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ADHD and ASD are among the most common neurodevel-
opmental disorders in children and often persist throughout 
adulthood1. ADHD and ASD are both highly heritable (60–

93%)2–4, and the mode of their inheritance is complex and polygenic. 
Despite high family-based heritability estimates, genome-wide 
association studies (GWAS) have only recently identified common 
variants robustly associated with each disorder5–7. Although the 
two disorders differ from one another with regard to core clinical 
symptoms, genetic studies have demonstrated substantial overlap 
between them, with a genetic correlation (rG) from common varia-
tion of 0.36 (refs. 5,8) and substantial sharing of rare genetic risk vari-
ants including large copy number variants9 and protein-truncating 
variants10. These findings are consistent with clinical and epide-
miological evidence showing overlap in phenotypic features11, high 
comorbidity rates between ASD and ADHD12,13 in both females and 
males14, and familial coaggregation of the disorders, with increased 
risk of ADHD among relatives of ASD probands (odds ratios (ORs) 
of 17.8 for monozygotic twins, 4.3 for dizygotic twins, 4.6 for  
full siblings and 1.6 for full cousins)15. Identification of the genetic 

components that are shared or distinct between the two disorders 
may provide insights into the underlying biology and potentially 
provide information on subclassification, course and treatment.

Here we use large collections of genotyped samples from indi-
viduals with ADHD and ASD from the Psychiatric Genomics 
Consortium (PGC) and the Lundbeck Foundation Initiative for 
Integrative Psychiatric Research (iPSYCH) to address two questions:  
(1) What specific variants and genes are shared by or differentiate 
ASD and ADHD? (2) Are there distinct genetic signatures in terms 
of polygenic burden for subgroups within these disorders, such as 
individuals diagnosed with both disorders (comorbid cases) or indi-
viduals with just one of them (ASD-only and ADHD-only cases)?

Results
Shared genetic liability to ADHD and ASD. We performed a GWAS 
of diagnosed ADHD and/or ASD combined into a single phenotype 
(combined GWAS), including a total of 34,462 cases and 41,201 
controls on 8.9 million single nucleotide polymorphism (SNP) allele 
dosages imputed from 1000 Genomes phase 3 (ref. 16). Using linkage  

Identification of shared and differentiating 
genetic architecture for autism spectrum disorder, 
attention-deficit hyperactivity disorder and case 
subgroups
Manuel Mattheisen   1,2,3,38 ✉, Jakob Grove   1,4,5,6,38, Thomas D. Als   1,4,5,38, Joanna Martin7,38,  
Georgios Voloudakis   8,9,10, Sandra Meier1,2, Ditte Demontis   1,4,5, Jaroslav Bendl   8,9,10,  
Raymond Walters   11,12, Caitlin E. Carey11,12, Anders Rosengren   4,13, Nora I. Strom   1,3,14,  
Mads Engel Hauberg   8,9,10, Biao Zeng8,9,10, Gabriel Hoffman   8,9,10, Wen Zhang8,9,10, 
Jonas Bybjerg-Grauholm   4,15, Marie Bækvad-Hansen4,15, Esben Agerbo   4,16,17, Bru Cormand   18,19,20,21, 
Merete Nordentoft4,22,23,24, Thomas Werge   4,13,22,25, Ole Mors4,26, David M. Hougaard   4,15, 
Joseph D. Buxbaum   10,27,28,29, Stephen V. Faraone30,31, Barbara Franke   32,33, Søren Dalsgaard   16, 
Preben B. Mortensen4,5,16,17, Elise B. Robinson11,12,34, Panos Roussos   8,9,10,29,35, Benjamin M. Neale   11,12, 
Mark J. Daly11,12,36,37 and Anders D. Børglum   1,4,5 ✉

Attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are highly heritable neurodevelopmen-
tal conditions, with considerable overlap in their genetic etiology. We dissected their shared and distinct genetic etiology by 
cross-disorder analyses of large datasets. We identified seven loci shared by the disorders and five loci differentiating them. 
All five differentiating loci showed opposite allelic directions in the two disorders and significant associations with other traits, 
including educational attainment, neuroticism and regional brain volume. Integration with brain transcriptome data enabled us 
to identify and prioritize several significantly associated genes. The shared genomic fraction contributing to both disorders was 
strongly correlated with other psychiatric phenotypes, whereas the differentiating portion was correlated most strongly with 
cognitive traits. Additional analyses revealed that individuals diagnosed with both ASD and ADHD were double-loaded with 
genetic predispositions for both disorders and showed distinctive patterns of genetic association with other traits compared 
with the ASD-only and ADHD-only subgroups. These results provide insights into the biological foundation of the development 
of one or both conditions and of the factors driving psychopathology discriminatively toward either ADHD or ASD.

Nature Genetics | VOL 54 | October 2022 | 1470–1478 | www.nature.com/naturegenetics1470

http://orcid.org/0000-0002-8442-493X
http://orcid.org/0000-0003-2284-5744
http://orcid.org/0000-0002-2963-1928
http://orcid.org/0000-0002-5729-632X
http://orcid.org/0000-0001-9124-2766
http://orcid.org/0000-0001-9989-2720
http://orcid.org/0000-0001-8422-6530
http://orcid.org/0000-0002-6682-1288
http://orcid.org/0000-0002-5261-8852
http://orcid.org/0000-0003-4873-2764
http://orcid.org/0000-0002-0957-0224
http://orcid.org/0000-0003-1705-4008
http://orcid.org/0000-0002-2849-524X
http://orcid.org/0000-0001-5318-4382
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0001-8898-8313
http://orcid.org/0000-0003-4375-6572
http://orcid.org/0000-0003-4659-0969
http://orcid.org/0000-0002-4640-6239
http://orcid.org/0000-0003-1513-6077
http://orcid.org/0000-0001-8627-7219
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-022-01171-3&domain=pdf
http://www.nature.com/naturegenetics


ArticlesNATure GeneTIcS

disequilibrium (LD) score regression (LDSC)17, we found evidence 
for a strong polygenic signal with an intercept of 1.0134 (ratio 
0.0558) and calculated the liability scale SNP heritability to be 0.128 
(for an assumed population prevalence of 0.055). We identified 
263 genome-wide significant SNPs in seven distinct loci (Table 1,  
Fig. 1 and Supplementary Fig. 1). All but one of these loci showed 
associations with both of the disorders separately at P values below 
1 × 10−4; this exception was genome-wide significant in ADHD  
and had a P value of 0.009 in ASD. Overall, the findings corroborated 
previous results8,18 but included two loci that had not been identi-
fied before as shared between ADHD and ASD. The new shared 
associations were located in a highly pleiotropic multigene locus on  
chromosome 1 (rs7538463) and on chromosome 4 (rs227293)  
in the gene encoding β-mannosidase (MANBA). Mutations in 
MANBA are associated with β-mannosidosis, a lysosomal storage 
disease that has a wide spectrum of neurological phenotypes, includ-
ing intellectual disability (ID), hearing loss and speech impair-
ment19. More details on the seven loci can be found in Table 1, and 
results of lookups in the OpenGWAS project database (https://gwas.
mrcieu.ac.uk/about/) and comparisons with previous cross-disorder 
studies are available in the Supplementary Note and Supplementary 
Data 1 and 2, and as PheWAS plots in Supplementary Fig. 2.

To identify and prioritize putative causal shared genes, we per-
formed a transcriptome-wide association study (TWAS), imput-
ing genetically regulated gene expression using EpiXcan20 and 
expression data from the PsychENCODE Consortium21 for genes 
and isoforms detected in 924 samples from the dorsolateral pre-
frontal cortex (DLPFC). Applying a conservative significance 
threshold (P < 1.44 × 10−6; corresponding to Bonferroni correction 
of all 34,646 genes and isoforms tested), we identified five genes 
or isoforms showing significant differential expression between 
the combined case group and controls and 177 genes or isoforms 
that were significant at a false discovery rate (FDR) < 0.05 (Fig. 1  
and Supplementary Data 4). One of the five Bonferroni-significant 
transcripts, KRT8P46-201, was located in the chromosome 4 GWAS 
locus in an intron of MANBA, which was among the genes with 
FDR < 0.05 (Supplementary Fig. 3a). The other four top find-
ings were the two genes MOCS2 and CCDC71 or their isoforms,  
which were not located in any of the identified GWAS loci and  
thus represent additional candidate genes for shared ADHD and 
ASD risk.

Gene-based analysis using MAGMA v.1.08 (refs. 22,23) largely 
corroborated the results from the GWAS and TWAS, highlighting, 
for example, MANBA (Supplementary Fig. 4a and Supplementary 
Data 5). Furthermore, two of the significant genes—sortilin-related 
VPS10 domain containing receptor 3 (SORCS3) and dual specific-
ity phosphatase 6 (DUSP6)—were located in regions that were not 
identified in the GWAS, suggesting these as additional shared loci.

Differentiating genetic liability to ADHD and ASD. To identify 
loci with divergent effects on ADHD and ASD, we performed an 
association analysis comparing 11,964 ADHD-only cases with 
9,315 ASD-only cases from the iPSYCH cohort, excluding all 2,304 
comorbid cases (ADHDvsASD GWAS). Using LDSC17, we found an 
intercept of 0.9863 and a SNP heritability of 0.4468 on the observed 
scale, the latter indicating that a substantial part of the variance in 
the phenotypic representation differentiating the two case groups 
can be explained by common variants (see Supplementary Note for 
more details). Five genome-wide significant loci were identified, 
three of which had not previously been identified in GWAS of either 
of the two disorders separately (although one has been reported as 
an ADHD–ASD differentiating locus24). All loci have been reported 
in related disorders and, remarkably, all but one are associated with 
cognitive abilities and/or neuroticism or neuroticism items (Table 2, 
Fig. 1 and Supplementary Data 2 and 7). The lead variants all show 
opposite directions of effects in the two disorders.

Two of the five lead SNPs have previously been found to be asso-
ciated with educational attainment25. For the first SNP (rs3791033 
on chromosome 1; P = 4.65 × 10−23), the C allele confers an increased 
risk for ASD and increased cognitive performance, whereas the 
ADHD risk allele (T) is associated with decreased performance. 
Similarly, for the second SNP (rs9379833 on chromosome 6; 
P = 2.26 × 10−8), the A allele confers an increased risk for ASD and 
increased cognitive performance, whereas the ADHD risk allele 
(C) is associated with decreased performance. Notably, this SNP 
(rs9379833) is located in the large histone gene cluster HIST1 (ref. 
26) and has also been reported to be associated with regional brain 
volume, specifically that of the left globus pallidus27 (P = 2.95 × 10−8; 
the C allele confers an increased risk for ADHD and decreased vol-
ume, whereas the ASD risk allele (A) is associated with increased 
volume). It is also of note that the lead SNP on chromosome 8 
(rs7821914) is associated with neuroticism28 (P = 9.46 × 10−21). For 
this SNP, the effect allele (C) in the neuroticism GWAS leads to an 
increased risk of ASD and a decreased risk of ADHD. Two addi-
tional lead SNPs were in LD (r2 > 0.6) with SNPs that have previ-
ously been identified in neuroticism or one of its sub-dimensions 
(rs147420422 and rs9379833; Table 2). Results from additional 
lookups in the OpenGWAS project database (https://gwas.mrcieu.
ac.uk/about/) are available in Supplementary Data 7 and as PheWAS 
plots in Supplementary Fig. 6.

TWAS using EpiXcan identified 11 Bonferroni-significant genes 
and/or isoforms and 96 significant transcripts at FDR < 0.05 with 
different imputed expression in DLPFC between ADHD and ASD 
cases (Fig. 1 and Supplementary Data 4). The HIST1H2BD-201 iso-
form located in the chromosome 6 (HIST1) GWAS locus showed 
the strongest association (P = 2.08 × 10−9), with higher expression 
in ADHD compared with ASD cases (Supplementary Fig. 3b).  
The other genes and/or isoforms showed associations that were 
orders of magnitude less significant, with HIST1H2BD-201 as 
the top-ranking causal candidate in the locus. The remaining ten 
Bonferroni-significant genes and/or isoforms were located in 
the chromosome 8 GWAS locus or in two loci on chromosome 
3 (Supplementary Fig. 3c,d, respectively), where all except the 
gene encoding the TRAF-interacting protein (TRAIP) were also 
genome-wide significant in gene-based analysis using MAGMA 
(Supplementary Fig. 4b and Supplementary Data 5).

Genetic correlations with other traits. To examine the polygenic 
architecture of the identified shared and differentiating genetic 
risk for the two disorders, we investigated the genetic correlations 
with 258 traits from a manually curated list of previously pub-
lished GWAS and 597 traits from the UK Biobank, making use of 
LD Hub29 and LDSC30. Among the 258 previously reported GWAS, 
30 (combined GWAS) and 32 (ADHDvsASD) traits showed sig-
nificant correlations after Bonferroni correction for multiple testing 
(Supplementary Data 6 and Supplementary Fig. 7). The strongest 
correlations for the liability-differentiating ADHDvsASD GWAS 
were observed for cognitive traits including years of schooling 
(rG = −0.669, correlation p-value (Pcorr ) = 3.68 × 10−85) and child-
hood IQ (rG = −0.609, Pcorr = 2.78 × 10−10), whereas the strongest 
correlations for the combined GWAS were with traits including 
depressive symptoms (rG = 0.506, Pcorr = 2.08 × 10−19) and the PGC 
cross-disorder GWAS (rG = 0.433, Pcorr = 5.30 × 10−25).

Tissue and cell-type enrichment analyses. We next tested whether 
genetic associations of shared and differentiating liabilities were 
enriched with respect to the transcriptomic profiles of human tis-
sues. We found significant enrichment for shared liability in several 
brain tissues, most notably for the basal ganglia (Supplementary 
Fig. 8). Cell-type enrichment analyses revealed experiment-wide 
significant association (across all datasets tested) of the red nucleus 
(Supplementary Fig. 9c). Associations that were significant within 
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one of the three tested datasets individually, but not overall, were 
observed for several cell types, including, for example, dopami-
nergic and GABAergic neurons. For the disorder-differentiating 
analysis (ADHDvsASD), we observed no significant association 
with tissues or specific cell types after correction for multiple test-
ing (Supplementary Figs. 9 and 10). We also intersected our genetic 
associations with a recent multiomics single-cell epigenetic catalog 
of the human brain31. Here, both the combined and differentiat-
ing GWAS results showed significant enrichment for several neu-
ronal cell populations (Supplementary Fig. 11 and Supplementary  
Data 8), including excitatory and inhibitory neurons. The only dif-
ference in terms of significant associations between the combined 
and differentiating GWAS was seen for oligodendrocytes (which 
were not significant in the combined GWAS but were significant 
in the ADHDvsASD GWAS). Whereas aberrant myelination by 
oligodendrocytes resulting in disruption of white matter develop-
ment has previously been reported in both ASD and ADHD32,33,  
the degree of severity of this alteration might be a distinct patho-
physiological factor34.

Polygenic characterization of case subgroups. We used two com-
plementary polygenic risk score (PRS) approaches to investigate 
differences in polygenic load for ADHD, ASD and related pheno-
types in the iPSYCH data across the three phenotypic subgroups: 
ASD-only, ADHD-only and comorbid cases. The multivariate PRS 

framework showed, as expected, a significant association of the 
ASD-only subgroup with PRS for ASD (P = 6.89 × 10−26) and of the 
ADHD-only subgroup with PRS for ADHD (P = 3.29 × 10−23; Fig. 2). 
Both scores were trained with PGC-only GWAS results5,35. Strikingly, 
the ASD-PRS load of comorbid ASD+ADHD cases was similar to 
that of ASD-only cases (P = 0.77); likewise, the ADHD-PRS load 
of the comorbid subgroup was similar to that of ADHD-only cases 
(P = 0.44; Fig. 2), demonstrating that comorbid cases carry a load 
of both ADHD and ASD polygenic scores that are similar to the 
loads carried by the single-disorder cases of their respective dis-
order. In other words, comorbid cases are double-burdened with 
both ASD-PRS and ADHD-PRS. By contrast, the ASD-PRS load of 
ADHD-only cases was not different from that of controls (P = 0.79), 
and the ADHD-PRS was only slightly increased in ASD-only cases 
compared with controls (P = 3.26 × 10−3; Fig. 2).

Our leave-one-out framework analysis (including only the 
iPSYCH data in the training GWAS) showed similar results (Table 
3). In this analysis, the ASD-PRS loads in ADHD-only cases 
and ASD-only cases were increased compared with controls. 
Furthermore, secondary analysis in the leave-one-out framework 
suggested that ADHD cases with (n = 625) and without (n = 11,339) 
mild ID did not differ in terms of PRS for either ADHD or ASD. 
On the other hand, ASD cases with ID (n = 634) had lower PRSASD 
(OR = 0.89 (0.81–0.97), P = 0.0072) compared with those without 
mild ID (n = 8,681) but did not differ in terms of PRSADHD (Table 3).

Table 1 | Results of combined GWAS (ADHD or ASD)

Meta ASD ADHD

SNP (CS) CHR BP A1 A2 FRQca FRQco OR P OR P OR P Genes Other

rs7538463 
(2/2/2)

1 44196416 A T 0.707 0.721 0.928 7.26 × 10−10 0.961 0.0091 0.914 1.00 × 10−9 PTPRF, 
KDM4A, 
ST3GAL3, 
MIR6079

ADHDa, Manyb

rs4916723 
(5/5/5)

5 87854395 A C 0.558 0.573 0.935 1.52 × 10−9 0.935 1.92 × 10−6 0.925 1.81 × 10−8 MIR9-2 
(58.3)

ALCc, Neuroticismd, 
ADHDa, 
ADHD-CDGe, CDGf, 
sexual partnersg, 
CDGh

rs2391769 
(2/2/2)

1 96978961 A G 0.351 0.364 0.934 1.77 × 10−9 0.926 1.14 × 10−7 0.928 1.04 × 10−7 – ADHD-CDGe, CDGf, 
CDGh

rs9530773 
(0/0/0)

13 78852243 T G 0.674 0.689 0.935 1.14 × 10−8 0.938 1.76 × 10−5 0.933 1.78 × 10−6 – ADHDa, CDGh

rs138696645 
(4/4/4)

20 21154234 A AAAG 0.644 0.659 0.937 1.27 × 10−8 0.926 1.22 × 10−7 0.940 1.11 × 10−5 PLK1S1, 
KIZ, XRN2

CDGf, CDGh, Manyi

rs227293 
(0/0/0)

4 103623491 T C 0.689 0.672 1.061 2.57 × 10−8 1.061 7.02 × 10−5 1.080 1.08 × 10−7 MANBA ADHD-CDGj, Bloodk

rs325506 
(23/27/24)

5 104012303 C G 0.441 0.428 1.064 2.66 × 10−8 1.074 3.50 × 10−7 1.070 8.40 × 10−7 – ASD-CDGl, ADHDa, 
ADHD-CDGe, CDGf, 
CDGh, Manym

Results shown in the table are for three different GWAS. Meta refers to our combined ADHD or ASD GWAS described in the main text body of this manuscript, ADHD refers to results from the previously 
published GWAS on ADHD (PubMed Indexing Number (PMID) 30478444) and ASD refers to results from the previously published GWAS on ASD (PMID 30804558). Results from lookups in the 
OpenGWAS project database (https://gwas.mrcieu.ac.uk/about/, accessed 14 October 2020) are available in Supplementary Data 1 and as PheWAS plots in Supplementary Fig. 2. SNP (CS) denotes the 
marker name and number of reported GWAS where this marker is in the 95% credible set in FINEMAP/PAINTOR/CAVIARBF according to http://mulinlab.org/causaldb/; note that SNPs do not need to be 
genome-wide significant in those reported GWAS to be in the list of credible SNPs. SNPs representing new shared loci for ASD and ADHD are highlighted in bold. CHR, chromosome; BP, base pair position 
on the chromosome; A1, effect allele; A2, other allele; FRQca, frequency in the cases; FRQco, frequency in the controls. ORs are based on the effect allele; P values are for association results (two-sided 
from logistic regression). ‘Genes’ indicates protein-coding genes and/or microRNAs in a LD region around the lead SNP (r2 = 0.6) or, in cases where no protein-coding gene or microRNA is present in the 
region, the nearest protein-coding gene or microRNA within a 100-kb window around the LD region is provided together with the distance in kb (if there is no gene present, ‘–’ is shown). ‘Other’ indicates 
previously reported associations with the lead SNP (underlined) or other SNPs (italics) in LD with the lead SNP (r2 = 0.6); reported P values needed to be genome-wide significant to be listed. For the ASD 
and ADHD P values, these are the P values in the original GWAS. The ORs and P values reported for the ADHD and ASD GWAS include the comorbid cases (that is, in each of the two GWAS) as well as 
related individuals across studies. aADHD (PMID 30478444). bCross-disorder GWAS in the PGC (PMID 31835028), educational attainment (years of education; PMID 30038396), intelligence (multi-trait 
analysis of GWAS (MTAG); PMID 29326435), adventurousness (PMID 30643258), feeling worry (neuroticism item; 29500382), household income (PMID 31844048), balding type 1 (PMID 30595370), 
number of sexual partners (PMID 30643258). cAlcohol consumption (PMIDs 30643258, 31358974 and 30643251). dNeuroticism (PMID 29942085), worry (neuroticism item; PMID 29942085), eADHD 
or cannabis use (PMID 30610198). fCross-disorder GWAS in the PGC (PMID 31835028). gNumber of sexual partners (PMID 30643258). hCross-disorder GWAS for TS-ADHD-ASD (PMID 33714545), 
iFat-free mass (PMID 30593698), appendicular lean mass (PMID 31761296), height (PMIDs 30595370 and 25282103). jAsthma and ADHD (PMID 31619474). kBlood protein levels (PMID 29875488). 
lAutism and major depressive disorder (MTAG; PMID 30804558). mEducational attainment (PMID 30038396), life satisfaction (PMID 30643256), well-being spectrum (multivariate analysis; PMIDs 
30643256, 29292387), depressive symptoms (PMIDs 30643256 and 29292387), neuroticism (PMID 29292387), positive affect (PMID 30643256), loneliness (PMID 31518406), asthma and ADHD 
(PMID 31619474), asthma and major depressive disorder (PMID 31619474), insomnia (PMIDs 30804566 and 30804565), risk-taking tendency (four-domain PC model; PMID 30643258), body mass 
index (BMI) (PMIDs 31669095, 30595370 and 30239722), highest math class taken (PMID 30038396), hand grip strength (PMID 29691431), predicted visceral adipose tissue (PMID 31501611).
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To further dissect the genetic architecture across the ASD and 
ADHD subgroups, we examined the relative burden of PRS for  
phenotypes and traits that have shown significant genetic correla-
tion with ADHD and ASD5,6,36. Although PRS for schizophrenia 
and depression (and genetically related phenotypes) did not show 
substantially different loads across the subgroups, other traits 
showed compelling differences (Fig. 2). For instance, years of  
education, IQ, age at first birth, tiredness and smoking showed 
differences between ADHD-only and ASD-only cases, with the 
comorbid cases at an intermediate level. An item-level analysis of 
neuroticism also revealed specific patterns of associations across the 
subgroups (Supplementary Fig. 12). On average, ADHD-only cases 
showed much stronger association than ASD-only cases with items 
belonging to the depressed affect cluster (for example, the MOOD 
item) compared with the worry cluster. For comorbid cases, a dis-
tinct pattern was observed, with PRS loads either ranking between 
those of the ADHD-only and ASD-only cases (for example, for the 
MOOD item) or even exceeding those of the two single-disorder 
groups (for example, for the GUILT item).

In summary, we observed a genetic architecture of comorbid  
cases that presents as clearly distinct from the ADHD and ASD 
single-disorder cases. Showing burden of both ASD and ADHD 
genetic risk, the comorbid cases also carry polygenic load  
profiles across other phenotypes that distinguish them from the 
single-disorder cases, typically by carrying an intermediate load 
level but in some cases a load similar to one of the single-disorder 
groups.

Genetic correlation and heritability across case subgroups. We 
recently reported an LDSC genetic correlation of 0.36 between ASD 
and ADHD using the largest GWAS meta-analyses of the two dis-
orders, including multiple cohorts and comorbid cases5. Here, we 
investigated the correlations across diagnostic subgroups of the 
disorders in the iPSYCH sample using genome-wide complex trait 
analysis genomic relatedness matrix restricted maximum likelihood 
(GCTA-GREML)37. For ASD and ADHD overall, we found rG = 0.497 
(s.e. = 0.054, P = 7.8 × 10−19). Excluding the comorbid cases reduced 
the correlation to rG = 0.397 (s.e. = 0.056, P = 6.3 × 10−12). After 
excluding cases with ID, the correlations between ASD and ADHD 
were even stronger: rG = 0.523 (s.e. = 0.054, P = 6.5 × 10−21) and rG =  
0.425 (s.e. = 0.056, P = 1.7 × 10−13) with and without comorbid cases, 
respectively (Supplementary Data 9 and Supplementary Fig. 13).

Correlations between ADHD and ICD-10 diagnostic subcatego-
ries of childhood autism (F84.0), atypical autism (F84.1), Asperger’s 
syndrome (F84.5) and other/unspecified pervasive developmental 
disorders (other PDDs, F84.8–9) were similar to those for the ASD 
group overall, albeit with generally higher estimates for the groups 
with other PDDs and Asperger’s syndrome (Supplementary Data 9 
and Supplementary Fig. 14).

Genetic liability in comorbid cases. Guided by our results from 
the previously described analyses, we also performed a GWAS of 
the comorbid cases. Despite the small sample size (2,304 cases), 
we identified a genome-wide significant locus on chromosome 6 
(rs1321614, P = 3.54 × 10−9, OR = 0.8190, minor allele frequency 

0

2

4

6

8

10

–l
og

10
(P

)
– l

og
10

(P
)

–l
og

10
(P

)
– l

og
10

(P
)

1 2 3 4 5 6 7 8 9 10 12 13 15 16 18 20

8

6

4

2

0

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 21

10

8

6

4

2

0

a

b

Fig. 1 | Manhattan plots for GWAS and TWAS results. a,b, Results for GWAS (top panels) and TWAS for DLPFC transcripts (bottom panels) for combined 
(a) and ADHD versus ASD (b) analyses. In the top panel, the blue line in the Manhattan plot indicates a P value of 1 × 10−5 and the red line indicates 
a P value of 5 × 10−8 (genome-wide significance). Each dot represents a tested SNP. In the bottom panel, genes are represented by both imputed gene 
expression and isoform expression (features, represented by dots); two-tailed P values were derived from z scores (Wald statistic) of the gene–trait 
association. The red line indicates Bonferroni-corrected genome-wide significance within analyses (combined or ADHD versus ASD; P < 1.44 × 10−6; 
corresponding to Bonferroni correction of all 34,646 features). We implemented an imputation R2 filter (pred_perf_r2) of 0.01 in this study, which means 
that at least 10% of the variance in expression of each gene could be explained by cis-heritability. See also the results in Supplementary Data 4.
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(MAF) = 0.47 for the T allele). The lead SNP showed no association 
in the overall combined (ADHD+ASD) GWAS (P = 0.0261), the dif-
ferentiating GWAS (P = 0.2883) or GWAS of the ADHD-only and 
ASD-only cases (P = 0.7721 and P = 0.0086, respectively). The lia-
bility scale SNP heritability for the GWAS using GCTA was 0.0557 
(s.e. = 0.0088). Please see Supplementary Note for more information.

Discussion
This study dissects the genetic architecture of ADHD and ASD with 
respect to their shared and differentiating genetic underpinnings as 
well as across case subgroups. At the single-variant level, we identi-
fied new shared loci for the two disorders and five genome-wide sig-
nificant loci differentiating the disorders, four of which were new. 
Integration with DLPFC transcriptomic data enabled us to identify 
and prioritize several possible causal genes (Supplementary Note). 
At the polygenic level, we found compelling differences across 
comorbid and single-disorder case groups.

The identified shared loci were generally highly pleiotropic and 
had previously been identified in GWAS of related disorders or 
cross-disorder studies including ADHD and/or ASD. However, con-
sidering only the eight major psychiatric disorders included in the 
most recent PGC cross-disorder study8, three of the loci (rs4916723, 
rs2391769 and rs227293) appeared to be shared only between 
ADHD and ASD (Table 1 and Supplementary Data 2). For the 
other SNPs, only one (rs325506) showed support for involvement  

in more than one additional disorder. This is consistent with evi-
dence from genomic structural equation modeling of eight major 
psychiatric disorders, showing that ASD and ADHD cluster together 
in a group of early-onset neurodevelopmental disorders along with 
Tourette syndrome8.

In the ADHDvsASD GWAS, we identified five genome-wide 
significant loci, all showing opposite allelic directions in the sepa-
rate GWAS of the two disorders, providing specific genetic insights 
into the biology that drives the pathophysiology toward develop-
ing one disorder or the other. Although one of the identified loci 
(rs3791033) supported the single ADHD–ASD differentiating locus 
reported previously24 (using case-case GWAS (CC-GWAS) analysis 
on available summary statistics), the four new loci all showed sup-
portive (but not statistically significant) results in the CC-GWAS 
study, except the histone 1 locus at the MHC region, which was not 
included in the CC-GWAS (Supplementary Data 2). The yield of 
more significant loci in our study compared with the CC-GWAS 
could (in addition to methodological differences) have been because 
we were able to remove comorbid ADHD+ASD cases, which were 
included in the GWAS results used in the CC-GWAS study, result-
ing in stronger analytical power in our study.

The top-ranking differentiating TWAS gene and/or isoform was 
HIST1H2BD-201, which was two orders of magnitude more signifi-
cant than the second-ranking one (CAMKV-210) and was the only 
Bonferroni-significant transcript in the identified HIST1 GWAS 

Table 2 | Results of differentiating GWAS (ADHDvsASD)

ADHDvsASD ASD ADHD

SNP (CS) CHR BP A1 A2 FRQADHD FRQASD OR P OR P OR P Genes Other

rs13023832  
(NA/NA/NA)

2 215219808 A G 0.121 0.102 1.207 4.28 × 10−9 0.956 0.0484 1.122 9.33 × 10−8 SPAG16 ADHDb, 
CDGc

rs7821914  
(3/5/5)

8 10805015 T C 0.584 0.556 1.127 4.58 × 10−9 0.935 1.86
 × 10−6

1.022 0.1113 XKR6 Neuroticismd, 
manye

rs147420422 
(16/17/17)

2 104139422 CAT C 0.529 0.502 1.118 3.37 × 10−8 0.947 6.89 × 10−5 1.036 0.0092 - Neuroticismf, 
manyg

rs3791033n  
(6/7/6)

1 44134077 T C 0.681 0.656 1.124 3.98 × 10−8 0.979 0.1407 1.095 2.76 × 10−10 PTPRF, 
KDM4A, 
ST3GAL3, 
MIR6079

EAh, ADHDi, 
manyj

rs9379833 
(58/59/58)

6 26207175 A C 0.251 0.275 0.884 4.51 × 10−8 1.041 0.0102 0.949 0.0007 HIST1a

EAh, 
neuroticismk, 
heightl, manym

Results are for three different GWAS. ADHDvsASD refers to our ADHD versus ASD GWAS described in the main text body of this manuscript, ADHD refers to results from the previously published GWAS 
on ADHD (PMID 30478444), and ASD refers to results from the previously published GWAS on ASD (PMID 30804558). Results from lookups in the OpenGWAS project database (https://gwas.mrcieu.
ac.uk/about/, accessed 14 October 2020) are available in Supplementary Data 7 and as PheWAS plots in Supplementary Fig. 11. SNP (CS) denotes the marker name and number of reported GWAS where 
this marker is in the 95% credible set in FINEMAP/PAINTOR/CAVIARBF according to http://mulinlab.org/causaldb/; note that SNPs do not need to be genome-wide significant in the reported GWAS to 
be in the list of credible SNPs. ‘NA’ indicates that the SNP has not been reported in a credible set before. SNPs highlighted in bold have not been identified in GWAS of ADHD and ASD before. FRQADHD, 
frequency in iPSYCH ADHD-only cases; FRQASD, frequency in iPSYCH-ASD-only cases. ORs are based on the effect allele; P values are for association results (two-sided from logistic regression). ‘Genes’ 
refers to protein-coding genes and/or microRNAs in an LD region around the lead SNP (r2 = 0.6); in cases where no protein-coding gene or microRNA is present in the region, the nearest protein-coding 
gene or microRNA within a 100-kb window around the LD region is provided, together with the distance in kb (if there is no gene present, ‘–’ is shown). ‘Other’ refers to previously reported associations with 
the lead SNP or other SNPs in LD with the lead SNP (r2 = 0.6); reported P values needed to be genome-wide significant to be listed. For ASD and ADHD, P values are those from the original GWAS. The ORs 
and P values reported for the ADHD and ASD GWAS include the ADHD–ASD comorbid cases (that is, in each of the two GWAS), as well as related individuals across studies. aGenes in the HIST1 region 
(PMID 12408966): HIST1H1E, HIST1H2BD, HIST1H2BE, HIST1H4D, HIST1H3D, HIST1H2AD, HIST1H2BF, HIST1H4E, HIST1H2BG, HIST1H2AE, HIST1H3E, HIST1H1D, HIST1H4F, HIST1H4G, HIST1H3F, HIST1H2BH. 
bADHD GWAS (PMID 30478444). cCross-disorder GWAS (PMID 31835028). dGeneral factor of neuroticism (PMID 30867560), neuroticism (PMIDs 29255261 and 30643256). eRemission after SSRI 
treatment in MDD or neuroticism (PMID 29559929), gene–alcohol interaction for blood pressure (PMID 29912962), white matter microstructure (PMID 31666681), estimated glomerular filtration rate 
(PMID 31152163). fWorry (neuroticism item; PMID 29942085), feeling nervous (neuroticism item; PMID 29500382), anxiety/tension (special factor of neuroticism; PMID 30867560). gSmoking-related 
phenotypes (PMIDs 30617275, 30643251, 30643258, 30595370 and 30679032), number of sexual partners (PMID 30643258), age at first sexual intercourse (PMID 27089180), reaction time (PMID 
29844566), risk-taking tendency (four-domain PC model; PMID 30643258), general risk tolerance (MTAG; PMID 30643258), BMI (PMID 30239722), pneumonia (PMID 28928442), photic sneeze reflex 
(PMID 27182965). hEducational attainment (PMID 30038396). iADHD GWAS (PMID 30478444), ADHD or cannabis use (PMID 30610198). jHighest math class taken (PMID 30038396), self-reported math 
ability (PMID 30038396), cognitive ability, years of educational attainment or schizophrenia (pleiotropy; PMID 31374203), intelligence (PMIDs 29326435 and 29942086), educational attainment (years of 
education; PMID 27225129), general cognitive ability (PMIDs 29844566 and 29186694), smoking-related phenotypes (PMID 30643251), household income (MTAG; PMID 31844048), C-reactive protein 
levels (PMID 31900758), nenarche (age at onset; PMID 30595370), red blood cell count (PMID 30595370), height (PMID 30595370). kWorry too long after an embarrassing experience (neuroticism 
item; PMID 29500382). lHeight (PMID 31562340). mBrain region volumes (PMID 31676860), smoking-related phenotypes (PMID 30643251), strenuous sports or other exercises (PMID 29899525), 
height (PMIDs 28552196, 28270201, 23563607, 20881960, 25282103, 25429064, 18391950, 18391951, 19343178, 31217584), body fat percentage (PMID 30593698), predicted visceral adipose tissue 
(PMID 31501611), hip circumference adjusted for BMI (PMID 25673412), hip circumference (PMID 25673412), waist circumference (PMID 25673412), waist circumference adjusted for BMI (joint analysis 
main effects and physical activity interaction; PMID 28448500), waist circumference adjusted for body mass (PMID 28448500), body fat distribution (leg fat ratio; PMID 30664634), birth weight (PMIDs 
27680694 and 31043758). nrs7538463(A) allele from Table 1 is correlated with rs3791033(C) allele in this table, r2 = 0.1687, D′ = 0.8989 (LDpair Tool at LDlink website, EUR reference).
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locus. Deleterious de novo mutations in several histone-modifying 
or histone-interacting genes38–40, as well as in core histone genes39,41, 
have been associated with autism and developmental delay with 
autistic features. The haploinsufficiency resulting from these 
de novo mutations is consistent with our TWAS result showing 
reduced expression of HIST1H2BD-201 in ASD (relative to ADHD). 
The ASD risk allele of the lead SNP in the locus was also associ-
ated with both increased educational performance25 and increased 
volume of the left globus pallidus27, whereas the opposite was the 
case for the ADHD risk allele. As part of the basal ganglia, the glo-
bus pallidus is involved in several functions relating to phenotypic 
domains affected in ASD and/or ADHD, including cognition, social 
interactions, speech, repetitive behaviors and tics42. Taken together, 
our results suggest that the identified ADHD–ASD differentiating 
locus on chromosome 6 has downstream effects involving differ
ential expression of the histone isoform HIST1H2BD-201 and  

volumetric changes of the left globus pallidus, which may con-
tribute—as one weak-acting factor among many—to driving the 
pathophysiology toward either ASD or ADHD and affecting key 
phenotypic domains such as educational performance, social inter-
action and motor impairments.

Previous studies found ASD and ADHD to display opposite  
genetic correlations with cognitive traits such as educational attain-
ment when assessing common variants genome-wide5,6,43. Corrobo
rating these reports, we found that the ADHDvsASD GWAS showed 
the strongest correlations for cognitive traits (Supplementary Data 
6 and Supplementary Fig. 7). Moreover, two of the identified dif-
ferentiating loci (on chromosomes 1 and 6) had lead SNPs that were 
genome-wide significant in educational attainment and showed 
opposite allelic effects, with increasing educational performance 
associated with the ASD risk alleles and decreasing educational per-
formance associated with ADHD.
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Fig. 2 | Comparison of PRS profiles across ADHD and ASD subtypes for 15 traits and/or phenotypes that have shown significant genetic correlations 
with ADHD and ASD in the past. Bars display regression coefficients from a multivariate regression of the 15 normalized polygenic scores on ASD–ADHD 
comorbidity classes (n = 23,583) and controls as reference (n = 22,122, not shown). Green represents ASD-only cases (n = 9,315; ASD without ADHD 
(ASDwoADHD)), orange depicts comorbid samples (n = 2,304; comorbid ASD and ADHD (ASDxADHD)) and purple represents ADHD-only cases 
(n = 11,964; ADHD without ASD (ADHDwoASD)). Error bars are 95% confidence intervals centered on the point estimate. ADHD, attention-deficit/
hyperactivity disorder (PMID 20732625); ASD, autism spectrum disorder (PMID 30804558 without the iPSYCH sample); MDD, major depressive disorder 
(PMID 29700475 without DK or 23andMe); SWB, subjective well-being (PMID 27089181); DS, depressive symptoms (PMID 27089181); College, college 
completion (PMID 27046643); EA, educational attainment (PMID 30038396); CHIC, childhood IQ (PMID 23358156); IQ (PMID 29942086); SCZ, 
schizophrenia (PGC3 without DK); Chrono, chronotype (PMID 30696823); Tired, self-reported tiredness (PMID 28194004); SMKin, smoking initiation 
(PMID 30643251); SMKev, ever smoker (PMID 30643258); Age1stB, age at first birth (PMID 20418890).

Nature Genetics | VOL 54 | October 2022 | 1470–1478 | www.nature.com/naturegenetics 1475

http://www.nature.com/naturegenetics


Articles NATure GeneTIcS

We note that the chromosome 1 locus (at position 44 Mb) was 
identified, counterintuitively, in both the shared and differentiat-
ing GWAS, albeit with different lead SNPs (Tables 1 and 2). The 
locus covers a gene-rich 250-kb region of generally strong LD, but 
it also harbors variants with limited LD to the main haploblock 
(Supplementary Figs. 1a and 5d). The two lead SNPs are located 
62 kb apart and showed low pairwise LD (r2 = 0.1687; Table 2), indi-
cating that the two SNPs are largely independent markers for asso-
ciation. This LD difference was also reflected in the different lists of 
other traits with previously reported associations for the lead SNPs 
or their LD proxies (Tables 1 and 2). Furthermore, this was the only 
locus that showed significant heterogeneity across cohorts in the 
recent ADHD GWAS6, in which the 23andMe sample provided no 
support for the otherwise consistently supported locus and, also in 
contrast to the other cohorts, exhibited limited genetic correlation 
with educational attainment.

Our analyses revealed enrichment of brain-expressed genes in 
the combined GWAS, implicating particularly the basal ganglia 
and cerebellum. Both structures have been found to be altered in 
both ASD42,44 and ADHD45–47, with evidence for reductions in basal 
ganglia volume being the most robustly observed finding in the 
neuroimaging literature for both ASD and ADHD. The cell-type 
enrichment results implicating the red nucleus in the midbrain is 
also consistent with our knowledge of phenotypic sharing between 
ASD and ADHD, as it relates to skilled movements and motor 
control in the limbs and jaw: both motor coordination and speech 
problems are frequent in both ASD and ADHD48,49. The red nucleus 
is strongly connected with many brain structures involved in ASD 
and ADHD, including the basal ganglia and the cerebellum50.

Dissecting the polygenic architecture using PRS approaches, we 
observed remarkable differences across the comorbid and single- 
disorder (ADHD-only and ASD-only) case groups. The comor-
bid cases carried a double burden of ASD-PRS and ADHD-PRS, 
whereas the single-disorder cases largely had just a single burden for 
the respective disorder. Thus, cases diagnosed with both disorders 
have on average a similar level of genetic liability to each disorder 
as the single-disorder cases, providing strong biological support 
for the change in diagnostic guidelines from DSM-IV to DSM-5 
allowing for diagnoses of both disorders in the same person. This 
was further highlighted by the identification of a genome-wide sig-
nificant locus for comorbid cases (chromosome 6). It also supports 
pharmacological treatment of comorbid ADHD in individuals with 
ASD. In a recent meta-analysis, 25–32% of individuals with ASD 
were found to also fulfill criteria for ADHD13, yet only 15–16% of 

such individuals are treated with ADHD medications51,52, despite 
strong evidence of beneficial effects on the core symptoms of 
ADHD, potentially reduced risks of injuries53, depression54 and sui-
cidal behavior55, and improved academic performance56. Moreover, 
it indicates that pharmacological treatment of symptoms such as 
hyperactivity, inattention, impulsivity, aggression and tics in indi-
viduals diagnosed with either ADHD or ASD may be guided by the 
individual symptomatology regardless of the given diagnosis.

We recently reported a significant genetic correlation of rG = 0.36 
between ASD and ADHD, using LDSC and results from GWAS that 
included multiple cohorts and comorbid cases5. This was a consid-
erable increase from the previous estimate of rG = 0.08 (s.e. = 0.10, 
P = 0.40), which was based on much smaller GWAS samples with-
out information on comorbid diagnoses57. Here, we analyzed exclu-
sively the iPSYCH cohort, which is relatively homogeneous and has 
information on all diagnoses given to each individual. We found 
a higher correlation (rG = 0.497), which remained substantial when 
excluding the comorbid cases (rG = 0.397), demonstrating that the 
genetic overlap between the disorders is not driven by comorbid 
cases alone. Although we cannot exclude the possibility that under-
diagnosis of comorbidity might exist, leading to an upwards bias of 
the genetic correlation estimate between the single-disorder cases, 
our result is corroborated by data from Swedish twin studies that 
support the distinction of ASD and ADHD but also suggest consid-
erable co-occurrence of symptoms of both disorders in individuals 
only fulfilling diagnostic criteria for one of the two disorders58,59.

In addition, the correlations increased when excluding cases 
with ID, indicating that individuals with ID are more genetically 
heterogeneous in terms of common variant risk between the two 
disorders than individuals without ID. A recent exome-sequencing 
study of ASD and ADHD (also in the iPSYCH cohort) showed that 
the disorders have substantial overlap in rare variant risk and that 
individuals with ID carry a higher load of (ultra)rare damaging risk 
variants compared with those without ID10. Consistent with this, 
our PRS analyses found lower ASD-PRS in the group of ASD cases 
with comorbid mild ID (IQ = 50–70) compared with those without 
mild ID. Taken together, these observations are consistent with the 
notion that the genetics differentiating the two disorders may be 
driven primarily by common variants (because the rare variant risk 
load is similar for the two disorders in the data available so far) and 
more extensively in cases with ID than without ID (because the 
common variant genetic correlation is lower when including cases 
with comorbid ID). However, larger sample sizes for both GWAS 
and sequencing studies are needed to clarify this.

Table 3 | Results of ADHD and ASD PRS analyses in the iPSYCH cohort using a leave-one-out analysis framework

Cases (coded as 1) Comparison (coded as 0) PRSADHD PRSASD

OR LCI UCI P OR LCI UCI P

ADHD-only Controls 1.45 1.41 1.48 1.3 × 10−207 1.08 1.06 1.11 7.5 × 0−12

ASD-only Controls 1.10 1.07 1.13 3.1 × 10−13 1.21 1.18 1.24 1.2 × 10−48

Comorbid Controls 1.32 1.25 1.39 2.8 × 10−25 1.22 1.16 1.29 3.5 × 10−14

Comorbid ADHD-only 0.92 0.88 0.97 0.0015 1.13 1.08 1.19 4.7 × 10−7

Comorbid ASD-only 1.22 1.16 1.28 6.4 × 10−16 1.01 0.96 1.06 0.68

ASD-only ADHD-only 0.76 0.74 0.78 4.5 × 10−79 1.12 1.09 1.15 1.2 × 10−15

ADHD+ID ADHD-no-ID 0.97 0.88 1.06 0.46 0.94 0.86 1.03 0.19

ASD+ID ASD-no-ID 1.03 0.93 1.12 0.58 0.89 0.81 0.97 0.0072

Results for per-wave PRS analyses. PRSADHD, analyses using a PRS trained on an ADHD phenotype; PRSASD, analyses using a PRS trained on an ASD phenotype. Cases, group coded as 1 (cases) for the 
purpose of the analyses; comparison, other group coded as 0 for the purpose of the analyses; LCI, lower boundary for 95% confidence interval; UCI, upper boundary for 95% confidence interval. Groups 
are as follows: ADHD-only, cases with ADHD diagnosis and without comorbid ASD diagnosis; ASD-only, cases with ASD diagnosis and without comorbid ADHD diagnosis; comorbid, cases with comorbid 
ADHD and ASD diagnoses; controls, individuals without ADHD and ASD diagnoses. P values are two-sided from regression model and are without correction for multiple testing. Experiment-wide 
significance at 0.0042 (Bonferroni corrected for 2 × 6 tests). Additional secondary analyses also compared groups of individuals with ADHD or ASD with co-occurring mild ID (ADHD+ID and ASD+ID) 
with those without (ADHD-no-ID and ASD-no-ID).
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In conclusion, we have disentangled the shared and differen-
tiating genetic liability underlying ASD and ADHD, identifying 
shared and disorder-specific risk variants providing information on 
pathophysiology. In addition, we have revealed specific patterns of 
polygenic architecture that are characteristic of comorbid cases com-
pared with single-disorder cases. The results advance our under-
standing of the complex etiologic basis of ASD and ADHD and the 
relationship between the two disorders, toward the long-term goals 
of better diagnosis and treatment of these disorders.
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Methods
Ethics and overview. This study was approved by the Regional Scientific Ethics 
Committee in Denmark and the Danish Data Protection Agency. We report results 
from different analyses all carried out in large-scale samples from the PGC and 
iPSYCH. We used samples included in the most recently published GWAS of ASD5 
and ADHD6. In this work, we refer to cases of individuals in the study cohort 
(most importantly in iPSYCH) that at the time of inclusion had only one of the two 
diagnoses registered (that is, ADHD or ASD) as ADHD-only and ASD-only cases, 
respectively. We refer to cases of individuals that during their lifetime and up to the 
time of inclusion had both an ADHD and ASD diagnosis registered as comorbid 
cases. Furthermore, we refer to these three groups of cases (that is, ADHD-only, 
ASD-only and comorbid) as ASD and ADHD subgroups.

Sample description and additional quality control. Details about study-specific 
case and control selection criteria and how individuals were drawn from the overall 
iPSYCH case–cohort sample60 can be found in the respective publications5,6. Here, 
we focus on differences in selection criteria in the iPSYCH cohort and additional 
quality control (QC) procedures.

The majority of inclusion and exclusion criteria for the original studies were 
also used in this study. The only difference compared with the original studies 
was an additional exclusion criterion that removed individuals with moderate 
to severe mental retardation (ICD-10: F71–F79) from both the case and control 
cohorts. Although this criterion was also used in the original ADHD GWAS6, it 
was not used in the original ASD GWAS5. The rationale for this decision lies in the 
interpretability of our results, where we treated ADHD and ASD consistently. We 
address the potential impact of this decision through different analyses (Table 3, 
Supplementary Fig. 14b and Supplementary Data 9).

Wave-wise preimputation QC and imputation of the iPSYCH case–cohort 
sample were taken from the original ADHD and ASD GWAS, respectively. Details 
about the respective steps and filters can be found elsewhere5,6. As our analyses 
used a combined study cohort with samples from both the original ADHD 
and ASD GWAS, we performed some additional QC on the combined sample. 
Additional QC steps included the removal of related individuals across the original 
ADHD and ASD GWAS and a new principal components analysis (PCA) on 
the combined sample after exclusion of these related individuals. Following the 
same procedures as in the original studies, pairs of subjects were identified with 
pi-hat > 0.2 (using PLINK’s61 identity-by-state analysis), and one subject of each 
pair was excluded at random (with a preference for keeping cases). PCA was 
carried out using smartPCA in the EIGENSOFT software package62,63 using the 
Ricopili pipeline64. The original PGC datasets for ADHD and ASD did not include 
overlapping individuals; therefore, the original datasets and summary statistics 
were used. The final combined dataset across all samples comprised 34,462 cases 
(that is, individuals with an ADHD and/or ASD diagnosis) and 41,201 controls. 
We only included samples of European ancestry from the original ADHD and 
ASD GWAS. Among the cases in the iPSYCH cohort, 11,964 had an ADHD-only 
diagnosis, 9,315 had an ASD-only diagnosis and 2,304 individuals had a comorbid 
diagnosis, respectively. Thus, the proportion of ADHD among ASD cases in  
the iPSYCH cohort was 19.8%, and the proportion of ASD among ADHD cases 
was 16.1%.

Genome-wide association analyses. As in the original GWAS in ADHD and ASD, 
all processing and analyses for the individual GWAS and meta-analyses (see below) 
used the Ricopili pipeline64. More details on individual modules and steps can be 
found elsewhere5,6,64. We ran two main GWAS for our analyses. The first aimed 
to identify shared genetic risk for ADHD and ASD (combined GWAS), and the 
second aimed to identify differentiating genetic risk with an opposite direction of 
effects for ADHD and ASD (ADHDvsASD GWAS). All analyses of the iPSYCH 
sample and meta-analyses with the PGC samples were conducted at the secure 
national GenomeDK high-performance computing cluster in Denmark.

Combined GWAS. We first ran an analysis in the combined dataset, that is, on 
all 34,462 cases and 41,201 controls. The GWAS was conducted in each cohort 
(that is, in the wave-wise iPSYCH samples and the individual PGC cohorts) using 
logistic regression with the imputed additive genotype dosages. The first five 
principal components (PCs) were included as covariates to correct for population 
stratification (Supplementary Note), and variants with imputation INFO score 
<0.8 or MAF < 0.01 were excluded. The resulting summary statistics files were 
then meta-analyzed using an inverse-variance weighted fixed effects model65. 
Postprocessing of the summary statistics files through the Ricopili pipeline64 was 
used to create Manhattan plots, individual regional association plots and forest 
plots. For a QQ-plot of the analysis, see Supplementary Fig. 14a.

ADHDvsASD GWAS. To identify unique genetic risk loci or loci with opposite 
direction of effects for ADHD and ASD, we ran a case-only analysis for the 
ADHD-only (coded as 1, n = 11,964) against ASD-only (coded as 2, n = 9,315) 
cases in the iPSYCH cohort. This approach was in line with that of our recent 
study that compared the genetic risks of developing bipolar disorder and 
schizophrenia66. We excluded comorbid cases from this GWAS, and the GWAS 
was conducted wave-wise using logistic regression with imputed additive genotype 

dosages. The first five PCs were included as covariates to correct for population 
stratification, and variants with imputation INFO score <0.8 or MAF < 0.01 were 
excluded. The resulting summary statistics files were then meta-analyzed using 
an inverse-variance weighted fixed effects model65, and results were visualized 
through the Ricopili pipeline64 (see above). For a QQ-plot of the analysis, see 
Supplementary Fig. 14b.

Identification of previously reported associations for top findings. Different 
resources were used to identify previously reported associations of our top 
findings with other phenotypes and traits within and outside psychiatry. We 
assessed associations reported in the OpenGWAS project database (https://
gwas.mrcieu.ac.uk/about/, accessed 14 October 2020; see Supplementary Data 
1 and 7 for results) and used the GWAS ATLAS website67 to visualize PheWAS 
analyses (Supplementary Figs. 2 and 6). We also used results from the GWAS 
Catalog68 (Table 2). Finally, we also compared our results with those of previous 
cross-disorder studies in the field. These included the recent analyses of the 
cross-disorder group in the PGC8, a study that used a new approach to study 
case–case associations in psychiatric disorders24, and a study that used conditional 
analyses to highlight associations that might be specific to individual psychiatric 
disorders69. Results are available in the Supplementary Note and Supplementary 
Data 2.

Transcriptomic imputation model construction and TWAS. Transcriptomic 
imputation models were constructed as previously described205 for DLPFC 
transcript levels70. The genetic dataset of the PsychENCODE cohort was uniformly 
processed for QC steps before genotype imputation. We restricted our analysis 
to samples from individuals of European ancestry as previously described20. 
Genotypes were imputed using the University of Michigan server71 with the 
Haplotype Reference Consortium reference panel72. Gene expression information 
(at both gene and transcript levels) was derived from RNA sequencing counts, 
which were adjusted for known and hidden confounders, followed by quantile 
normalization70. For the construction of the transcriptomic imputation models, 
we used EpiXcan20, an elastic-net-based method, which weighs SNPs based on 
available epigenetic annotation information73. EpiXcan was recently shown to 
increase power to identify genes under a causality model compared with TWAS 
approaches that do not integrate epigenetic information74. We used this model 
(924 samples from DLPFC) owing to power considerations20; by comparison, 
brain gene expression imputation models based on GTEx v.8 (ref. 75) are trained 
on 205 or fewer samples. Based on only samples from DLPFC, we acknowledge 
that ADHD and ASD are both associated with other brain regions and highlight 
this as a potential limitation of our study. We performed the transcript–trait 
association analysis for the traits in this study as previously described20. Briefly, 
we used the S-PrediXcan method20 to integrate the GWAS summary statistics and 
the transcriptomic imputation models constructed as described above to obtain 
association results at both the gene and transcript levels.

Cell-type enrichment analysis. A major portion of cell-type-specific enrichment 
can be attributed to distal regulatory elements, as local regulatory events remain 
highly consistent across various tissues and cell types76. Therefore, we examined 
the overlap of common genetic variants of investigated traits (Supplementary Fig. 
14 and Supplementary Data 8) and open chromatin from a single-cell assay for 
transposase accessible chromatin study31 using the LD score partitioned heritability 
approach77. All regions of open chromatin were extended by 500 bp in either 
direction. The broad major histocompatibility complex (MHC) region (hg19 
chr6:25–35 Mb) was excluded owing to its extensive and complex LD structure, but 
otherwise default parameters were used for the algorithm.

Additional functional characterization and annotation of main findings. We 
used different approaches combining in-house scripts and data with those available 
via the FUMA v1.3.6a23 website (http://fuma.ctglab.nl) for downstream functional 
characterization and annotation of our findings. For FUMA, we uploaded our 
summary statistics from the individual analyses. We also used FUMA to perform 
tissue expression analyses on data available through the FUMA website. Finally, 
we used FUMA to perform cell-type specificity analyses78 based on our summary 
statistics. For all the above-mentioned analyses, default settings were applied. 
More detailed information about the individual third-party datasets (available 
through FUMA) included in the analyses, as well as individual aspects of the 
FUMA analyses, can be found in the Supplementary Note. Supplementary Data 
10 contains results from standard FUMA-based analyses, such as expression 
quantitative trait loci and chromatin interaction mapping.

Gene-based analysis. We also used FUMA v1.3.6a23 to perform gene-based analysis. 
Genome-wide significance was assessed through Bonferroni correction for the 
number of genes tested. More detailed information about the individual third-party 
datasets (available through FUMA) included in the analyses, as well as individual 
aspects of the gene-based analyses, can be found in the Supplementary Note.

Our results in the context of other findings. Since the publication of the original 
ADHD and ASD results, a few studies have investigated the shared and unique 
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risk architecture of these disorders. We compared our results with the findings of 
the Cross Disorder Working Group of the PGC8 and a recent analysis based on 
genomic structural equation modeling of 11 major psychiatric disorders79. We 
also compared our results with those of recent analyses that aimed to identify 
disorder-specific SNPs for psychiatric disorders24,69.

PRS analyses. To examine potential polygenic heterogeneity across ADHD and 
ASD subtypes, we investigated how PRS trained on different phenotypes was 
distributed across ADHD-only, ASD-only and comorbid subgroups in the iPSYCH 
data through two complementary analysis frameworks: multivariate PRS and 
leave-one-out PRS. These two approaches have different strengths and limitations, 
allowing for robust interrogation of differences in ADHD and ASD subgroups 
in terms of polygenic burden for ADHD and ASD as well as genetically related 
phenotypes.

Multivariate PRS analyses. To examine the relative burden of PRS for phenotypes 
and traits that have shown significant genetic correlation with ADHD and ASD 
in the past5,6,36 across ADHD and ASD subgroups in the iPSYCH data, we ran 
a multivariate regression of the scores on these subgroups, adjusting for PCs 
and batch (for details, see Grove et al.5). In brief, this is a regression of multiple 
standardized PRS variables and can superficially be viewed as running a linear 
regression for each score on the ADHD and ASD subgroups simultaneously. The 
regression coefficients can be interpreted as the mean value of the PRS relative to 
the value in controls. The framework allows us to compare the average PRS across 
subgroups for scores from several phenotypes while accounting for the inherent 
correlation between scores and adjusting for necessary covariates. This enables 
testing of a whole array of hypotheses, with comparisons both between subgroups 
and between PRSs. We can compare groups that are too small for GWAS and gauge 
genetic correlation with groups that are too small for LDSC, as was the case with 
the comorbid ASD–ADHD group. Polygenic scores were generated by clumping 
and thresholding employing standard Ricopili settings as explained5 and using 
summary statistics from the GWAS5,35,80–89.

Leave-one-out PRS analyses. As a complementary approach, a leave-one-wave-out 
approach within the iPSYCH data was used to maximize power and maintain 
independent target and discovery samples for PRS analyses. Meta-analyses were 
run in METAL (using inverse-variance weighted fixed effects models with the 
STDERR scheme), including the per-wave GWAS summary results from all but 
one wave of data, for each combination of waves. Separate meta-analyses were 
run for GWAS of ADHD-only (excluding comorbid ASD or severe ID, defined 
as IQ ≤ 50) cases versus controls and ASD-only (excluding comorbid ADHD 
or severe ID) cases versus controls, using independent (split) controls. For each 
set of discovery results, LD-clumping was run in PLINK v.1.9 (ref. 90), with the 
parameters–clump-kb 500–clump-r2 0.3, to obtain a relatively independent set 
of SNPs while retaining the most significant SNP in each LD block. The P value 
threshold used for SNP selection was P < 0.5. Asymmetric and/or ambiguous 
SNPs (AT, TA, CG, GC), indels, multi-allelic SNPs and duplicate position SNPs 
were excluded. SNPs with MAF < 0.01 or INFO < 0.8 and those present in less 
than half of the sample were filtered out. PRS for ADHD and ASD were calculated 
by scoring the number of effect alleles weighted by the log(OR) across the set of 
independent, clumped, meta-analyzed SNPs in PLINK. PRS were derived from 
best-guess imputed data after filtering out SNPs with MAF < 0.05 and INFO < 0.8. 
The PRS were standardized using z score transformations; ORs can be interpreted 
as the increase in risk of the outcome, per standard deviation in PRS. Logistic 
regression analyses including five PCs were run to test for associations of PRS 
with each of the outcomes within each wave, as follows: (1) ADHD-only cases 
versus controls; (2) ASD-only cases versus controls; (3) comorbid cases versus 
controls; (4) ADHD-only cases versus ASD-only cases; (5) ADHD-only cases 
versus comorbid cases; and (6) ASD-only cases versus comorbid cases. Cases 
were coded as 1 and controls as 0, except that comorbid cases were coded as 1 in 
case–case comparisons and the ASD-only cases in analysis (d) were coded as 1. 
Overall meta-analyses of these per-wave analyses were performed in R using the 
‘metafor’ package. As secondary tests, we stratified the ADHD-only and ASD-only 
cases by presence of mild ID (defined as IQ between 50 and 70). We also examined 
differences across several ASD hierarchical subtypes (childhood autism, atypical 
autism, Asperger’s and pervasive developmental disorders mixed; see Grove et al.5 
and Supplementary Data 9). Several sensitivity tests were also run (including sex as 
a covariate, excluding cases and controls with mild ID).

Genetic correlations (LD Hub). The genetic correlations of our various datasets 
with other phenotypes were evaluated using LD score regression (LDSC)30 and 
the LD Hub29 website (http://ldsc.broadinstitute.org/ldhub/). In brief, we re-ran 
analyses of the original GWAS of ADHD and ASD5,6 in the European-only 
datasets, as new phenotypes had been added to LD Hub after publication of 
the original analyses. We also uploaded summary statistics for the two analyses 
described above, that is, the combined GWAS and the ADHDvsASD GWAS, to 
assess correlations with the identified shared and differentiating genetic liability, 
respectively. We used all available phenotypes in LD Hub29 but performed analyses 
for the UK Biobank (UKBB) traits (n = 597) and the remaining individual 

phenotypes (n = 257) separately. For ADHD6 and ASD5, the most recent summary 
statistics replaced corresponding summary statistics in LD Hub, as these had 
not been included at the date of analysis. The same was true for the summary 
statistics for major depressive disorder85 and bipolar disorder91. Levels of 
experiment-wide significance (Bonferroni correction for number of tests applied) 
were also established separately within the two groups, that is, in the UKBB 
traits (P < 8.38 × 10−5) and the remaining individual phenotypes (P < 0.00019), 
respectively.

GCTA-GREML analyses across subgroups. The additive variance explained 
by our GWAS dataset (SNP-based heritability; SNP-h2) was estimated in the 
iPSYCH sample using the GREML approach of GCTA37 for ADHD versus ASD 
and for ADHD versus each of the ASD subphenotypes (see below). The genetic 
relationship matrix (GRM) between all pairwise combinations of individuals 
was estimated using all case–control samples. The strict best-guess genotypes 
(that is, SNPs with INFO > 0.8, missing rate <0.01 and MAF > 0.05, indels 
removed) were used for GRM estimation. GCTA-GREML accounts for LD92, and 
the GRM estimation was performed on a non-LD-pruned dataset. Estimation 
of the phenotypic variance explained by the SNPs was performed for each of 
the subphenotypes listed in Supplementary Data 9, with PCs 1–20 included as 
continuous covariates and waves 1–23 as categorical dummy variables. ADHD 
prevalence of 0.05 and ASD prevalence of 0.01 was assumed to estimate the 
variance explained on the liability scale. Prevalence was estimated for hierarchical 
ASD phenotypes based on the estimate for the overall ASD phenotype and  
the proportion of each hierarchical phenotype over all ASD cases observed  
in our sample. Genetic covariance between pairs of traits (Supplementary  
Data 9) was estimated using the bivariate approach implemented in GCTA, by 
randomly splitting controls into two groups, one for each trait, in proportions 
corresponding to the proportions of cases for each of the two traits in the  
total sample. PCs 1–20 and dummy variables for wave 1–23 were included as 
covariates in the bivariate analyses. Two-tailed P values were obtained for rG point 
estimates based on the standard error estimated by GCTA using the approach by 
Altman and Bland93.

GCTA-GREML analyses were conducted for ADHD versus ASD as the 
main diagnosis (Supplementary Fig. 5a) by (1) excluding individuals with both 
phenotypes (comorbid) and (2) by randomly splitting comorbid cases into either 
ADHD or ASD. In addition, GCTA analyses were conducted for ADHD versus 
four ASD subphenotypes by (1) excluding individuals with both phenotypes 
(comorbid) and (2) randomly splitting comorbid cases into either the ADHD or 
ASD subphenotype. These analyses were conducted both including and excluding 
individuals with ID. See Supplementary Data 9 and Supplementary Fig. 5 for an 
overview of comparisons.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Summary statistics from this publication are available at http://ipsych.au.dk/
downloads/. Summary statistics for the original ADHD and ASD GWAS analyses 
are available at the same site. For access to genotypes from the PGC samples and 
the iPSYCH sample, researchers should contact the lead PIs E.R. and/or A.B. 
(https://pgc.unc.edu/for-researchers/working-groups/autism-working-group/) 
for PGC-ASD; A.B. for iPSYCH-ASD; B.N. and/or B.F. (https://pgc.unc.edu/
for-researchers/working-groups/adhd-working-group/) for PGC-ADHD; and 
A.B. for iPSYCH-ADHDy. Data used for generation of the brain transcriptome 
model are available from PsychENCODE (overview of available datasets at http://
resource.psychencode.org/); genotypes are controlled data and access instructions 
are provided at https://www.synapse.org/#!Synapse:syn4921369/wiki/477467. Note 
that some datasets were indirectly accessed at the respective analytical websites 
(for example, GSE76381 through the FUMA website). Please refer to these websites 
(for example, for FUMA, https://fuma.ctglab.nl/links and https://fuma.ctglab.
nl/tutorial#datasets) for availability of datasets used in the respective follow-up 
analyses and/or lookups (for example, GSE76381).

Code availability
Please refer to individual sections of the methods above for published code (for 
example, for EpiXcan or Ricopili). As the in-house scripts used for data processing 
and analysis of the iPSYCH data on the GenomeDK HPC infrastructure are highly 
dependent on that context, they can only be obtained from the authors upon 
request. This way we can ensure the proper context is explained in dialog with the 
interested parties.
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the complement in said cohort as controls. Where split controls where required those subgrouping in controls was done randomly.

Blinding In iPSYCH, diagnoses are drawn from registries. These are administrative data bases populated by data from the clinicians long before the 
current study. The blood samples are pulled from a biobank. Hence, the study participants and diagnosing clinicians are blinded with respect 
to this study. Genotyping is done on a massive scale on 85.000 individuals on 500.000 variables  for the overall iPSYCH experiment (which by 
imputation is expanded to ~10 million variables), and the data is generated without a specif goal or effect in mind except for an overall goal of 
investigating the genetic and environmental effects on psychiatric disorders. So although it is in principle possible for analysts in the lab to 
look up crude diagnostic data for a sample, it will not change the genotyping. - In the meta analysis we include data from the Psychiatric 
Genetics Consortium (PGC) which has been reported in an earlier publication. Their design was different, but analyses analogous. 
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Population characteristics In the meta-analysis we included samples from the Psychiatric Genetics Consortium (PGC) and the iPSYCH sample. The 
iPSYCH sample was processed in 23 batches (genotyping, qc and imputation was done separately for theses batches) of 
approximately 3,500 individuals each. All analyzes were adjusted for batch, and principal components included to control for 
population stratification. The PGC samples are combinations of case control and trio samples. There was no need to adjust 
for populations stratification for the trio samples. In the case-control part the same approach as in the iPSYCH samples was 
selected.

Recruitment In iPSYCH, diagnoses are drawn from national registries and the blood samples are pulled from a the Danish Neonatal 
Screening Biobank. Hence, it is a population sample and bias from self-selection is impossible. Recruitment details for PGC 
samples in ADHD and ASD have been described in the original GWAS publications and no changes due to additional inclusion 
or exclusion criteria have been imposed, as such sample characteristics remain the same.   

Ethics oversight The study was approved by the Regional Scientific Ethics Committee in Denmark and the Danish Data Protection Agency.

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Identification of shared and differentiating genetic architecture for autism spectrum disorder, attention-deficit hyperacti ...
	Results

	Shared genetic liability to ADHD and ASD. 
	Differentiating genetic liability to ADHD and ASD. 
	Genetic correlations with other traits. 
	Tissue and cell-type enrichment analyses. 
	Polygenic characterization of case subgroups. 
	Genetic correlation and heritability across case subgroups. 
	Genetic liability in comorbid cases. 

	Discussion

	Online content

	Fig. 1 Manhattan plots for GWAS and TWAS results.
	Fig. 2 Comparison of PRS profiles across ADHD and ASD subtypes for 15 traits and/or phenotypes that have shown significant genetic correlations with ADHD and ASD in the past.
	Table 1 Results of combined GWAS (ADHD or ASD).
	Table 2 Results of differentiating GWAS (ADHDvsASD).
	Table 3 Results of ADHD and ASD PRS analyses in the iPSYCH cohort using a leave-one-out analysis framework.




