had 80% power (α of 0.05) to detect a SNP effect that explained

3.7% of the variance in telomerase activity and therefore smaller effects are likely to have

been missed in this exploratory analysis.

We also replicated the previously reported OBFC1 locus18. OBFC1 is a component of the

telomere binding CST complex also containing CTC1, and TEN121. In yeast this complex

binds to the single stranded G overhang at the telomere and functions to promote telomere

replication. RTEL1 is a DNA helicase that has been shown to play important roles in setting

telomere length, telomere maintenance and DNA repair in mice22, 23. However, it should be

noted that the lead SNP lies 94 kb from RTEL1. The remaining two loci (19p21 and 2p16.2)

do not harbour obvious candidate genes related to telomere biology. The locus on 19p12

contains a cluster of genes encoding zinc finger proteins (ZNFs) while that on 2p16.2 spans

both the ACYP2 gene which encodes a muscle specific acylphosphate and TSPYL6, a gene

within intron 3 of ACYP2 that shares homology with nucleosome assembly factors. There is

evidence that ACYP2 is linked to stress induced apoptosis in rat muscle24.

In order to gain better functional insight into the associated loci we undertook various

bioinformatics analyses (Online Methods). Details of the findings are given in the

Supplementary Note and in Supplementary Table 7. SNPs in high LD with the lead SNP

were found to lie within potential regulatory elements of TERC, NAF1 and OBFC1.

However, similar SNPs were also present for other genes in some of the loci. These findings

emphasise that although strong candidate genes are located in some of the loci, at this stage

we cannot overlook the potential involvement of other genes within each region.

Each of the identified loci explains a relatively small proportion of the total variance in LTL

(Table 1). In order to put this in context, we calculated the effect of the lead SNP at each

locus in terms of equivalent age-related shortening of LTL based on an estimate of age-
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related attrition in T/S ratio calculated across all cohorts (Supplementary Fig 3). We saw

per-allele effects using this measure equivalent to between 1.9–3.9 years of age-related

attrition in T/S ratio (Table 1). The qPCR method used here to measure LTL cannot be used

to directly calculate the effect on LTL in base pairs (bp). However, many prior studies that

have used Southern blotting to measure LTL have shown that mean LTL attrition rate is

about ~30 bp per year8, 12–14, 25. This suggests that the per allele effect of the different SNPs

on LTL in base pairs ranges from ~ 57 to 117 bp (Table 1).

As both shorter and longer mean LTL have been linked to increased risk of various diseases,

we searched genetic association databases for disease associations with the LTL associated

SNPs (Supplementary Table 8). The rs10936599 (TERC) allele associated with longer LTL

associates with increased risk of colorectal cancer19 and with two autoimmune diseases,

multiple sclerosis (longer LTL allele) and celiac disease (shorter LTL allele). The lead SNP

for the 5p15.33 (TERT) locus is associated with different cancer types (both shorter and

longer LTL alleles) and with increased risk of idiopathic pulmonary fibrosis (shorter LTL

allele), a disease that has previously been shown to be associated with shorter LTL26.

One of the most widely reported associations for LTL to date has been that between shorter

mean LTL and CAD12–14, 25. Because LTL is also affected by other risk factors for CAD

such as oxidative stress27–29, it has been unclear whether the association of shorter LTL with

CAD is primary or secondary. To investigate whether the association could be causal, we

examined the association of both individual lead SNPs and a genetic risk score (GRS) based

on a combination of all seven SNPs, (adjusted for their effect size) with CAD in the

CARDIoGRAM GWAS meta-analysis comprising 22,233 CAD cases and 64,762 controls

of European descent30, using the approach recently described by the ICBP Consortium31.

Although the results for individuals variants were not significant, 6 out of 7 variants showed

consistency in direction and the combined GRS analysis showed a significant association (p

= 0.014) of the allele associated with shorter LTL with increased risk of CAD (Fig 3).

Shorter mean LTL equivalent to one SD in LTL was associated with a 21% (95% CI 5% –

35%) higher risk of CAD.

Here, we report five novel and confirm two previously reported loci that associate with

mean LTL in humans. A specific motivation for our study is the observation that variation in

LTL is associated with several age-related diseases and the desire to establish whether this

link is causal. This is particularly challenging to disentangle because other environmental

and life-style factors also impact on TL29, 32–34. The most persuasive evidence for a causal

role comes from in vitro and in vivo manipulation of telomerase activity which impacts on

TL and has been shown to enhance or reverse senescence and ageing-associated

phenotypes35–39. Here, we show that some of the genetic variants associated with LTL are

also associated with risk of specific cancers as well as other diseases some of which have

been shown to be previously associated with shorter LTL, suggesting a causal link. An

interesting finding was that alleles associated with both shorter and longer telomeres showed

associations with specific cancers suggesting that variation in LTL in either direction may

contribute to the development of specific cancers.
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As an example of a complex disease that has been shown to be associated with shorter LTL

we examined CAD. Through an analysis of a large GWA database of CAD30, we found that

while individually the lead SNPs at each of the TL-associated loci were not significantly

associated with risk of CAD (probably at least in part reflecting their weak individual effects

on LTL and low power), in a combined analysis, alleles associated with shorter LTL were

associated with a significantly higher risk of CAD. Because the variants at each of the loci

could have other biological effects that could impact on their association with CAD through

LTL (and possibly explain why the NAF1 locus may be trending in the opposite direction),

some caution is required in the interpretation of this association. Nonetheless, the finding is

consistent with that in the prospective WOSCOPS study where, after adjustment for other

CAD risk factors, baseline LTL was associated with a 44% higher risk of CAD over the

ensuing mean 5.5 years of follow-up in individuals in the tertile with the shortest LTL

compared with the longest LTL13. Our finding here therefore supports a causal association

of shorter LTL with CAD and further mechanistic investigation of this relationship is

warranted.

In summary, we provide novel insights into the genetic determination of a structure that is

critically involved in genomic stability and cellular function. Our findings suggest that

variants in several genes encoding proteins with known function in telomere biology as well

as other genes influence LTL. The findings provide a framework for a genetic approach to

investigating the causal role of telomere length in ageing-related diseases.

Online Methods

Subjects

A total of 37,684 individuals from 15 cohorts were used in the GWAS meta-analysis, along

with a further 10,739 individuals from 6 cohorts for replication of selected variants.. All

individuals were of European descent. Full details of the discovery and replication cohorts

are given in the Supplementary Note and key characteristics summarised in Supplementary

Table 1.

Telomere Length Measurements and QC analysis

Mean LTL was measured using a quantitative PCR-based technique40, 41 in all samples.

This method expresses telomere length as a ratio (T/S) of telomere repeat length (T) to copy

number of a single copy gene (S), within each sample. To standardise across plates either a

calibrator sample or a standard curve were used for quantification. LTL measurements were

made in five separate laboratories. Laboratories used are listed for each cohort in

Supplementary Table 1 and specific details for the methods used are given in Supplementary

Note. The majority of the samples (67% of the total) were run in a single laboratory with

mean inter-run coefficients of variation for LTL measurements in individual cohorts ranging

between 2.7% and 3.9%. The remaining samples were run across 4 other laboratories

(Supplementary Note). Mean LTL was first assessed for age-related shortening and for an

association of longer LTL with female sex in all cohorts and showed expected associations

(Supplementary Tables 1a and 1b).Ranges in T/S ratios were found to vary between cohorts

measured in different laboratories (Supplementary Table 1), largely due to differences in the
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calibrator or standard DNA used. We therefore standardised LTL within each cohort using a

Z-transformation approach. The Z-transformation was performed separately for males and

females for sex-stratified analysis. Effects of age, adjusted for sex, on LTL were estimated

in a multiple regression model on untransformed and Z-transformed TL in each study

separately and combined using a random-effects meta-analysis in STATA (version 11.2,

Supplementary Fig 3).

Genotyping, GWAS analysis and study level QC

All discovery cohorts had genome-wide genotype information generated on a standard

genotyping platform and include imputed genotypes based on HapMapII CEU build 36 as a

reference. Detailed information about individual genotyping platforms, imputation methods,

and analysis software is provided in Supplementary Table 2.Within each cohort SNP

associations with LTL were analyzed by linear regression assuming additive effects with

adjustment for age and sex as well as study specific covariates where appropriate, such as

adjustments for family and population structure (Supplementary Table 2). All study-specific

files underwent extensive quality control procedures before meta-analysis. All files were

checked for completeness and plausible descriptive statistics on all variables partly

supported by the gwasqc function in R. Allele frequencies were checked for compliance

with HapMap. In addition to the study-specific quality control filters, we included SNP

results of a study in our meta-analysis only if the SNP imputation quality score was >0.5 and

if the minor allele frequency was >1%. Only SNPs which were available in >50% of the

total sample size over all studies were analyzed, resulting in a total number of 2,362,330

SNPs in the meta-analysis.

Meta-analyses

Meta-analysis of all individual study associations was conducted using inverse variance

weighting in Stata. As a measure for between study heterogeneity I2 was calculated42. For

SNPs with I2≤40% fixed-effects models were applied and random-effects were applied for

SNPs with I2>40%. Fixed-effects results were verified by an independent analyst using

METAL43. Before meta-analysis, standard errors of each study were genomic control

corrected using study specific lambda estimates as provided in Supplementary Table 2. The

overall inflation factor lambda of the meta-analyzed results was 1.007. Results were further

corrected for this. SNPs showing association with telomere length with P-values below

5x10−8, which corresponds to a Bonferroni correction of one million independent tests, were

considered to be statistically significant44.

Replication study

Replication was sought for two SNPs reaching borderline significant p-values in the

discovery analysis. Further subsets of NTR and ECGUT along with the Leiden 85-plus

study had LTL measurements performed. LTL measurements were available for the

GRAPHIC, PLIC cohorts and for additional samples of PREVEND. De-novo genotyping

was performed either using a commercial genotyping service (GRAPHIC, PREVEND,

KBioscience, UK) or by Taqman genotyping as described previously45. In these studies, the

same model was applied as in the discovery studies. Single study results were meta-analyzed

using inverse-variance weighted fixed-effects models in STATA
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Sex stratified analysis

Genome-wide associations were additionally conducted separately in women and men in

order to investigate whether sex-specific signals existed. Furthermore, all top SNPs from the

overall discovery GWAS, were tested for differences between women and men by means of

the normally distributed test-statistic (betaw-betam)/sqrt(sew
2+sem

2). The results of this

analysis are given in Supplementary Table 3.

Conditional association analysis

Regional association plots were generated using LocusZoom46 for each of the loci

containing significantly associated SNPs. These were assessed to check that further SNPs in

high linkage disequilibrium (LD) with the lead SNP also showed some degree of association

with TL. This was confirmed; however it was evident that some regions (5p15.33, 10q24.33

and 20q13.3) contained SNPs in low LD with the lead SNP that also showed association to

LTL. In order to assess whether independent signals existed at these loci conditional

analyses were carried out. Within a subset of studies, a multiple regression model was

calculated for each locus including both SNPs. Adjustments were made in the same way as

in the single SNP models. Individual study results were meta-analyzed using fixed-effects in

R and compared to the meta-analysis results of single SNP models within the same subset of

studies. Independency was defined as the percentage-change in the effect estimate between

the single and the multiple SNP model being ≤25%. The data is given in Supplementary

Table 4.

Calculations of explained variances

Explained variances were calculated based on the effect estimates (beta) and allele

frequencies (EAF) of each single SNP by 2*EAF*(1-EAF)*(beta2/var) as suggested

before47. The phenotypic variance (var) is equal to 1 as the analysis was performed using Z-

transformed telomere length.

Genetic risk scores

In order to assess the impact of these variants on risk of CAD we performed a multiple SNP

risk score analysis as previously described31. This method is equivalent to a fixed-effects

inverse-variance weighted meta-analysis of the ratio between the two traits. Lookups were

performed in CARDIoGRAM30 [β1] to obtain the effect sizes for the seven SNPs along with

the standard errors for CAD risk. These were then converted to a ratio[β3] along with its

standard error using the estimates from the telomere meta-analysis[β2]. We removed the

BHF-FHS and NBS data from this analysis because they were included in the

CARDIoGRAM analysis and to avoid the possibility of reverse causation given the nature of

the BHF-FHS sample. The single SNP results were then meta-analysed using fixed-effects

with inverse-variance weighting. The pooled estimate can be interpreted as the effect of a

standard deviation increase in telomere length on the risk of CAD.

Leukocyte telomerase activity assays

Details of the cohort are given in Supplementary Note. Peripheral blood mononuclear cells

(PBMCs) were freshly isolated from whole blood by Ficoll-Pague Premium (Sigma-Aldrich,
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St. Louis, MO) gradient centrifugation within 1 hour after blood draw. Isolated PBMCs

were stored in a cryopreservation media composed of RPMI-1640, 10% dimethyl sulfoxide

and 10% fetal bovine serum at liquid nitrogen tank until further processing. Telomerase

activity was assayed by the Telo TAGGG Telomerase PCR ELISA kit (Roche Applied

Science, Indianapolis, IN) (TRAP assay) as per the manufacturers’ protocol using 2x10−5

cells/assay. An extract from 2000 cells were used for TRAP reactions. Sample telomerase

activity was expressed as ratio of telomerase activity value divided by control HK293

telomerase activity value from 1000 cells. Intra-assay CV was5.9% and inter-assay CV is

4.8%. Telomerase activity was log transformed to obtain better approximations of the

normal distribution prior to analysis. Association analyses with genotype were performed

using regression and an additive model with adjustment for age, sex and ethnicity. The

interaction between SNP and ethnicity was also built in the regression model to test whether

the effect of the SNP on telomerase activity is ethnicity dependent. The power of the study

to detect a SNP effect on telomerase activity was computed using the Genetic Power

Calculator48.

Bioinformatics analyses

For all analyses we tested lead SNPs and SNPs with an r2>0.7 to the lead SNP identified

through the 1000 Genomes study at each. Functional predictions of any identified coding

variants were carried out using PolyPhen249 and SIFT50. In order to assess whether any

variants influenced gene expression we searched two available genome-wide gene

expression databases, the monocyte genome-wide gene expression data from the Gutenburg

Heart Study51 and the Genotype-Tissue Expression Project (GTEx) data base, which

includes liver, brain and lymphoblastoid cell types. To identify regulatory variants we

searched ENCODE data in the UCSC Genome Browser database52. to examine whether any

SNPs were located within promoter, enhancer or insulator regions (Chromatin State

Segmentation), methylation sites (predicted CpG islands and methylation status of the CpG

site using data from the Methyl 450K Bead array data and Bisufite sequencing), conserved

elements, conserved transcription factor binding sites and regions of known transcription

factor binding as shown by transcription factor ChIP-seq.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Signal intensity plot of genotype association with telomere length
Data is displayed as –log10P values against chromosomal location for the 2,362,330SNPs that were tested. The dotted line

represents a genome-wide level of significance at P=5x10−8. The 7 loci that showed an association at this level are plotted in

red.
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Figure 2. Regional associations plots for the associated loci
For each SNP –log10P is plotted against base pair position for each of the loci (A-G). Regional plots are shown in order of

strongest association - Chr3q26 (A), Chr5p15.33 (B), Chr4q32.2 (C), Chr10q24.33 (D), Chr19p12 (E) Chr20q13.3 (F),

Chr2p16.2 (G). Within each locus the lead SNP is represented in purple and the LD relationship of other SNPs to this is

indicated by the colour as shown in the right hand panel of each plot. Blue peaks represent recombination rates (HapMap 2) and

the RefSeq genes within each region are given in the lower panel.
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Figure 3. TL variants and risk of CAD
Forest plot showing the effect of telomere length on CAD risk obtained for each SNP using a risk score analysis31 for each SNP.

Effect sizes are plotted with 95% CI intervals. The overall estimate is from a fixed-effects meta-analysis over all SNPs, where

the odds ratio relates to the change in CAD risk for a standard deviation change in telomere length.
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