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Abstract Cultivated groundnut or peanut (Arachis hyp-

ogaea L.), an allotetraploid (2n = 4x = 40), is a self pol-

linated and widely grown crop in the semi-arid regions of

the world. Improvement of drought tolerance is an

important area of research for groundnut breeding pro-

grammes. Therefore, for the identification of candidate

QTLs for drought tolerance, a comprehensive and refined

genetic map containing 191 SSR loci based on a single

mapping population (TAG 24 9 ICGV 86031), segregat-

ing for drought and surrogate traits was developed. Geno-

typing data and phenotyping data collected for more than

ten drought related traits in 2–3 seasons were analyzed in

detail for identification of main effect QTLs (M-QTLs)

and epistatic QTLs (E-QTLs) using QTL Cartographer,

QTLNetwork and Genotype Matrix Mapping (GMM)

programmes. A total of 105 M-QTLs with 3.48–33.36%

phenotypic variation explained (PVE) were identified

using QTL Cartographer, while only 65 M-QTLs with

1.3–15.01% PVE were identified using QTLNetwork. A

total of 53 M-QTLs were such which were identified using

both programmes. On the other hand, GMM identified 186

(8.54–44.72% PVE) and 63 (7.11–21.13% PVE), three and

two loci interactions, whereas only 8 E-QTL interactions

with 1.7–8.34% PVE were identified through QTLNet-

work. Interestingly a number of co-localized QTLs con-

trolling 2–9 traits were also identified. The identification of

few major, many minor M-QTLs and QTL 9 QTL inter-

actions during the present study confirmed the complex and

quantitative nature of drought tolerance in groundnut. This

study suggests deployment of modern approaches like

marker-assisted recurrent selection or genomic selection

instead of marker-assisted backcrossing approach for

breeding for drought tolerance in groundnut.
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Introduction

Cultivated peanut or groundnut (Arachis hypogaea L.) is an

allotetraploid (2n = 4x = 40) legume that is widely grown

as an oil seed or food crop in more than 100 countries of

the world. Over two-third of the groundnut global pro-

duction occurs in seasonally rainfed regions where drought

is the major constraint for crop production (Smartt 1994)

and productivity ranges from 0.7 to 1.2 Million mega

grams per hectare (Mg ha-1). However, even under a

commercial system where groundnut productivity ranges

from 2.0 to 4.0 Mg ha-1, water may also be a limiting

factor. For both situations, cultivars that are efficient in

water utilization are required. Yield loss due to water stress

can be partially tackled by developing varieties that are

better adapted to water-limited conditions.

Mechanisms of drought adaptation in groundnut are

limited to drought escape and drought avoidance (Zhang

et al. 2001). In drought escape, plants take advantage of

developmental flexibility to match its phenology to the

length of the cropping period (early flowering to escape

late season drought). The principle of drought avoidance is

to either increase water absorption ability (from rooting

differences) or decreasing their water loss (shoot/leaf

morphological traits or physiological traits). Tolerance to

drought is not a simple response, but is mostly conditioned

by many genes and has been shown to interact with envi-

ronment, and thus the networks involved in drought toler-

ance are quite complex in nature. Therefore, selection

based on the phenotype would be difficult for such traits

(Collins et al. 2008)

In case of crops like groundnut, which are grown in

semi-arid tropics (SAT) environment, which is charac-

terized by short and erratic rainfall and long periods of

dry spell, drought avoidance assumes greater importance.

Water-use efficiency (WUE) is considered as an important

drought avoidance trait, which deals with using soil water

more efficiently for biomass production (Blum 2005;

Collins et al. 2008). Raising the WUE of both irrigated

and rain fed crop production is an urgent imperative

(Nigam et al. 2005). Of the world’s allocatable water

resource, 80% is currently consumed by irrigated agri-

culture. Drought tolerance through WUE with transpira-

tion efficiency (TE) as an important component of WUE

is one of the target traits for groundnut improvement for

water limited environments. Surrogate traits for TE such

as carbon discrimination ratio (d13C), specific leaf area

(SLA) and SPAD chlorophyll meter reading (SCMR)

have also been used as proxies for TE (Hubick et al.

1986; Nageswara Rao and Wright 1994; Rebetzke et al.

2002), although some recent results are not in complete

agreement of this view (Krishnamurthy et al. 2007; Devi

et al. 2010).

Conventional breeding for developing drought-tolerant

crop varieties is time-consuming and labor intensive due to

the quantitative nature of drought tolerance and difficulties

in selection for drought tolerance (Ribaut et al. 1997).

Recent advances in the area of crop genomics offer tools to

assist breeding (Varshney et al. 2005, 2006). The identifi-

cation of genomic regions associated with drought toler-

ance would enable breeders to develop improved cultivars

with increased drought tolerance using marker-assisted

selection (MAS) (Ribaut et al. 1996). To identify the

genomic regions suitable for marker-assisted breeding

strategies, it is important to establish accurate phenotyping

methods, develop highly saturated molecular marker-based

genetic linkage maps, and then identify QTLs (quantitative

trait loci) associated with traits of interest. Several studies

were conducted in the past that reported identification of

QTLs for drought tolerance or related traits. For instance,

in soybean, 5 QTLs were identified for WUE in an F2

population with 14–20% phenotypic variation explained

(PVE) (Mian et al. 1998). In case of wheat, Dashti et al.

(2007) identified five QTLs for drought tolerance with

13–34% PVE. In another study, 47 QTLs for different plant

stress indicators in rice with 5–59% PVE were identified.

Even though candidate QTLs have been identified in

several studies, there have been few attempts to develop

strategies to use them in marker assisted selection (MAS)

programmes. This can be attributed mainly to following

reasons: (a) QTLs for drought tolerance explained only a

small proportion of the phenotypic variation, (b) QTLs

identified for drought tolerance themselves explained only a

portion of the yield variation. Such observations are

expected, as drought tolerance is a complex trait involving

diverse aspects of phenotype physiology interaction with the

environment and presumably, many genes. With these types

of complex traits, in addition to simple QTLs, there is a need

to identify epistatic QTLs (E-QTLs). Some programmes like

QTLNetwork have been used to identify main effect QTLs

(M-QTL), epistatic QTLs (E-QTL) and QTL- Environment

(QE) effects in several crop species e.g. rice (Xing et al.

2002), wheat (Kulwal et al. 2004; Mohan et al. 2009), cotton

(Shen et al. 2006), maize (Yang et al. 2009), etc. Recently,

Isobe et al. (2007) developed a new QTL mapping approach

that is called genotype matrix mapping (GMM), which

searches for QTL interactions in genetic variation.

Based on (TAG 24 9 ICGV 86031) RIL mapping

population, a framework linkage map was developed ear-

lier for cultivated groundnut that had 135 SSR loci

(Varshney et al. 2009a). QTL analysis with genotypic data

and phenotypic data obtained from two seasons revealed

minor M-QTLs contributing 2.9–17.6% PV. This may be

attributed to either the low marker density of the genetic

map developed or to the limited range of phenotypic var-

iation existed among the RIL progenies. With this
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background, the present study was initiated: (a) to saturate

the framework map with more marker loci, (b) to pheno-

type additional drought related traits and attempt to

increase the previous range of variation, and (c) to under-

take comprehensive QTL analysis to identify M-QTLs,

E-QTLs and QE effects for drought and component traits in

groundnut.

Materials and methods

Trait phenotyping

A RIL mapping population comprising of 318 F8/F9/F10

lines derived from a cross TAG 24 9 ICGV 86031 was

phenotyped for transpiration (T, g plant-1), transpiration

efficiency (TE, g biomass kg-1 water transpired), SLA

(cm2 g-1), SCMR, leaf area (LA, cm2 plant-1), shoot plus

pod dry weight (DW, g plant-1), and total dry matter

(TDM, g plant-1, which includes root dry weight) and

carbon discrimination ratio (d13C) during post-rainy season

in 2004 and 2005. Canopy conductance (ISC) was com-

puted as the ratio of the transpiration to leaf area. The same

population was phenotyped for T, TE and shoot plus pod

dry weight under well watered and water stress regimes in

2008. The protocols for TE measurements are previously

described (Krishnamurthy et al. 2007).

Field evaluation of populations

In addition to phenotyping conducted in 2004 and 2005,

as reported in Krishnamurthy et al. (2007) and used for

QTL analysis by Varshney et al. (2009a), the mapping

population (318 F10 progenies from the cross TAG 24

(low TE) 9 ICGV 86031 (high TE) was tested for yield

in the field during the post-rainy season (2007–2008),

under water stress and well-watered conditions. The trial

was planted on December 2007 and stress was imposed

on 16 February 2008. A supplemental irrigation of 50 mm

was applied to the stress plots on 5 March 2008, whereas

the fully irrigated plot received 50 mm of irrigation every

10 days initially and then every 7 days as the season

progressed. The trial received 163 mm of unexpected

rainfall between 22 and 27 March 2008 (pod maturity

stage). Despite this rain, the yield reduction in the water

stress treatment was about 20% compared to the fully

irrigated control, showing that some of the flowers might

have already dried up due to drought at flowering stage

and therefore, rain at podding stage could not recover the

withered flowers and hence reduction in yield. Harvesting

was done in April 2008. Different agronomic traits such

as seed weight, pod weight and haulm weight were

measured.

SSR loci amplification and genotyping

New set of SSR markers developed by S. J. Knapp at

University of Georgia (UGA), USA (unpublished) and

Wang et al. (2007a) were used for polymerase chain

reaction (PCR) in a 5 ll reaction volume in an ABI 9700

thermal cycler (Applied Biosystems, USA), in 384-well

PCR plates (Applied Biosystems, USA). The forward

primers for the UGA markers were labeled with one of

the fluorescent labels 6-FAM, VIC, NED, PET, HEX or

TAMRA and the reverse primers were unlabeled. In case

of markers from Wang et al. (2007a), a M13 primer

(50-CGTTGTAAAACGACGGCCAGT-30) with 6-FAM

covalently bound to the 50-end was used. Two unlabeled

primers including a specific SSR-targeting forward primer

with the M13 tail and a specific SSR-targeting reverse

primer were also used in each reaction. Thus PCRs, in

case of Wang et al. (2007a) markers, consisted of three

primers in which the M13-labeled primer and reverse

primer were in excess of the unlabeled forward primer.

This allows the forward M13-tailed primer and reverse

primer to initiate the reaction and, when the limited pri-

mer is depleted, the labeled primer takes the place of the

limited forward primer in the remaining PCR cycles

(Schuelke 2000).

In both kinds of markers, the PCR mix consisted of

2 pM of forward (F) and 2 pM of reverse (R) (S. J. Knapp

unpublished)/1 pM M13 tailed F: 2 pM R: 2 pM M13

label ratio (Wang et al. 2007a) of primers, 2 mM MgCl2,

2 mM dNTPs, 0.1 U of Taq DNA polymerase (Bioline,

USA) and 1X PCR buffer (Bioline, USA). A touch down

PCR amplification profile with 3 min of initial denatur-

ation, followed by first 5 cycles of 94�C for 20 s, 60�C for

20 s and 72�C for 30 s, with 1�C decrease in annealing

temperature per cycle, then 30 cycles of 94�C for 20 s with

constant annealing temperature (59�C) and 72�C for 30 s

followed by a final extension for 20 min at 72�C. PCR

amplicons generated were first resolved on 1.2% agarose

gel to check for the amplification of the PCR products.

Subsequently, amplified products for majority of SSR

markers were size fractioned and analyzed using capillary

electrophoresis on an ABI 3700 automatic DNA sequencer

(Applied Biosystems, USA) following the same methods

mentioned in Varshney et al. (2009a). Genotyping data on

the mapping population were obtained for the polymorphic

markers by using the same protocol as mentioned above.

Mapping of polymorphic loci

Genotyping data generated in this study were attempted for

integrating the marker loci into the available framework

linkage map (Varshney et al. 2009a) using Mapmaker ver.

3.0 (Lander et al. 1987). All polymorphic loci were tried
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using ‘‘build’’ command with a LOD score of 3 to integrate

into the framework map. After integration of new loci, the

local marker orders were confirmed by permuting all

adjacent triple orders using ‘ripple’ command. Recombi-

nation fractions were converted into map distances in

centimorgans (cM) based on Kosambi’s mapping function.

Quantitative trait loci (QTLs) detection

For identification of candidate QTL regions for drought

component traits, two types of trait mapping were taken up:

(a) interval mapping to identify main effect QTLs (M-

QTLs) and (b) epistatic interaction analysis (EIA) to

identify epistatic interactions between different QTL

regions (epistatic QTLs, E-QTLs). The most likely location

of QTLs and their genetic effects were initially detected by

composite interval mapping (CIM; Zeng 1993, 1994) using

the WinQTL Cartographer, version 2.5 (Wang et al.

2007b). CIM was performed using Model 6 after scanning

the genetic map and estimating the likelihood of a QTL and

its corresponding effects every 1 cM, while using signifi-

cant marker cofactors to adjust the phenotypic effects

associated with other positions in the genetic map. The

number of marker cofactors for the background control was

set by forward–backward stepwise regression. A window

size of 10 cM was used, and therefore cofactors within

10 cM on either side of the QTL test site were not included

in the QTL model. When separated by a minimum distance

of 20 cM (Ungerer et al. 2002) two peaks on one chro-

mosome were considered as two different QTLs. Other-

wise, the higher peak was chosen to more closely

approximate the position of the QTL.

EIA was carried out using Genotype Matrix Mapping

(GMM) software ver. 2.1 (Isobe et al. 2007, http://www.

kajusa.or.jp/GMM) which looks for interactions between

different loci. Using GMM, two and three loci interactions

were tested. QTLNetwork programme ver. 2.0, based on a

mixed linear model (Yang et al. 2005) was also used

to identify epistatic QTLs (E-QTL) conditioning drought

related traits.

Results

Identification of marker polymorphism and genotyping

In addition to the 1,145 SSRs screened in our earlier study

(Varshney et al. 2009a), a set of 2,070 novel SSR markers

including 1,947 EST-SSR markers developed at University

of Georgia (S. J. Knapp, unpublished) and 123 genomic

SSR markers reported by Wang et al. (2007a) were

screened on the parental genotypes ICGV 86031 and TAG

24 for polymorphism in this study. Only 51 (2.46%)

markers showed polymorphism between these two parental

genotypes. In addition, 12 additional polymorphic markers

identified in the previous study were included in the dataset

of polymorphic markers. All these 63 polymorphic markers

were used for genotyping the set of 188 RILs of the

mapping population. While genotyping the mapping pop-

ulation, segregation data were scored at two loci for two

markers (GM 1971 and GM 1992) and single locus for 61

markers. As a result, segregation data were obtained for 65

loci for 63 polymorphic markers.

In summary, a total of 3,215 SSR markers (1,145 SSRs

Varshney et al. 2009a and 2,070 SSRs in this study) were

screened on these two parents and segregation data were

obtained for 215 marker loci (150 SSR loci Varshney et al.

2009a and 65 SSR loci in this study).

Construction of improved genetic map

Genotyping data obtained for 65 loci obtained in this study

were used to integrate into the framework map comprising

of 135 loci (Varshney et al. 2009a). Of the 65 loci tried, 56

loci got integrated into different linkage groups and nine

markers remained unlinked. Thus, the present map has a

total of 191 loci integrated into 22 linkage groups, covering

a length of 1785.4 cM with an average of 9.34 cM between

loci along the linkage groups. The 56 new loci got evenly

distributed into 17 of the 22 linkage groups. The map

locations of the newly mapped markers are shown in

Fig. 1. LG_AhII, LG_AhXII, LG_AhXIX, LG_AhXX and

LG_AhXXII did not have any new loci integrated.

LG_AhXIII has largest number of markers integrated (8).

Most of the EST-SSRs used in the present study got

mapped into non-centromeric regions which are expected

to be gene rich. The present map developed is the most

comprehensive cultivated groundnut map available with

maximum number of mapped loci on a single RIL

population.

Trait phenotyping

The two parental genotypes TAG 24 and ICGV 86031 were

found to show variation in transpiration (T), transpiration

efficiency (TE), specific leaf area (SLA), SPAD chloro-

phyll meter reading (SCMR), dry weight, total dry matter,

biomass, canopy conductance, carbon discrimination ratio,

seed weight, pod weight and haulm weight, etc. (Nautiyal

et al. 2002; Serraj et al. 2004). Therefore, all 318 RILs

were phenotyped for above-mentioned traits for one to

three seasons (Table 1). Because a limited range of varia-

tion for TE was found among the RILs (2.60–3.60 in 2004

and 2.95–3.40 in 2005), and even between the parents

(2.70–3.30 and 2.00–2.20 in 2004 and 2005), detailed

studies have been undertaken to assess TE in these parental
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lines across a range of vapor pressure deficit (VPD) con-

ditions (Vadez et al. unpublished). The underlying

hypothesis was that TAG 24 and ICGV 86031 were

screened for TE under glasshouse conditions under low

VPD, whereas the RILs were screened in outdoor condi-

tions in February and March in India under high VPD.

Results indicated a large TE contrast between TAG 24 and

ICGV 86031 under glasshouse conditions, but showed

decreasing TE differences as VPD increased. Therefore,

the population has been re-phenotyped during the rainy

season 2008 under well watered and water deficit condi-

tions, therefore, under lower VPD conditions, which has

enlarged the range of variation between the RIL progenies.

Main effect QTLs (M-QTLs) identified by QTL

Cartographer

For T and TE, good variation and heritability values were

observed among RILs across the years (Table 1). QTL

analysis using CIM based on QTL Cartographer for T and

TE identified two M-QTLs each in 2004 and 2008, three

M-QTLs in 2005; in case of TE, two M-QTLs were

identified in 2004 and 2008, six M-QTLs were identified in

2008. The phenotypic variation explained (PVE) by the M-

QTLs identified for T and that of TE ranged from

5.42–10.86% and 4.47–12.30%, respectively.

SLA measured at the start of drought stress as well as at

the time of harvest showed large and significant variation

among RILs with good levels of heritability in 2004 and

2005. QTL analysis of SLA at the start of drought stress

showed three M-QTLs in 2004 and 2005. For SLA at the

time of harvest, two M-QTLs were detected in 2004 and six

in 2005. These M-QTLs contributed 4.84–13.94% of PV.

SCMR at the start of stress imposition in both seasons,

at 7 and 10 days after imposing the stress in 2004, and at 5,

10 and 15 days after imposing the stress in 2005, showed

large and significant variation among RILs (Table 1).

Heritability values observed for SCMR were also high.

QTL analysis of SCMR measured at different time points

showed 13 and 16 M-QTLs in 2004 and 2005, respectively.

The PVE of these M-QTLs ranged from 4.0 to 19.53%. The

number of QTLs identified with the same data in the pre-

vious study (Varshney et al. 2009a) was only eight in each

season and the PVE ranged from 2.9 to 11.0%. This can be

Fig. 1 Saturated genetic and QTL map for cultivated groundnut. QTL positions for different drought component traits as colored bars have been

shown on right hand side of linkage groups
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explained by the reason that the present map is saturated

with more number of markers compared to the earlier

frame work map.

In case of carbon discrimination ratio (d13C), QTL

analysis identified one M-QTL with 12.15% PVE with

QTL Cartographer. Canopy conductance (ISC) showed a

limited variation in RILs (2.33–4.23) in 2004, while a

higher variation (4.82–8.94) was observed in 2005. QTL

analysis of canopy conductance measured in 2004 and

2005 identified seven and five M-QTLs with 3.28–22.24%

PVE. Biomass measured at different stages showed good

levels of variation and heritability among RILs (Table 1).

QTL analysis of biomass measured at different stages has

shown seven M-QTLs with 4.25–20.32% PVE.

Table 1 Trait phenotyping data on ICGV 86031 and TAG 24 and its mapping population

Trait Year ICGV

86031

TAG

24

Variation

in RILs

Significance Heritability Grand

Mean

S.E.D. LSD

Transpiration (T, kg) 2004 1.42 1.47 1.27–1.51 \.001 0.621 1.4169 0.08056 0.15805

Transpiration (T, kg) 2005 4.47 3.65 3.18–5.04 \.001 0.782 4166.4 249.82 490.1

Transpiration efficiency 2004 5.56 4.36 3.98–7.17 \.001 0.717 5.169 0.4294 0.8425

Transpiration efficiency TE, g kg-1 2004 3.47 2.53 1.93–4.08 \.001 0.658 3.079 0.3727 0.7311

Transpiration efficiency TE, g kg-1 2005 2.14 1.87 1.71–2.56 \.001 0.675 2.1183 0.16209 0.318

Transpiration efficiency under water stress

regime

2008 4.57 3.42 1.95–5.91 \.001 0.738 3.748 0.5451 1.0699

Transpiration efficiency under well watered

regime

2008 4.55 3.71 2.40–5.22 \.001 0.754 3.837 0.4061 0.7971

Transpiration under water stress regime 2008 2.01 2.00 1.65–2.44 \.001 0.688 1993.5 149.23 292.87

Transpiration under well watered regime 2008 4.15 3.61 2.92–5.30 \.001 0.765 4225 333.7 655

Specific leaf area (SLA, cm2 g-1) at harvest 2004 122.47 151.76 102.44–185.80 \.001 0.744 147.6 10.26 20.128

Specific leaf area (SLA, cm2 g-1) at start of stress 2004 147.00 153.00 137–169 \.001 0.750 151.65 8.485 16.662

Leaf area (LA) 2004 393.40 397.94 320.30–661.64 \.001 0.701 435.8 39.86 78.2

Specific leaf area (SLA, cm2 g-1) at harvest 2005 143.00 174.00 112.95–175.71 \.001 0.688 144.45 10.822 21.23

Specific leaf area (SLA, cm2 g-1) at start of stress 2005 165.00 192.00 161–201 \.001 0.780 177.27 8.136 15.961

Leaf area (LA) 2005 747.00 626.00 419.05–908.43 \.001 0.698 654.4 74.62 146.38

SCMR after 7 days of treatment 2004 52.80 50.30 43.1–55.2 \.001 0.707 49.82 3.461 6.79

SCMR at harvest 2004 51.50 49.00 42.9–55.8 \.001 0.812 49.67 2.984 5.854

SCMR at start of treatment 2004 49.20 43.80 40.7–50.1 0.006 0.554 45.67 2.789 5.472

SCMR after 10 days of treatment 2005 45.10 41.90 39.3–48.0 \.001 0.788 44.07 1.6617 3.26

SCMR after 15 days of treatment 2005 47.60 42.20 39.9–50.9 \.001 0.800 45.795 1.6048 3.1483

SCMR after 5 days of treatment 2005 43.00 36.90 34.9–46.0 \.001 0.766 40.967 2.024 3.9708

SCMR at start of treatment 2005 46.90 42.30 39.1–50.4 \.001 0.758 44.262 2.23 4.3749

Canopy conductance (ISC, g water cm-2) 2004 3.68 3.81 2.33–4.23 \.001 0.731 3.3479 0.2505 0.49145

Canopy conductance (ISC, g water cm-2) 2005 6.05 5.90 4.82–8.94 \.001 0.687 6.602 0.7429 1.4574

Carbon isotope discrimination ratio 2004 – – 17.96–20.32 – – – – –

Delta biomass 2004 4.86 3.73 2.44–5.88 \.001 0.658 4.39 0.6091 1.1949

Final biomass 2004 7.78 6.41 4.51–9.28 \.001 0.771 7.304 0.6091 1.1949

Shoot biomass 2004 5.50 4.52 3.37–7.07 \.001 0.747 5.208 0.4897 0.9608

Dry weight (DW) increase 2005 9.68 6.95 6.08–12.60 \.001 0.721 8.932 0.9723 1.9076

Total dry matter (TDM) 2005 13.81 10.21 9.62–16.89 \.001 0.790 12.701 0.9723 1.9076

Haulm weight under water stress regime 2008 0.38 0.48 0.25–2.06 \.001 0.925 463.4 94.18 184.93

Haulm weight under well watered regime 2008 0.34 0.49 0.28–1.66 \.001 0.923 404.7 83.03 163.04

Pod weight under water stress regime 2008 0.90 0.96 0.68–1.24 \.001 0.692 561.2 106.44 209.02

Pod weight under well watered regime 2008 0.78 1.08 0.68–1.74 \.001 0.807 674.3 107.71 211.5

Shoot dry weight under water stress regime 2008 12.53 11.13 7.14–15.75 \.001 0.740 10.281 1.2712 2.4949

Shoot dry weight under well watered regime 2008 20.54 16.36 12.99–26.77 \.001 0.733 18.878 2.1067 4.1347
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Dry weight (DW) measured at different stages has

shown higher variation among RILs, maximum variation

was observed for shoot dry weight measured under well

watered and water stress conditions during 2008 (Table 1),

indeed the heritability values observed were also good.

QTL analysis of initial DW and DW increase measured in

2005 has shown two M-QTLs with 4.69–8.20% PVE. Total

dry matter (TDM) measured in 2005 showed three M-

QTLs with 4.34–9.85% PVE. Shoot DW measured under

well watered and water stress conditions in 2008 showed

four and six M-QTLs, respectively, with 5.03–8.50% of

PVE. Using QTLNetwork, only two and four M-QTLs for

DW increase and TDM in 2005 were identified and the

identified QTLs were same as those identified by QTL

Cartographer (ESM 1).

Pod weight and haulm weight showed moderate levels

of variability among RILs with high heritability values, the

heritability value observed for haulm weight was highest

(0.923–0.925) (Table 1) among all the traits evaluated.

QTL analysis of pod weight and haulm weight under well-

watered conditions revealed three M-QTLs each for pod

weight, seed weight and four QTLs for haulm weight in

2008. PVE by these M-QTLs varied from 3.78–33.36%.

Under water stress conditions two M-QTLs each for seed

weight and haulm weight and four QTLs for pod weight

were identified and PVE varied from 4.18 to 8.78%.

M-QTLs identified by QTLNetwork

In order to compare the M-QTLs identified by QTL

Cartographer, QTL analysis was also carried out with

another programme, QTLNetwork. As a result, a total of

65 M-QTLs were identified of which 53 M-QTLs were

also identified by QTL Cartographer. Apart from these,

eight new M-QTLs for traits SLAHar05_XIb, LA05_VII,

SPAD505_XIII, SPAD1505_IX, SPAD1505_XIII, ISC04_

VI, TDM05_VIIb and SeedWtWS08_Vb were identified

by QTLNetwork. A summary and comparison of num-

ber of M-QTLs identified by QTL Cartographer and

QTLNetwork is given in Table 2. The phenotypic variation

explained by the M-QTLs identified by QTLNetwork for

different drought component traits was comparatively

lower than that of the QTL Cartographer (ESM1). In

summary, a total of 117 M-QTLs were identified by QTL

Cartographer and QTLNetwork together.

In the present study, M-QTLs identified for drought

component traits were distributed on 17 of the 22 linkage

groups. While five linkage groups (LG_AhII, LG_AhXV,

LG_AhXVIII, LG_AhXX and LG_AhXXI) did not show

any M-QTL, 16 M-QTLs were identified on LG_AhXVI.

Since drought is a complex polygenic trait and involves

complex interactions with several other parameters, digenic

epistatic interaction analysis were undertaken to identify

epistatic QTLs (E-QTLs) using genotype matrix mapping

(GMM) software (Isobe et al. 2007) and QTLNetwork ver.

2.0 software (Yang et al. 2005).

Epistatic QTLs (E-QTLs) identified by Genotype

Matrix Mapping (GMM)

For epistatic interaction analysis (EIA), the locus combi-

nations representing interacting QTLs for two and three

loci were considered. A number of significant loci com-

binations for drought and component traits were identified

Table 2 Main effect QTLs (M-QTLs) for drought tolerance component traits identified by QTL Cartographer and QTLNetwork

Trait QTL Cartographer QTLNetwork

No. of QTLs Range of PVE (R2 %) No. of QTLs Range of PVE (R2 %)

Transpiration (T) 7 4.36–10.86 2 3.48–6.27

Transpiration efficiency (TE) 7 4.47–12.30 5 3.13–6.33

Specific leaf area (SLA) 13 3.48–13.29 7 1.3–10.97

Leaf area 3 7.24–11.51 3 2.93–7.53

SPAD chlorophyll meter readings (SCMR) 29 4.00–19.53 19 3.72–7.71

Carbon isotope discrimination ratio 1 12.15 1 7.45

Biomass 7 4.25–20.32 5 4.97–9.65

Canopy conductance 7 3.28–22.24 5 3.05–15.01

Total dry matter (TDM) 3 4.34–9.85 4 2.48–8.72

Dry weight (DW) 10 4.69–9.18 5 3.38–9.00

Pod weight 7 4.17–7.23 5 4.55–9.64

Seed weight 5 4.18–8.22 4 5.09–7.93

Haulm weight 6 4.19–33.36 – –

PVE Phenotypic variation explained
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by GMM (ESM2). For 2 loci combinations, 5 E-QTLs were

detected for T, 13 E-QTLs for TE, 1 E-QTL for SLA, 3

E-QTLs for LA, 6 E-QTLs for DW, 14 E-QTLs for bio-

mass, 2 E-QTLs for TDM, 5 E-QTLs for canopy conduc-

tance, 7 E-QTLs for pod weight, 6 E-QTLs for seed weight

and 1 E-QTL for haulm weight (Table 3). For three loci

combinations, 16 E-QTLs were detected for T, 27 E-QTLs

for TE, 13 E-QTLs for SLA, 42 E-QTLs for DW, 18

E-QTLs for biomass, 5 E-QTLs for TDM, 27 E-QTLs for

canopy conductance and 19 E-QTLs for pod weight, 14 E-

QTLs for seed weight and 5 E-QTLs for haulm weight

(Table 3). Graphical representation of combinations of

interacting triple loci and their position on groundnut

linkage map are shown in Fig. 2. Locations of interacting

loci are interlinked by lines on the linkage groups. PVE by

two QTL combinations ranged from 5.92 to 20.20% for T,

7.11–15.44% for TE, 16.2% for SLA, 10.37–11.18% for

LA, 10.10–18.97% for DW, 5.57–11.18% for biomass,

12.29–13.15% for TDM, 18.28–19.02% for canopy con-

ductance, 11.47–13.74% for pod weight, 10.47–12.58%

for seed weight and 21.13% for haulm weight. The

PVE for three QTL combinations were 10.23–11.29%

for T, 9.16–22.06% for TE, 15.68–25.03% for SLA,

10.10–44.72% for DW, 8.54–16.28% for biomass, 12.84–

13.67% for TDM, 18.99–22.50% for canopy conductance,

12.79–21.83% for pod weight, 13.01–16.96% for seed

weight and 25.35–31.43% for haulm weight.

E-QTLs identified by QTLNetwork

In contrast to large number of interacting QTL identified

by GMM, QTLNetwork could detect only 15 E-QTLs

(2 for SCMR, 4 for SLA, 3 for ISC, 2 for pod weight, 2

for seed weight and 2 for shoot DW) involved in 8 epi-

static interactions (ESM3). Interestingly, QTLNetwork

identified E-QTLs for SLA (Fig. 3) and SCMR for which

GMM could not identify any E-QTL. Nevertheless the

PVE by the QTLs is very low as indicated by the heri-

tability estimate of epistatic allele, 8.34% for SCMR,

2.85–4.84% for SLA, 1.44–1.58% for ISC, 1.7% for pod

weight, 5.51% for haulm weight and 3.11% for shoot dry

weight.

Co-localized QTLs identified through QTL

Cartographer and QTLNetwork

QTL analysis during the present study for all the 13 traits

detected 105 M-QTLs in 54 genomic regions (using QTL

Cartographer) and 65 M-QTLs in 40 genomic regions

(using QTLNetwork) on 17 linkage groups (except LG-

AhII, LG-AhXV, LG-AhXVIII, LG-AhXXI and LG-

AhXX) (ESM1). Among the 54 genomic regions identified

by QTL Cartographer, 22 genomic regions harboured a

total of 73 QTLs for different traits, with QTLs for 2–9

traits in an individual genomic region (ESM 4). The

remaining 32 genomic regions each contained a QTL for a

solitary trait. Similarly, among 40 genomic regions iden-

tified using QTLNetwork, 12 genomic regions were such

which harboured a total of 37 QTLs for different traits,

with QTLs for 2–8 traits in an individual genomic region

(ESM 4). The remaining 28 genomic regions each con-

tained a QTL for a solitary trait. Interestingly all the

genomic regions (containing QTLs for different traits)

identified by QTLNetwork were also identified by software

Table 3 Epistatic QTLs (E-QTLs) for drought tolerance component traits at three and two loci identified with Genotype Matrix Mapping

(GMM)

Trait Three loci interactions Two loci interactions

No. of QTLs Range of PVE (R2 %) No. of QTLs Range of PVE (R2 %)

Transpiration (T) 16 10.23–11.29 5 5.92–20.20

Transpiration efficiency (TE) 27 9.16–22.06 13 7.11–15.44

Specific leaf area (SLA) 13 15.68–25.03 1 16.2

Leaf area (LA) – – 3 10.37–11.18

SPAD Chlorophyll meter readings (SCMR) – – – –

Carbon discrimination ratio – – – –

Biomass 18 8.54–16.28 14 5.57–11.18

Canopy conductance (ISC) 27 18.99–22.50 5 18.28–19.02

Total dry matter (TDM) 5 12.84–13.67 2 12.29–13.15

Dry weight (DW) 42 10.10–44.72 6 10.1–18.97

Pod weight 19 12.79–21.83 7 11.47–13.74

Seed weight 14 13.01–16.96 6 10.47–12.58

Haulm weight 5 25.35–31.43 1 21.13

PVE Phenotyping variation explained
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QTL Cartographer. In this analysis, the QTL for different

traits that were available in a particular genomic region

(QTL clusters) with same/overlapping marker intervals

were considered co-localized QTL.

Discussion

Marker polymorphism and genetic map

Molecular markers and genetic linkage maps are pre-req-

uisites for crop improvement through molecular breeding

in any crop species. Recent advances in the area of crop

genomics have offered tools to assist breeding by speeding

up the process of introgression of beneficial traits into

preferred varieties, especially for complex traits, such as

drought (Varshney et al. 2005, 2006). However, for

groundnut, although several hundreds of microsatellite

markers have been developed (see Varshney et al. 2007;

Liang et al. 2009), a comprehensive genetic map based on a

cultivated 9 cultivated cross was not available until 2009

(Varshney et al. 2009a; Hong et al. 2010). In this scenario,

the current study was aimed at saturating the existing

genetic map for cultivated groundnut for identification of

M-QTLs and E-QTLs related to several drought component

traits.

After screening a new set of 2,070 SSR markers coming

from UGA and Wang et al. (2007a), 51 (2.46%) markers

showed polymorphism between parental genotypes. The

very low level of polymorphism observed in the present

study is because the majority of SSRs (1,947) were from

ESTs that represent conserved genic regions. The low

levels of polymorphism observed in case of EST derived

SSRs has been reported in several other studies (Gupta

et al. 2004; Varshney et al. 2005). Low level of polymor-

phism observed can also be attributed to the origin of

groundnut from a recent and single polyploidization event

from one or a few individuals of each diploid parental

Fig. 2 Graphical representation of combinations of interacting

marker loci on genetic map of groundnut detected by Genotype

Matrix Mapping (GMM). a Graphical presentation of interacting

triple loci and their positions on the genetic linkage map for the trait

ISC04 identified by GMM. Linkage groups are arranged tandemly as

a circle. Triangles in the circle indicate triple loci combination.

b Graphical presentation of interacting loci and allele type by

genotype matrices (GMs) and a genotype matrix network (GMN).

Significant locus/allele combinations of three interacting loci are

shown by GMs and GMN. Matrices and connecting lines indicate

GMs and GMNs, respectively
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species, and self-pollination (Halward et al. 1991). Two

EST-derived primers GM 1971 and GM 1992 amplified

more than one segregating fragment. Amplification of more

than one fragment has been reported in several other

studies (Kottapalli et al. 2007; Varshney et al. 2009a, b).

Amplification of more than one fragment in our study can

be attributed to amplification of duplicated locus or a dif-

ferent locus due to the allotetraploid nature of cultivated

groundnut genome.

The present study integrated 56 new markers into the

linkage map which now has a total of 191 markers covering

1,785.4 cM of total map distance. Most of the newly

integrated markers derived from ESTs mapped into the

non-centromeric regions; this can be explained by these

regions being gene rich. Interestingly, some of the new

EST-SSR markers and genomic SSR markers were mapped

into the gaps on linkage groups LG_AhVI, LG_AhVIII and

LG_AhXV. For instance, IPAHM 509 was mapped into

28.4 cM gap between TC11A04 and TC7C06 on

LG_AhXV and pPGPSeq3A06 was mapped into the

36.4 cM gap between pPGPSeq8H01 and IPAHM 177 on

LG_AhVIII. Similarly, GM 2602 and GM 2603 were

mapped into the 34.8 cM gap between GM 641 and

pPGPSeq16G08 on LG_AhXV.

To the best of our knowledge, this is the most com-

prehensive genetic map of cultivated groundnut based only

on a single mapping population from cultivated tetraploid

genotypes. Although Hong et al. (2010) reported a com-

posite genetic map for tetraploid groundnut, it is based on

three mapping populations and have a total of 175 loci as

compared to the 191 mapped loci based on single popu-

lation in the present study. As SSR markers are the markers

of choice for plant geneticists and breeders (Gupta and

Varshney 2000) and a larger number of SSR markers are

available for groundnut (see Varshney et al. 2007), it is

anticipated that future groundnut genetic maps will involve

mapped SSR markers. Therefore, the present SSR genetic

map of cultivated groundnut should be very useful to the

groundnut community to compare the future genetic maps

of groundnut with the map developed during the present

study.

M-QTLs for drought component traits

In the present study, a large number of QTLs for several

drought component traits have been identified by CIM

analysis. In case of CIM using QTL Cartographer,

105 M-QTLs were identified for various drought component

traits. As the QTL identification is a statistical approach, the

possibility of identifying false positive and false negative

QTL for the thresholds and mapping approaches used

exists (McElroy et al. 2006; Mackay and Powell 2007).

However, reliability of QTLs identified may be enhanced

by identification of QTL using more than one software.

Therefore, two software namely QTL Cartographer and

QTLNetwork were employed to identify M-QTLs. Inter-

estingly, M-QTLs identified for T on LG_AhVII, TE on

LG_AhVII, LG_AhX and LG_AhXI, canopy conductance

on LG_AhIII, LG_AhIV, LG_AhIX, SLA on LG_AhIV,

LG_AhXI, LG_AhXIII and LG_AhXXII, SCMR on

LG_AhIV, LG_AhVIII, LG_AhIX, LG_AhX, LG_AhXI,

LG_AhXVII, DW on LG_AhV, LG_AhVII LG_AhXVI,

d13C on LG_AhXI, dry matter on LG_AhVII, biomass on

LGAh_VII and LG_AhXI, pod weight on LG_AhV, LG_

AhVII, LG_AhX, LG_AhXVI, seed weight on LG_AhV

and LG_AhVII were identified by both programmes.

Fig. 3 A representative figure showing epistatic interaction identified by QTLNetwork. The figure shows epistatic QTLs for the trait SLA Har05.

The black ball represents epistatic QTLs without individual effect while interacting loci are shown by red colored bar

1128 Theor Appl Genet (2011) 122:1119–1132

123



Moreover, the genomic locations of these M-QTLs were

similar based on analysis with these programme, and

therefore these M-QTLs may be considered as reliable

QTLs. On the other hand, in the case of haulm weight,

QTLNetwork identified none of the six M-QTLs identi-

fied by QTL Cartographer. Therefore, these M-QTLs may

be false positives and there is a need for their validation

by other approaches. Alleles with moderate additive

effects were identified for most of the evaluated traits.

These alleles, which should confer more tolerance to

drought, were derived from both the tolerant (positive

additive effect, ICGV 86031) and the susceptible (nega-

tive effect, TAG 24) parents (ESM1). Alleles that

improve the trait being derived from parents agronomi-

cally inferior have been identified for several plant spe-

cies (Xiao et al. 1998; Frary et al. 2004; Wang et al.

2004; Yoon et al. 2006).

Even though several M-QTLs were identified for all

traits in different seasons, the majority of the identified

M-QTLs did not reveal a high phenotypic variance.

However, given the highly polygenic nature of the traits

analyzed (Krishnamurthy et al. 2007) and the relatively

high number of progenies, QTLs with lower phenotypic

variation is expected. Based on QTL mapping studies in

other species, it can be generalized that higher phenotypic

variation for the given trait in the mapping population and

high/reasonable marker density genotyping data are the

pre-requisites to identify the major QTL explaining higher

phenotypic variation. However, in the present study, the

range of variations for the targeted traits was not very high

in RILs. For instance, the range of TE value was

only between 2.53 and 3.47 g kg-1 water transpired in

2004, between 1.87 and 2.14 g kg-1 water transpired

in 2005, between 3.61 and 4.15 under well watered regime

in 2008 and between 2.00 and 2.01 under water stress

regime (Table 1). In addition, the targeted trait, TE, is a

ratio (biomass accumulation divided by transpired water),

with several physiological mechanisms leading to TE dif-

ferences, and TE itself. For instance, a low stomatal con-

ductance would reduce transpiration, but a low stomatal

conductance would also reduce biomass accumulation.

Therefore, depending on the magnitude of the conductance

changes, and the interaction with other factors impacting

biomass accumulation and transpiration (photosynthesis,

leaf area, etc.), one can see a number of factors that can

have either a positive or a negative relationship with TE,

thereby precluding the chance to identify a major M-QTL

for TE, but rather a number of small M-QTLs that have

high interactions. Even though the marker density on

present genetic map is reasonable, consistent QTLs with

higher phenotypic variance were not identified. This could

be explained by the complex trait of drought tolerance

being governed by several small effect QTLs/genes present

on different chromosomal regions.

E-QTLs for drought component traits

To date, most findings have suggested that quantitative

variation is determined by a few QTLs with a relatively

large effect and a large number of genes having progres-

sively smaller effects. Jannink (2007) recently identified

QTLs by analyzing genetic background interactions in

association studies, and was able to detect loci that have no

main effect but which influence a trait only through their

interactions with other loci. Multiple QTL interactions

might be buried under the smaller effect of single QTL

(Isobe et al. 2007). In the present study EIA undertaken

with GMM and QTLNetwork revealed several epistatic

QTLs. In the case of GMM, two (63) and three loci (186)

interactions were identified for different drought compo-

nent traits. The largest number of interactions were iden-

tified for DW (42) followed by TE and ISC (27) measured

at different time points, in contrast epistatic interactions

were not observed for SCMR and d13C. Interestingly the

number of E-QTLs identified by GMM was more than the

main effect QTLs and also the PVE by these QTL com-

binations was comparatively higher than that identified by

QTL Cartographer. In an earlier study, Klimenko et al.

(2010) identified hub regions harboring QTL interactions in

a rye mapping population segregating for plant persistency.

In the present study even though a large number of inter-

acting QTLs were identified the loci that are interacting for

different drought component traits were found to be diverse

and hub regions associated for drought component traits

were not identified. This may be attributed to the variability

of various traits across parents and seasons. In the case of

EIA using QTLNetwork a much lower number of epistatic

loci were identified, two each for SCMR, pod weight,

haulm weight, dry weight and four for SLA and three for

ISC. This can be explained by the fact that GMM searches

for QTL interactions and interaction–interaction relation-

ships which is not the case for the other programmes. In

GMM, each marker is given a matrix in which each of the

total number of alleles for the marker in the tested popu-

lation is represented by intersecting lines and rows. QTL

interactions are estimated and compared through virtual

networks generated among the locus matrices. When a

particular network indicates a significant relationship to the

phenotype, the marker-allele combinations assigned on the

genotype matrices are considered a QTL interaction com-

bination. The algorithm used in GMM which is capable of

comparing multiple QTL interactions at the same time

makes it more advantageous in identifying epistatic

interactions.
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In addition, in the case of EIA, even though a large

number of QTLs were identified for drought and compo-

nent traits, considerable amount of phenotypic variation

was not explained for different drought component traits.

These results suggested that drought tolerance in groundnut

is governed by a large number of M-QTLs and E-QTLs

each with a small phenotypic variation.

Pyramiding of all these minor QTLs for the improve-

ment of drought tolerance in groundnut is not possible

through marker-assisted backcrossing (MABC), since

MABC involved the transfer of limited number of QTLs

from one genetic background to another (Ribaut et al.

2010). Therefore, alternative and more efficient approaches

like MARS and GWS, which allows selection for several

QTL with small effects (Ribaut and Ragot 2007; Bernardo

2008; Varshney and Dubey 2009) will be useful for the

improvement of drought tolerance in groundnut.

Co-localized M-QTLs

The detection of co-localized QTLs during the present

study for drought tolerance suggested that either a single

pleiotropic QTL controlled a number of traits or more than

one tightly linked QTL for different traits are present

together in the same region. The issue of pleiotropy versus

tight linkage of QTL may be resolved in future through fine

mapping of the target genomic regions. The results also

suggested that QTL for drought related traits are not evenly

dispersed throughout the genome but are rather clustered in

numerous specified genomic regions. Therefore, these co-

localized QTLs could be very useful for the simultaneous

improvement of more than one trait, if the desirable alleles

at these QTLs are contributed by a single parent.

Conclusions

This study reports a comprehensive genetic linkage map for

cultivated groundnut which will be a valuable genomic

resource for groundnut community to align future genetic

maps. Based on extensive phenotyping data and updated

genotyping data, a large number of QTLs have been identi-

fied using CIM and EIA approaches. Phenotypic variation

explained by all these QTLs was found to be small; this

suggested that drought tolerance in groundnut is governed by

several M-QTLs and E-QTLs each with a small phenotypic

variation. Therefore, genome wide marker approaches, such

as MARS and GS should be more effective approaches as

compared to marker-assisted backcrossing (MABC) in case

of groundnut to develop the varieties with enhanced drought

tolerance through molecular breeding (Charmet et al. 1999;

Bernardo and Charcosset 2006; Bernardo and Yu 2007;

Mayor and Bernardo 2009).
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