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Identification of significant chromatin contacts
from HiChIP data by FitHiChIP
Sourya Bhattacharyya1, Vivek Chandra1, Pandurangan Vijayanand1,2,3 & Ferhat Ay 1,3

HiChIP/PLAC-seq is increasingly becoming popular for profiling 3D chromatin contacts

among regulatory elements and for annotating functions of genetic variants. Here we

describe FitHiChIP, a computational method for loop calling from HiChIP/PLAC-seq data,

which jointly models the non-uniform coverage and genomic distance scaling of contact

counts to compute statistical significance estimates. We also develop a technique to filter

putative bystander loops that can be explained by stronger adjacent loops. Compared to

existing methods, FitHiChIP performs better in recovering contacts reported by Hi-C, pro-

moter capture Hi-C and ChIA-PET experiments and in capturing previously validated

promoter-enhancer interactions. FitHiChIP loop calls are reproducible among replicates and

are consistent across different experimental settings. Our work also provides a framework for

differential HiChIP analysis with an option to utilize ChIP-seq data for further characterizing

differential loops. Even though designed for HiChIP, FitHiChIP is also applicable to other

conformation capture assays.
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E
ven though the invention of high-throughput chromosome
conformation capture (3C) techniques (e.g., Hi-C1–3,
chromatin interaction analysis with paired-end tag (ChIA-

PET)4) has revolutionized the three-dimensional (3D) genomics
field, it remains costly to generate kilobase resolution contact
maps that allow for de novo identification of interacting reg-
ulatory elements3. Two new techniques that combine Hi-C with
chromatin immunoprecipitation-sequencing (ChIP-seq), namely
HiChIP (Hi-C chromatin immunoprecipitation)5 and PLAC-seq
(proximity ligation assisted ChIP-seq)6, show significant
improvement over ChIA-PET4 in direct profiling of regulatory
(e.g., H3K27ac) and structural (e.g., cohesin) interactions with
moderate sequencing depth (~200M reads) and in primary cells.
However, at present, computational identification of a function-
ally important subset of interactions/loops/contacts from these
data remain difficult. The original articles describing both
assays5,6 (we use HiChIP to refer to both hereafter) use Hi-C-
specific computational methods (HiCCUPS3 or FitHiC7) for loop
calling from HiChIP data. HiCCUPS detects loops using local
neighborhoods to compute an enrichment for the center pixel in
each region of the contact matrix. FitHiC, on the other end,
estimates a background model from the global set of contact
counts to find enrichment of each pixel with respect to overall
expectation at that genomic distance. Both methods assume that
each genomic bin is represented by roughly equal number of
overall contacts, an assumption that is not valid for HiChIP and
other targeted conformation capture assays such as ChIA-PET
and promoter capture Hi-C (PCHiC)4,8. Several other computa-
tional methods for Hi-C data, which account for zero-inflation
and overdispersion of contact counts9 and for dependency of
contacts among adjacent fragment/bin pairs10, are also not
readily applicable to HiChIP data. On the other hand, several
tools developed for ChIA-PET analysis do not support finding
loops involving non-peak regions11–13, a task that is important
for HiChIP, which has a broader coverage compared to ChIA-
PET14.

HiChIP signal also depends on the density and distance of
restriction enzyme (RE) cut sites with respect to nearby ChIP-seq
peaks (1D), and more so compared to ChIA-PET14. A recent tool
for HiChIP data, hichipper14, provides a correction for this RE
site bias by introducing a new background parameter in
MACS215 to model the distance between peaks and their nearby
RE sites. This correction is used for 1D peak calling from HiChIP
data, which is followed by loop calling using MANGO11. A more
recent tool, MAPS,16 does not explicitly correct for this peak to
RE site distance effect, which is also the case for our method.
MAPS adopts a zero-truncated Poisson regression model for-
merly used for Hi-C data17 to compute normalized HiChIP
contact counts, and uses these normalized counts to compute a
statistical significance for each observed count. We provide
extensive comparisons of our tool to both of these existing
methods using a number of different and complementary metrics
given the lack of a gold standard validation set.

Here we develop a versatile method, FitHiChIP, which per-
forms loop calling (i.e., identification of significant contacts) from
HiChIP data by: (i) Learning the dependency between assay-
specific biases or coverage values for each genomic distance using
a regression model. (ii) Smoothing the learned parameters across
different distances using a monotonically non-increasing
smoothing spline fit. (iii) Computing statistical significance
using the learned parameters and corresponding expected counts
from a background model inferred either from all possible pairs
of peak bins (bins that overlap with provided peak annotations),
which we name peak-to-peak or stringent (S), or from pairs
involving at least one peak bin, which we name peak-to-all or
loose (L). (iv) (Optional) Improving the specificity of the resulting

loop calls further by merging adjacent loops identified as con-
nected components of the binary loop call matrix and then fil-
tering bystander loops that can be explained by putative direct
loops that are stronger. FitHiChIP workflow is outlined in Fig. 1a
and a pictorial description of the merging filter is provided in
Supplementary Fig. 1. Other features of FitHiChIP include: (i)
allowing users to either infer peaks from the 1D coverage of their
HiChIP data or input a predefined reference set of peaks poten-
tially from a matching ChIP-seq experiment, (ii) reporting sig-
nificance for: (a) only pairs of bins that both overlap provided
peaks (peak-to-peak foreground, similar to ChIA-PET pipelines),
(b) pairs that have a peak overlap for at least one side (peak-to-all
foreground, similar to PCHiC), or (c) all pairs (all-to-all fore-
ground, similar to Hi-C), (iii) allowing the use of normalization/
bias factors either computed from a matrix balancing method or
simply from marginalized HiChIP coverage values.

When run on multiple published HiChIP datasets, FitHiChIP
identifies loops that better recover contacts reported by in situ Hi-
C, PCHiC, and ChIA-PET data in matching cell types compared
to existing methods. FitHiChIP also captures previously validated
enhancer interactions for several genes includingMYC, TP53, and
NMU. FitHiChIP results are reproducible among biological
replicates and consistent across experiments with varying
amounts of starting material, hence robust to experimental and
technical variation. By simulating HiChIP contact maps from Hi-
C data sampled proportional to ChIP-seq coverage of each bin,
we show that FitHiChIP is able to recover the stronger Hi-C loops
in the underlying data. This recovery is hampered when coverage
values are shuffled before simulation, suggesting that FitHiChIP
calls are specific. These simulation results also show that nearly
one-third of FitHiChIP loops from actual HiChIP data cannot be
explained by the combination of Hi-C and ChIP-seq data high-
lighting the existence of contacts that are specifically enriched by
HiChIP. Our differential analysis results show the importance of
intersecting the discovered contact count differences with FitHi-
ChIP loop calls. Our breakdown of differential loops with respect
to their relationship to changes in ChIP-seq signal enrichment
between the compared cell types demonstrates that a small set of
loops, which cannot be explained by changes in ChIP-seq cov-
erage have substantial differences in their HiChIP signal. FitHi-
ChIP is also applicable to other types of conformation capture
assays as evidenced by our results here for PCHiC and by recent
work for HiChIRP18. FitHiChIP is available at https://github.
com/ay-lab/FitHiChIP.

Results
FitHiChIP loop calls for publicly available HiChIP data. We
apply FitHiChIP as outlined in Fig. 1a to analyze published
HiChIP datasets5,19 of four cell types (Supplementary Table 1):
GM12878, K562, and naive CD4+ T cells (reference genome
hg19); mouse embryonic stem cells (mESs) (reference genome
mm9), with two different immunoprecipitation targets (histone
modification H3K27ac and cohesin as profiled either by RAD21
or by SMC1A antibodies). For inferring the background model
we either use the stringent (S) model (peak-to-peak), which
estimates higher background contact probability (Supplementary
Fig. 2) and, hence, more conservative significance estimates or the
loose (L) model (peak-to-all), which reports a larger number of
loop calls (Supplementary Table 2). For each cell type, we use
FitHiChIP on individual replicates to measure reproducibility as
well as on the combined data after merging all replicates to
achieve maximum statistical power. In this work, we use either
2.5 or 5 kb fixed-size genomic windows/bins for analyzing
HiChIP data. We choose these two window sizes for compatibility
with existing literature on HiChIP and Hi-C data
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Fig. 1 Overview and different settings/parameters of FitHiChIP pipeline. a Overview of FitHiChIP pipeline. b Comparison of different normalization

techniques versus no normalization for FitHiChIP in terms of recovering loops from PCHiC data on the same cell type. c Recovery performance of PCHiC

loops using different settings and window sizes for our merging filter (M) technique. d Recovery of ChIP-seq peaks by MACS2 peaks inferred from HiChIP

data using different sets of reads. e Comparison of the choice of peak calls (either from a reference ChIP-seq data or inferred from HiChIP data directly) in

terms of recovering a reference set of loop calls from GM12878 Hi-C data. The symbol N indicates total number of loops (or peaks) for the corresponding

method. Source data are provided as a Source Data file
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analysis3,5,14,16,19. However, users can employ FitHiChIP with
any other window size appropriate for their data depending on
the sequencing depth and the RE used (Supplementary Note 8).
Here, we choose to assign confidence estimates (i.e., use as
foreground) the peak-to-all pairs as inclusion of peak-to-non-
peak pairs substantially increases the fraction of in situ Hi-C
loops that are recovered by FitHiChIP (Supplementary Fig. 3).

Assessment of loop calls from FitHiChIP and existing meth-
ods. To systematically compare FitHiChIP with existing tools and
to evaluate the impact of different parameters, we quantify the
extent of concordance with other cell type-matched conformation
capture data (Supplementary Tables 3–5). When HiChIP loop
calls are compared to a reference set of loops either from Hi-C,
PCHiC, or ChIA-PET data, we use recovery plots to measure
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what fraction of reference loops are captured for an increasing
number of loop calls (i.e., decreasing stringency threshold) from
HiChIP data (Fig. 2). For further comparison with Hi-C data, we
create aggregate peak analysis (APA) plots, which measure the
enrichment of Hi-C signal for the pair of loci that are deemed
interacting from HiChIP data with respect to its local neighbor-
hood (Fig. 3). We also compile a set of long-range validated
chromatin loops identified by independent methods (e.g., clus-
tered regularly interspaced short palindromic repeats (CRISPR)
screens in single cells and in bulk, DNA fluorescence in situ
hybridization (FISH) or 3C) and ask whether these are captured
by different methods from HiChIP data (Fig. 4). Furthermore,
when biological or technical replicates are available for HiChIP
data, we compute and compare the reproducibility of loop calls
from different methods as well as the consistency of highly
ranked loops across experiments with varying number of cells
used as starting material (Fig. 5). Finally, we simulate HiChIP-like
contact maps from high-depth GM12878 Hi-C data using ChIP-
seq coverages of each bin to test whether FitHiChIP can recover
the underlying Hi-C loop calls from simulated data and to see
whether this recovery is specific compared to a simulation with
shuffled ChIP-seq coverage values (see Methods).

We provide detailed discussions of how the choice of normal-
ization (Fig. 1b and Supplementary Figs. 4–6), the use of a
merging-based filtering to eliminate the indirect contacts (Fig. 1c,
Methods, and Supplementary Figs. 1 and 7–9) and the choice of
using peak calls either from ChIP-seq data or from different read
types resulting from HiChIP data after discarding the pairing of
reads with or without the correction for RE site distribution (Fig.
1d, e and Supplementary Figs. 10–12) impact FitHiChIP results in
Supplementary Notes 1–4.

FitHiChIP recovers loops from in situ Hi-C experiments. Here
we first compare the performance of FitHiChIP, hichipper,
MAPS, and HiCCUPS loop calls from HiChIP data, in terms of
recovering high confidence loop calls from in situ Hi-C data of
GM12878 and K562 cell lines at 5 kb resolution3. For this, we
compute the recovery of HiCCUPS loop calls on Hi-C data for
FitHiChIP in four different settings (L, L+M, S, S+M) at 1%
false discovery rate (FDR), for hichipper in four different settings
(≥2 paired end tags (PETs) (default), ≥2 PETs+M, ≥12 PETs,
≥12 PETs+M) at 1% FDR, for MAPS with default settings at 1%
FDR, ≥12 PETs and observed over expected count ratio ≥2, and
for published HiCCUPS HiChIP loop calls from three different
datasets (see Methods). For FitHiChIP, hichipper, and MAPS, the
loop calling is carried out for the genomic distance range of 20 kb
to 2Mb. For HiCCUPS HiChIP calls as well as reference datasets
used (Hi-C, ChIA-PET, PCHiC), the readily computed calls are
filtered to only keep loops within this 20 kb to 2Mb distance
range (Methods). In all cases, FitHiChIP(L+M) provides better
overall recovery (maximum value on the y-axis) of Hi-C loops
compared to all settings of other tools (Fig. 2a–c). This holds true
even for cases when the competing method reports a larger
number of loops compared to FitHiChIP (Fig. 2b, c). MAPS
performs comparable to some settings of FitHiChIP for the

H3K27ac datasets (Fig. 2b, c), but has lower recovery at any given
number of k to pick top-k loop calls in the cohesin data (Fig. 2a).
HiCCUPS loops from HiChIP data show comparable or better
recovery with respect to all other methods when each method is
restricted to have an equal number of loop calls (equal to that of
HiCCUPS); however, the overall recovery of HiCCUPS is quite
limited (Fig. 2b, c).

In order to further characterize whether the differences in
recovery performance of HiChIP loop calling methods are robust,
we carry out the same analysis in a number of different settings.
One factor that may have a significant impact is the resolution of
contact maps as FitHiChIP, MAPS, and HiCCUPS use fixed-sized
genomic bins (5 or 10 kb), whereas hichipper works with loop
anchors that vary in size (1–70 kb with a median of 2.5 kb)14. Our
analyses using 2.5 kb resolution contact maps show that
FitHiChIP still outperforms hichipper with a substantial margin
in both GM12878 and K562 H3K7ac data regardless of whether
the original anchor coordinates (raw) are used or they are binned
(at 2.5 kb) for hichipper (Supplementary Fig. 13). We then test
another potential factor, which is the use of a post-processing step
(i.e., merging filter) for FitHiChIP loop calls. Both applying our
merging filter to hichipper results and using a more stringent PET
threshold of 12 (as suggested by MAPS) do not improve
hichipper results substantially (Fig. 2a–c). Finally, instead of loop
calls from our application of hichipper and MAPS on the
compared datasets, we directly use loop calls for both methods on
two GM12878 HiChIP datasets, which are available from the
source data files of MAPS16. This analysis was intended to see
whether the technical differences in application of tools from
different groups impact our observations. We observe that,
consistent with the results from our own application of MAPS
and hichipper, for both cohesin and H3K27ac data, nearly all
settings of FitHiChIP perform better than MAPS and hichipper
(Supplementary Fig. 14). Overall, these results suggest that the
better recovery performance of FitHiChIP cannot be explained by
differences in resolution, distance range, post-processing settings,
or technical differences in data processing or application of tools.

FitHiChIP recovers loops from other 3C data. Next, we utilize
loop calls from PCHiC or ChIA-PET as our reference set,
instead of Hi-C. FitHiChIP(L+M) again outperforms hichip-
per and MAPS in overall recovery even for cases when the
competing method calls a larger number of loops (Fig. 2d, e and
Supplementary Fig. 15). For these reference sets, FitHiChIP
with merging filter and HiCCUPS have equal recovery when
top-k loops are considered (k equals the number of all loop calls
from HiCCUPS) and for GM12878 cohesin data both are
substantially better compared to MAPS, hichipper, or FitHi-
ChIP without the merging filter (Fig. 2e). HiCCUPS, however,
reports much smaller number of loops, especially for naive
CD4+ T cells H3K27ac HiChIP data leading to an overall
recovery of only ~10% of PCHiC loops, whereas FitHiChIP
recovers over 60% (Fig. 2d). When we use as reference the loops
that are consistent in two different types of conformation
capture experiments (e.g., Hi-C and ChIA-PET), FitHiChIP still

Fig. 2 FitHiChIP recovers a large fraction of Hi-C, PCHiC, and ChIA-PET loop calls. a–c Comparative analysis of HiChIP loop calling methods in recovering

loops from in situ Hi-C data as called by HiCCUPS. The number on the y-axis represents all HiCCUPS Hi-C loops regardless of their overlap with ChIP-seq

peaks. The dark brown dot represents HiCCUPS loops called from HiChIP data with the corresponding number in figure legend representing such loops

with at least one end overlapping a reference ChIP-seq peak to make it similar to our peak-to-all foreground. d, e Similar comparisons with respect to

published sets of promoter capture Hi-C and ChIA-PET loops. f Similar analysis when the common loops between GM12878 RAD21 ChIA-PET and

GM12878 in situ Hi-C HiCCUPS loops are used as the reference set. g Detailed analysis of GM12878 Hi-C loop calls from HiCCUPS and the fractions of

those calls that overlap with HiChIP loops called on two different datasets with four different methods. For all subfigures, the overlapping loops are

determined using a 5 kb slack (see Methods). Source data are provided as a Source Data file
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outperforms existing methods (Fig. 2f and Supplementary Fig.
16a). Due to its stringency, we also utilize HiCCUPS loop calls
on HiChIP data as a reference set in order to compare the other
three HiChIP loop callers. Recovery plots for loop calls from

HiCCUPS on HiChIP data (Supplementary Fig. 8) or from their
intersection with ChIA-PET loop calls in matching datasets
(Supplementary Fig. 16b, c) all show that FitHiChIP(L+M)
has the best overall performance in each case with MAPS
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Fig. 3 FitHiChIP loops are supported by in situ Hi-C data. a APA plot for HiCCUPS loops called from GM12878 in situ Hi-C data3 using the same dataset as

the underlying contact map. b–d APA scores for HiCCUPS, hichipper, and MAPS loops computed from GM12878 cohesin HiChIP data5, respectively. e–h

APA scores for different FitHiChIP versions for the same GM12878 cohesin HiChIP data5. For HiCCUPS, all 5108 reported loops are used, whereas for

FitHiChIP, hichipper and MAPS, the top k loops are considered, where k= 5441 (equal to the number of GM12878 RAD21 ChIA-PET loops). (i) A

schematic of the comparative APA analysis for overlapping and exclusive loops between FitHiChIP (top k loops) and a set of loops either from a reference

method (containing k loops in total) or from a competing method (top k loops). j–l The results of comparative APA analysis for overlapping and exclusive

loops between FitHiChIP(S+M) and hichipper for GM12878 cohesin HiChIP data5. For all APA plots above, the overlapping loops are determined using

5 kb slack (see Methods) and the loop calls are subsetted to the distance range of 150 kb–1 Mb (as suggested in ref. 11) for each method before determining

the top k. m The breakdown of HiChIP loops overlapping CTCF binding motifs on both sides with respect to CTCF binding orientation for different HiChIP

loop callers. The total number of loops with CTCF motifs on both sides are listed on the left for each method and the number of those with convergent

orientation (green) are overlaid on the corresponding portion. Source data are provided as a Source Data file
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performing as the second or third best for H3K27ac datasets.
We also test the impact of contact map resolution on FitHi-
ChIP’s performance. Repeating the above recovery analysis
using 2.5 kb resolution contact maps, we see that FitHiChIP still
has better overall recovery for most settings and better recovery
using top-k loop calls for any value of k for all settings com-
pared to hichipper (Supplementary Fig. 17). These results
suggest that FitHiChIP’s better overall recovery, as well as its
recovery when only top-k loop calls are used, is consistent
across a wide range of reference data sets.

For GM12878 cell line with cohesin and H3K27ac HiChIP data
as well as high-resolution Hi-C loop calls from HiCCUPS, we
then compare the consistency among the three datasets for
different HiChIP loop callers. Our results show that over 43% of
Hi-C loops are captured by FitHiChIP from both cohesin and

H3K27ac data (three-way intersection) compared to <20, 30, and
24% for hichipper, MAPS, and HiCCUPS, respectively (Fig. 2g).
Also, less than only 15% of Hi-C loops (1318 out of 9270) cannot
be captured using either HiChIP data by FitHiChIP compared to
over 25% for all other methods. These results suggest that with
appropriate analysis, HiChIP has the power to recapitulate a large
fraction of the strongest loops found from Hi-C data with
significantly lower sequencing depth, and to detect new loops,
which are also supported in Hi-C in the form of enrichment in
contact counts as discussed below.

FitHiChIP loops show enrichment in Hi-C contact maps.
Previous section shows the recovery of loops called from Hi-C
and other datasets by FitHiChIP and existing methods. Here we
start from HiChIP loops and ask whether they are supported by
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Fig. 4 FitHiChIP recovers independently validated long-range interactions. a: A CRISPRi (clustered regularly interspaced short palindromic repeats

interference) screen for MYC locus on K562 cells identified seven different enhancer regions21, four of which are shown here and the remaining three can

be seen in Supplementary Fig. 26, which have impact onMYC expression when inhibited by a KRAB-dCas9 system (track for CRISPRi score). b A single-cell

CRISPR screen in K562 cells identified a strong link between expression of NMU gene and an enhancer region ~100 kb upstream24. c Two regions identified

by super-enhancer and broad domain analysis coupled with RNA Pol II ChIA-PET data were confirmed to interact with the TP53 promoter (loops indicated

by stars) in K562 cells using EpiSwitch baits22. All browser views were generated using WashU Epigenome Browser46. For all figures H3K27ac HiChIP data

from K562 cells were used for FitHiChIP, hichipper, MAPS, and HiCCUPS HiChIP. Source data are provided as a Source Data file
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Hi-C contact maps. We interrogate: (i) what fraction of loops
from HiChIP data are detected by Hi-C loops called using two
distinct methods (HiCCUPS3 and FitHiC7), (ii) whether the
identified HiChIP loops show an enrichment in Hi-C contact
counts when the local contact patterns around them are analyzed
in aggregate using APA11, and (iii) whether the HiChIP loops
that are method specific (i.e., reported by FitHiChIP but not by
hichipper) show distinct patterns in terms of the support they
have from the cell type-matched Hi-C data.

First, when compared to hichipper-specific loops, FitHiChIP
loops (either common with hichipper or exclusive) show higher
overlap with Hi-C loop calls (Supplementary Fig. 18). Similar
comparison between FitHiChIP and MAPS shows that loop calls
that are specific to MAPS (in comparison to FitHiChIP) are also
well supported by the underlying Hi-C data unlike hichipper
(Supplementary Fig. 19). Second, in terms of APA scores (the
higher the better), we observe that hichipper loops consistently
have the lowest enrichment compared to loop calls from all
settings of FitHiChIP and MAPS on both cohesin (1.63–1.69) and
H3K27ac (1.27–1.35) HiChIP data5,19, to RAD21 ChIA-PET
loops20 (1.83), and to HiCCUPS loops from both Hi-C3 (2.17)
and HiChIP data (1.93 cohesin, 1.76 H3K27ac) (Fig. 3 and
Supplementary Figs. 20 and 21). In agreement with the previously
mentioned overlap analysis, similar to FitHiChIP loops
(1.84–2.12 cohesin, 1.49–1.79 H3K27ac), MAPS loop calls are
also highly supported by Hi-C data (2.02 cohesin, 1.75 H3K27ac)

(Fig. 3 and Supplementary Figs. 20 and 21). Notably, higher APA
scores are not explained by preference of reporting shorter
distance loops, because, for both cohesin and H3K27ac datasets,
FitHiChIP(S) reports the highest APA scores and has the largest
median loop distance. Lastly, when we analyze method-specific
HiChIP loop calls (Fig. 3i), loops exclusive to FitHiChIP (for all
settings) show higher APA scores than loops exclusive to
hichipper (Fig. 3j–l and Supplementary Figs. 22 and 23). A
similar comparison with MAPS shows an asymmetry in the
method-specific loop counts (higher for FitHiChIP), but a
generally comparable APA score suggesting that both FitHiChIP
and MAPS-exclusive loops correspond to regions of Hi-C contact
enrichment (Supplementary Figs. 24 and 25). A more detailed
discussion of all these results is available in Supplementary Note
5.

FitHiChIP loops highly overlap with convergent CTCF motifs.
As CTCF/cohesin-associated interactions show higher preference
in convergent orientation of CTCF motifs3, we test whether loops
called from GM12878 cohesin HiChIP data using different
methods also show such preference (Fig. 3m). These results
suggest that the percentage of convergent loops is similar among
most methods, although the number of reported convergent pairs
vary. FitHiChIP(L) identifies the largest number of such loops
(over 12 k compared to <3.5 k for HiCCUPS and 7.5 k for MAPS)
highlighting FitHiChIP’s improved sensitivity in recovering

a Reproducibility for two replicates in GM12878 H3K27ac HiChIP data
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additional structural loops with expected CTCF-binding config-
uration compared to other HiChIP methods as well as to loops
discovered from GM12878 in situ Hi-C data (3619 convergent
pairs)3.

FitHiChIP identifies independently validated distal loops. To
assess whether FitHiChIP connects distal enhancers to their
experimentally validated target promoters from HiChIP data, we
compile a list of loci for which functional data (e.g., CRISPRi) is
available together with the HiChIP data for the same cell line3,21–24.
These include the loci for MYC, NMU, TP53, MYO1D, and
SMYD323 genes with different functional experiments aiming to
link distal enhancers to their regulation as well as four regions
with strong CTCF-dependent long-range loops that are identified
from Hi-C and validated by DNA FISH3. For the ~400 kb region
around MYC, both FitHiChIP and MAPS identify all four
enhancer regions found from CRISPRi screen as interacting with
MYC promoter (K526 H3K27ac HiChIP), whereas HiCCUPS19

only reports one enhancer as interacting and hichipper reports a
large number loops in this locus, most of which are short range
and not from the MYC promoter (Fig. 4a). The loops to the
farthest enhancers at ~2Mb are captured by all loop callers as
well as by Hi-C (Supplementary Fig. 26). For NMU, FitHiChIP
and hichipper accurately capture the enhancer identified from a
single-cell CRISPRi screen24 as interacting with the promoter,
whereas both HiCCUPS and MAPS fail to do so (Fig. 4b). In case
of TP53 promoter, FitHiChIP identifies loops to both hit regions
identified using EpiSwitch baits22, whereas HiCCUPS misses both
(Fig. 4c). On the other hand, hichipper and MAPS report a large
number of loops including the TP53 promoter with no specificity
to the two hit regions. We discuss the results for MYO1D and
SMYD323 genes as well as for FISH-validated loops in detail in the
supplementary (Supplementary Notes 6 and 7 and Supplemen-
tary Figs. 27–29). Overall, these results suggest that FitHiChIP is
able to recover functionally validated or experimentally con-
firmed contacts/interactions from cell type-matched HiChIP data
without reporting many potentially false-positive loop calls.

Reproducibility and robustness of FitHiChIP loops. We also
evaluate to what extent the loop calls of FitHiChIP and other
methods from HiChIP data are reproducible across technical and
biological replicates (Fig. 5a and Supplementary Figs. 30 and 31).
In general, all three HiChIP loop callers have better reproduci-
bility when compared to published loop calls from replicates of
other assays such as Hi-C and ChIA-PET (Supplementary Note
8). We also compare FitHiChIP calls from mES HiChIP samples
generated from varying number of cells as starting material
(cohesin with 1, 5, and 10M cells, H3K27ac with 50 K, 100 K,
500 K, and 25M cells)5,19. These results also show a significant
overlap of FitHiChIP loop calls with samples generated using
higher cell numbers and higher sequencing depth, leading to a
substantially higher number of loops/discoveries as expected
(Supplementary Note 8 and Supplementary Fig. 32). Finally, we
compute the overlap of FitHiChIP loop calls from HiChIP data
that is binned at 2.5 or 5 kb resolution (Fig. 5b, Supplementary
Note 8, and Supplementary Fig. 33). Our results for three dif-
ferent HiChIP datasets show that, both for loose and stringent
background models, over 95% of 2.5 kb loops are also detected by
an overlapping 5 kb loop (Supplementary Fig. 33). Among the
5 kb loops that overlap at least one 2.5 kb loop, we see that most
5 kb loops can be resolved to a single underlying 2.5 kb loop
(Fig. 5b), suggesting that FitHiChIP calls are, to a certain extent,
robust to the choice of contact map resolution.

Robustness of FitHiChIP in simulated HiChIP data. We also
test the robustness of FitHiChIP by first simulating HiChIP maps
using Hi-C and ChIP-seq data such that bins with higher (lower)
ChIP-seq signal have higher (lower) Hi-C read coverage after the
simulation (Methods). We then apply FitHiChIP on this simu-
lated HiChIP maps, in order to see whether FitHiChIP recovers
loops generated by the underlying Hi-C data and by the real/non-
simulated HiChIP data. For this purpose, we use in situ Hi-C
data3 and matching ChIP-seq data for cohesin and H3K27ac for
GM12878 cells (Supplementary Table 1). Application of FitHi-
ChIP shows that loops identified from the simulated HiChIP
maps correspond, to a large extent (85% to 99%), to loops
reported either by the underlying Hi-C data or the real HiChIP
data (Supplementary Note 9 and Supplementary Figs. 34a and
35a). With respect to HiCCUPS loops from Hi-C data, the
simulated cohesin and H3K27ac HiChIP data recovers 72% and
61% of such loops, respectively, whereas FitHiChIP calls from
simulated maps that use shuffled ChIP-seq coverages are only
able to capture 12% and 14% of the same loops while reporting a
very small number of overall loops compared to those from
simulated maps with no shuffling of the coverage (Methods,
Supplementary Figs. 34b and 35b). These results suggest that both
the statistical power and the recovery of reference loops for
FitHiChIP is specific to the case when real HiChIP data are used
or when realistic (i.e., not shuffled) ChIP-seq coverages are used
for simulating HiChIP maps from Hi-C data (Supplementary
Note 9).

Using FitHiChIP in other conformation capture experiments.
We also test the applicability of FitHiChIP in other conformation
capture assays such as PCHiC, by using GM12878 PCHiC dataset
(combined replicates) provided in Mifsud et al.8. We have used
the capture design file corresponding to the captured restriction
fragment as our reference ChIP-seq peak file required by FitHi-
ChIP. Comparison with respect to the loops generated by CHi-
CAGO25, a tool designed specifically for analyzing PCHiC data,
shows that FitHiChIP recovers nearly 90% CHiCAGO loop calls
(Supplementary Note 10 and Supplementary Fig. 36a). FitHiChIP
also has a comparable recovery to CHiCAGO when GM12878
RAD21 ChIA-PET loops, FitHiChIP or HiCCUPS loops on
H3K27ac HiChIP data, or HiCCUPS loops from GM12878 in situ
Hi-C data are used as a reference loop set (Supplementary Note
10 and Supplementary Fig. 36b–f). These results, as well as a
recent work that uses FitHiChIP for analyzing RNA-associated
chromosome conformation (HiChIRP assay18), highlight that
FitHiChIP is useful for analyzing other conformation capture
assays.

Differential loop calling for HiChIP data. Another utility we
implement with FitHiChIP is the ability to identify differential
HiChIP loops between two conditions with replicate HiChIP
experiments. We do this by using edgeR26,27 for assessing the
significance of differential contact counts between the given
conditions followed by overlapping the identified differences with
FitHiChIP loop calls from each replicate (Supplementary Fig. 37a,
b). As HiChIP contact count signal depends on the ChIP
enrichment of the underlying loci, we further categorize the
resulting differential loops into different groups with respect to
changes in ChIP-seq signal between compared conditions for
both loci involved in a given loop (i.e., with respect to presence of
changes in 1D signal—either 1D differential or 1D invariant). A
similar categorization has recently been used by a study inter-
rogating the role of Notch regulation and dependency on the
loops between enhancers and promoters28. In a comparison
between GM12878 and K562 HiChIP data for H3K27ac, we
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identify differential contacts between 1D differential as well as 1D
invariant loci, suggesting that a subset of differences in contact
counts are strictly caused by the underlying 3D conformation,
without changes in the activity or chromatin state of the involved
loci (Supplementary Fig. 37a, b). We also show that further fil-
tering of such detected 3D differences by restricting them to be
overlapping with a FitHiChIP loop call in at least one input
sample (a replicate in one category) produces a loop set with
significant enrichment differences in APA analysis of the HiChIP
data from the compared cell types as well as significant differ-
ences in underlying Hi-C contact counts (Supplementary Note 11
and Supplementary Fig. 37c–e).

Discussion
Here we describe FitHiChIP, an empirical null-based, flexible
computational method for statistical significance estimation and
loop calling from HiChIP/PLAC-seq data. FitHiChIP jointly
models the non-uniform coverage and genomic distance scaling
of HiChIP contact counts using a regression model coupled with
spline fitting and further filters bystander interactions using an
iterative merging filter on each connected component of adjacent
loops. FitHiChIP is fast and memory efficient. An important
feature of FitHiChIP is that it provides several choices for peak
calling, normalization, filtering adjacent loops, background esti-
mation, and pairs of regions to consider for loop calling. Earlier in
the text, we have discussed many of these options and provided
justification for our default settings; however, we have kept L, L
+M, S, and S+M as four different settings throughout the text.
When we compare the loop calls from these four settings for
GM12878 cohesin and H3K27ac HiChIP data using exact over-
laps, we see that a very large fraction of loops from S+M are also
reported by the other three settings suggesting FitHiChIP(S+M)
as a good surrogate for loops agreed upon by all FitHiChIP
configurations (Supplementary Fig. 38). For both cases, a large
number of loops that are reported by L and S but not when
merging is used confirms the existence of many strong loops
involving surrounding regions of actual loop anchor points,
which are removed by merging filter. The largest number of loops
fall into the category of identified by loose background but not
with stringent, which highlights the importance of background
choice. For instance, if one aims to find loops between boundaries
of loop domains3, which are demarcated by convergent CTCF
motifs and have the highest enrichment in contact counts, it may
be desirable to use cohesin HiChIP data with a stringent back-
ground and preferably with merging filter enabled for FitHiChIP.
On the other hand, if the goal is to find enhancer–promoter
interactions within domain3,29,30 that have some contribution to
gene expression, then one may choose to analyze H3K27ac
HiChIP data using loose background preferably with merging
filter to gather a comprehensive set of calls.

We also believe that our work highlights the overlap between
Hi-C and HiChIP data and reconciles some of the differences by
using multiple computational methods for each data type. For
instance, even though we discover many more interactions from
HiChIP data compared to HiCCUPS loops from Hi-C, we
showed that a very large fraction (nearly 100% for cohesin and
more than 60% for H3K27ac) of such HiChIP-specific loops are
indeed reported as Hi-C loops when FitHiC, a more lenient
method, is used instead of HiCCUPS for the Hi-C data (Sup-
plementary Fig. 18). This suggests that by targeting a specific
factor of interest, HiChIP amplifies the loop signal for pairs of
regions enriched for that factor, which readily had higher than
expected contact counts in the Hi-C contact map. This observa-
tion is further confirmed by our results from simulating chro-
mosome 1 HiChIP maps using Hi-C and ChIP-seq data, which

show that 99% (79%) of loops from the simulated cohesin
(H3K27ac) map is supported by Hi-C (Supplementary Figs. 34
and 35). Conversely, a large fraction of the strongest (e.g., HiC-
CUPS calls) Hi-C loops can be captured by HiChIP data speci-
fically when cohesin complex is targeted (77%, 52% for H3K27ac)
(Supplementary Fig. 3).

In terms of differential analysis of HiChIP data, here we pre-
sent a framework based on edgeR for detecting differences and
FitHiChIP to identify which of the identified differences corre-
spond to loops in one cell type or the other. We further segregate
the differential loops according to changes in ChIP-seq coverages
for the 1D loop anchor regions. These results show that while the
bulk of differences in HiChIP data between two distinct cell lines
is due to large changes in ChIP-seq signals, there are still hun-
dreds of loops with strong differential contacts, apparent from
HiChIP APA plots and supported by changes in Hi-C data, with
no underlying ChIP-seq coverage differences. Since our current
approach is limited to one-by-one analysis of locus pairs, we,
however, cannot rule out potential indirect effects of 1D changes
in nearby regions on the differences we observe for such differ-
ential loops that are 1D invariant. Future directions for devel-
opment of differential HiChIP analysis tools may involve
modeling contributions of nearby ChIP-seq peaks or loops
involving neighboring regions to further stratify various modes of
differential looping.

In sum, our work highlights the importance of analyzing
HiChIP data with an appropriate method such as FitHiChIP,
which goes beyond the strongest loops (e.g., corners of loop
domains or TADs) and identifies, exclusively compared to
existing methods, a considerable number of Hi-C/ChIA-PET/
PCHiC supported loops or functionally validated interactions
from the literature. We strongly believe that FitHiChIP is a cri-
tical step towards thoroughly exploring the rich data from
HiChIP assay as it facilitates the data interpretation and provides
a standardized workflow for HiChIP data analysis.

Methods
Visualization of loops calls on Epigenome Browser. For all HiChIP data ana-
lyzed in this work, below are the session IDs for individual cell lines with all
relevant loop calls (HiChIP, Hi-C, ChIA-PET, PCHiC), which can be loaded in
Washington University Epigenome Browser [http://epigenomegateway.wustl.edu/
browser/]. After clicking the provided browser link, the user should input one of
these session IDs in the text box labeled Session bundle ID (bottom left), click
Retrieve session and then click Restore to visualize the tracks.

● GM12878 cohesin loop calls—Session ID: 787c9250-65fa-11e9-9623-
5f9c43c4cfff.

● GM12878 H3K27ac loop calls—Session ID: b491c3d0-65f7-11e9-b334-
5ff263937318.

● K562 H3K27ac loop calls—Session ID: 019e06b0-65f4-11e9-921c-
577d3df57445.

● Naive CD4+ T cells H3K27ac loop calls—Session ID: 19d21050-65f9-11e9-
a173-99425b87a4ba.

● mESC cohesin loop calls—Session ID: 7a47bff0-65fb-11e9-a36f-
5fdb22c1eda3.

● Differential analysis carried out on two replicates of GM12878 H3K27ac
HiChIP and three replicates of K562 H3K27ac HiChIP datasets—Session ID:
27845860-6573-11e9-822e-5db126207a24.

HiChIP datasets used from reference studies. We use published HiChIP data-
sets (Supplementary Table 1) from four cell types: GM12878, K562 and naive
CD4+ T cells (reference genome hg19); mouse embryonic stem cells (reference
genome mm9), with two different proteins or histone marks of interest (H3K27ac
and cohesin complex as profiled either by RAD21 or SMC1A antibody)5,19. For
each dataset, we downloaded the validpairs.txt.gz files for individual replicates and
analyzed the data either per replicate or after merging all replicates into a single file.

ChIP-seq data. For each HiChIP dataset, we downloaded the matching (cell type
and antibody) ChIP-seq data (peaks and coverage) either from ENCODE31 or GEO
(Supplementary Table 1).
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Estimation of statistical significance by FitHiChIP. FitHiChIP derives the
expected contact probability among any pair of interacting bins by: (1) modeling
the decay of contact probability with increasing genomic distance by a monotonic
spline fitting technique7, and (2) performing a regression between the observed
contact counts and the bias values of the interacting bins.

Equal occupancy binning: The distance decay model aims to estimate the
contact probability p between a pair of loci l1 and l2 at a genomic distance d= dl1 l2
by a function f(d). Suppose that N denotes the number of all possible (interacting
or zero count) locus pairs, and C is the total number of contacts between them. We
first sort these pairs by increasing genomic distance and then employ an equal
occupancy binning on the number of overall contacts C (i.e., the number of valid
read pairs within the desired range) such that each of the M bins (default= 200)
would approximately have C

M
contacts. For each individual equal occupancy bin

indexed by j (1 ≤ j ≤M), let nj be the number of locus pairs belonging to that bin

such that
PM

j¼1 nj ¼ N and Sj denote the sum of contact counts for these nj pairs of

loci, such that
PM

j¼1 Sj ¼ C. Then, each Sj �
C
M
because of equal occupancy binning

with some tie breaks in genomic distance sorting and the average number of

contacts per locus pair for bin j will be
Sj
nj
. We then translate this average into a prior

contact probability, pj, for each bin such that bin j is pj ¼
Sj=nj
C
. Further, let Dj be the

average interaction distance for all nj possible pairs of loci within the bin j. Using
the points (Dj, pj) for j= 1,…,M, FitHiChIP fits a univariate spline7 f, such that for
a given locus pair (l1, l2) with genomic distance d, the expected/prior contact
probability can be looked up from the spline fit as pl1 l2 ¼ f ðd ¼ dl1 l2 Þ.

Selection of the background model: For peak-to-all foreground (loops reported
if they have a peak on at least one side; default setting of FitHiChIP), FitHiChIP
uses one of two possible sets of locus pairs as background to perform the equal
occupancy binning and spline fitting. The first set uses all possible peak-to-all locus
pairs (L for loose) within each bin j, to define the values pj and Dj. The second set
uses only peak-to-peak loops (S for stringent) for each bin j and, hence, provides a
more stringent background with higher background probability pj (Supplementary
Fig. 2), leading to more conservative confidence estimates and a lower number of
significant loops.

Statistical significance estimation without bias regression: If no bias regression is
applied, let p be the prior contact probability for a particular locus pair (l1, l2)
looked up from the spline fit f. Then, probability of observing exactly k contacts
between this locus pair is computed via binomial distribution as7:

ProbðX ¼ kÞ ¼
C

k

� �

pkð1� pÞC�k: ð1Þ

The p value of observing k number of contacts between (l1, l2) is the cumulative
probability of observing k or more contacts between them:

PðX � kÞ ¼
X

C

i¼k

ProbðX ¼ iÞ ð2Þ

Finally, we correct the resulting p values for multiple testing using
Benjamini–Hochberg procedure32 to compute q values. A locus pair is deemed
significantly interacting if it has a q value ≤a given FDR threshold such as 0.01
(used in the current study; default in FitHiChIP).

Statistical significance estimation with bias regression: In order to correct for
coverage differences across different regions of the genome that may relate to
technical biases and differences in how these biases may relate to expected number
of contacts for different genomic distance regimen, we apply a bias regression on
each individual equal occupancy bin j (1 ≤ j ≤M) using one of the following ways to
compute bias values:

1. Coverage bias: Defined for a fixed-size genomic bin bj (e.g., 5 kb resolution) as
the ratio of its HiChIP coverage to the mean coverage of all the bins having
non-zero coverage values with the same peak status (bins overlapping ChIP-
seq peaks and those that do not are treated separately).

2. ICE bias: Computed per bin using a matrix balancing method such as iterative
correction (ICE)33, as re-implemented in HiC-Pro pipeline34, which treats all
genomic bins identically regardless of whether they overlap a 1D peak (i.e.,
enriched) or not.

For each equal occupancy bin j having nj locus pairs and average interaction
distance Dj, we define the following terms:

1. vector of observed contact counts Kj= {k1; k2; ¼ ; knj },
2. vector of bias (coverage or ICE) values B

j
1 for the first (smaller genomic

distance) interacting locus= {b1;1; b1;2; ¼ ; b1;nj },
3. vector of bias values B

j
2 for the second interacting locus= {b2;1; b2;2; ¼ ; b2;nj }.

Using the above definitions, FitHiChIP defines the following bias regression
model R for each bin j:

logðK jÞ ¼ RðlogðB
j
1Þ; logðB

j
2ÞÞ: ð3Þ

We use a linear regression model implemented by the R package MASS, which
minimized AIC (Akaike information criterion)35 among other options. Hence, the

above regression becomes:

logðK jÞ ¼ β
j
0 þ β

j
1 log gðB

j
1Þ þ β

j
2 logðB

j
2Þ; ð4Þ

where β
j
0;1;2 denote the regression coefficients with β

j
0 corresponding to the

intercept term.
After computing above regression for all such equal occupancy bins j (1 ≤ j ≤

M), the regression coefficients with respect to the average interaction distance
values per bin, Dj, are fitted a smoothing spline. Similar to the spline fitted to
contact probabilities when bias values are not used, these splines fβ0 , fβ1 , and fβ2 all

show a decreasing trend with increasing genomic distance, thereby eliminating the
need for explicitly modeling the change in contact probability with respect to
genomic distance (Supplementary Fig. 2).

Using these splines fitted to parameters learned from the regression model, we
then compute the expected contact count c′l1 l2 between a locus pair (l1, l2) with

genomic distance d and bias values (b1, b2) as:

logðc′l1 l2 Þ ¼ fβ0 ðdÞ þ fβ1 ðdÞlogðb1Þ þ fβ2 ðdÞ; logðb2Þ: ð5Þ

If C′ denotes the sum of expected contact counts for all pairs of loci considered, the
expected contact probability of (l1, l2) becomes p′l1 l2 = c′l1 l2=C′. We use this

probability p′ similar to FitHiC7 and as described in Eqs. (1) and (2) above, in a
binomial distribution to compute statistical significance estimates. In this study,
unless otherwise stated, we report peak-to-all interactions within a distance range
of 20 kb to 2Mb and use the bias correction model.

Merging filter for adjacent loops. Suppose a significant loop reported by
FitHiChIP or another method is represented by an ordered pair of interacting
fixed-size (here 5 kb) bins (x, y) where x < y. Two loops (x1, y1) and (x2, y2) are
adjacent if their constituent bins are either adjacent or equal, that is, |x1− x2| ≤ 1
and |y1− y2| ≤ 1. If we use a 2D contact matrix to represent all possible pairs of
bins, and denote a significant loop between two bins x and y as a nonzero entry in
location (x, y), the problem of finding a set of mutually adjacent loops reduces to
finding non-trivial connected components of a graph using the 8-connectivity
rule36. We have used Python package networkx37 to find such components/clusters
of adjacent statistically significant loops. For each such component, we extract a
subset of loops that are likely representatives of direct interactions (with remaining
loops as likely bystanders) in order to improve specificity of our loop calls mainly
for regions with large number of adjacent loop calls. A trivial approach is to simply
report one loop per connected component that has a minimum p value (denoted as
MIN approach). However, such an approach has the obvious downside of elim-
inating meaningful interactions when multiple independent and direct loops fall
into the same component. Therefore, we employ an iterative merging approach to
select a subset S from the set of loops K (|S| < |K|) within a connected component.
In each iteration, we select the current most significant loop l within K (based on
the statistical significance value, or contact count, or any other loop scoring
method), and include this loop in the set S if and only if l does not belong within
W= B × B (in terms of bins) neighborhood of any loop already in S. We use
recovery plots to test multiple values for B (2, 5, and 10) and select the number that
performs best in terms of specificity (Supplementary Fig. 7). Unless otherwise
stated, we use W= 2 × 2 when merging filter is applied to the results of FitHiChIP
and that of existing methods.

Running hichipper (version 0.7.5). Base output directories of HiC-pro pipeline,
upon excluding the file rawdata_allValidPairs, are provided as the input to
hichipper. When using hichipper with reference ChIP-seq peaks, we use the fol-
lowing options: –min-dist 20000 –max-dist 2000000 –skip-background-correction
–skip-diffloop –skip-resfrag-pad –skip-qc –make-ucsc. When we use peak calling by
hichipper we set peaks: EACH,SELF option in the configuration file, and employ
the options –min-dist 20000 –max-dist 2000000 –skip-diffloop –make-ucsc –keep-
temp-files during execution. Since the output loops of hichipper do not have fixed-
size bins, for a fair comparison with our method, we map the midpoint of each
interacting bin of hichipper to the overlapping bin (5 or 2.5 kb depending on the
bin size considered). For 5 kb bins, because most hichipper loops are between bins
of size <5 kb, this process results in duplicate loop calls for which we then elim-
inate. Note that this conversion reduces the overall number of hichipper calls and
given that it suffers from low specificity in capturing reference sets of loops (all of
which are also in fixed-size bins), the reduction is likely to help hichipper with
specificity issues with no loss in sensitivity. As the default configuration, hichipper
only reports loops with a PET count (last column) of at least two14. We also use a
more stringent filter of at least 12 PET counts for comparison purposes at the
request of a reviewer.

Merging adjacent hichipper loops. We test the utility of our merging filter to
reduce the set of reported loops on the results of hichipper. This corresponding
method is denoted by hichipper+M. The loops from hichipper are sorted
according to decreasing PET count and a window of 2 × 2 bins is used similar to
that used for FitHiChIP results.
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Running MAPS. For individual replicates (.fastq.gz reads) of a given cell type, we
have executed MAPS with reference ChIP-seq peaks (same as those used for
executing FitHiChIP and hichipper) with the following parameters: bin_size=
5000; fdr= 2; filter_file= “None”; generate_hic= 0; mapq= 30; length_cutoff=
1000; threads= 4; per_chr= ‘True’. In addition, for loop calling, we use the option
–BINNING_RANGE 2000000 to call loops up to 2Mb distance, a threshold used in
the current study for all methods. After executing MAPS for individual replicates,
we have provided their respective alignment directories to MAPS to generate loops
from the combined replicates.

Using MAPS and hichipper loop calls from MAPS source data. For both
cohesin and H3K27ac HiChIP data from GM12878, we downloaded the loop calls
readily made available by MAPS16 under their source data file (Supplementary
Data S1 —ZIP). As these loops were called using a distance threshold of 1Mb and
only for autosomal chromosomes, we filtered FitHiChIP loop calls as well as the
reference datasets similarly for comparison.

Inferring 1D peaks from HiChIP data. We have tested different combinations of
following four sets of reads for 1D peak calling from reads generated by HiChIP:
(1) dangling end (DE), (2) self-cycle (SC), (3) re-ligation (RE), and (4) CIS short-
range (<1 kb) valid (V) reads (after duplicate removal)38. For each set of reads, we
use MACS215 with the following parameters: -q 0.01 –extsize 147 –nomodel (default
in hichipper14) to infer corresponding set of peaks.

Comparing HiChIP 1D peak calls to ChIP-seq peaks. We evaluate the output
peak sets inferred either by different groups of reads by FitHiChIP or by hichipper
with or without its specific background correction for restriction sites by com-
puting their overlap with peaks inferred from matching ChIP-seq data. We com-
pute the overlap between peak calls by allowing 1 kb slack (as used in hichipper14).
We also compute the overlap at the level of 5 kb bins in order to assess the potential
impact of different peak calls in labeling 5 kb bins as peak or non-peak bins.

Overlap between a pair of loops. Unless otherwise specified, we have used a
slack/extension of 5 kb (+ or − one bin on each side) on both loop sets to compute
overlap between a pair of loops. We apply this slack after mapping hichipper, and
ChIA-PET loops to the 5 kb bin (or 2.5 kb for hichipper loops during the com-
parison with 2.5 kb FitHiChIP loops); they most overlap on each side as these
methods generally report loop calls with lower than 5 kb in size on each end. For
HiCCUPS, which reports a mix of 5 and 10 kb resolution loops, we apply the 5 kb
slack regardless of the resolution. Note that this gives slight advantage to HiCCUPS
in recovery plots since its 10 kb resolution loops will be padded into 20 kb total on
each end, whereas all other methods with 5 kb bins will have 15 kb regions on each
end for overlap computation. When reporting the percentage of overlap among
different sets of loop calls using non-exact overlap (5 kb slack), we report the
overlapping and exclusive loops separately with respect to each individual set. For
the comparison of 2.5 and 5 kb loop calls from FitHiChIP, we do not use any slack
and require that both loop anchors of the 2.5 kb call are strictly contained within
the anchors of a 5 kb loop call to deem the two as overlapping.

Recovery of in situ Hi-C HiCCUPS loops. HiCCUPS loops for K562 and
GM12878 in situ Hi-C data3 are obtained from Gene Expression Omnibus:
GSE63525 (files GSE63525_K562_HiCCUPS_looplist.txt.gz and
GSE63525_GM12878_primary+ replicate_HiCCUPS_looplist.txt.gz). We retain
only the HiCCUPS loops that have a genomic distance between 20 kb and 2Mb
and ask what fraction of them are recovered when an increasing number
(decreasing stringency) of loops are predicted by FitHiChIP or other methods. We
compute the overlap (successful recovery) with 5 kb slack as described above.

Recovery of HiChIP HiCCUPS loops. We obtain the HiCCUPS loops computed
on the published HiChIP datasets (Supplementary Table 3)5,19. Aside from using
HiCCUPS calls on HiChIP data for comparison purposes, due to high specificity of
HiCCUPS calls, we also use them as a reference set and compute the recovery of
such calls when comparing other methods or experiments to each other as
described above. When used as a reference set, we retain only the HiCCUPS
HiChIP loops that have a genomic distance between 20 kb and 2Mb and overlap
with a peak bin as assigned by reference ChIP-seq data on at least one side.

Recovery of ChIA-PET loops. We obtain the ChIA-PET loops calls from two
previous studies (Supplementary Table 4)20,39. After binning at 5 kb resolution and
removing duplicates, we compute the recovery of ChIA-PET loops with a genomic
distance and peak overlap filter as described for HiChIP HiCCUPS loops above.

Recovery of common loops between HiCCUPS and ChIA-PET. We obtain the
common loops between a reference set of HiCCUPS loops (either HiChIP HiC-
CUPS loops provided in refs. 5,19 or in situ Hi-C HiCCUPS loops provided in reg. 3)
and a reference set of ChIA-PET loops20,39 subject to a slack of 5 kb. The common

loops are binned at 5 kb resolution. The recovery analysis for these loops is carried
out with similar genomic distance and peak overlap filters as mentioned above.

Recovery of PCHiC loops. Similar to other data types described above, we also use
PCHiC loop calls to evaluate existing methods. We obtain PCHiC loop calls for
naive CD4+ T cells (Supplementary Table 5)40 that are computed with CHi-
CAGO25. We keep loops with a CHiCAGO score of ≥5, and within the distance
range of 20 kb to 2Mb. As PCHiC loops involve promoter segments in at least one
end, we use only the promoter-specific loops (loops whose at least one end falls
within 5 kb of a reference TSS site) of FitHiChIP or hichipper, for computing
recovery of reference PCHiC loops.

Applying FitHiChIP on PCHiC dataset. To validate the applicability of FitHiChIP
on PCHiC data, we have downloaded PCHiC dataset on GM12878 cell line25

(GEO: GSE81503). The dataset consists of three biological replicates, which have
one, three, and two technical replicates, respectively. The.fastq.gz files for these
replicates are merged together, and subsequently processed through HiC-Pro
pipeline (version 2.9.0)34, which aligns the reads by Bowtie241 (version 2.3.3.1) with
respect to reference genome hg19, assigns to the HindIII restriction fragments,
filters by their orientation38, and de-duplicates using Picard42. FitHiChIP uses
these valid read pairs together with the bait design file of the PCHiC array as peak
calls similar to CHiCAGO25.

For comparison, we download the CHiCAGO significant loops (score ≥5) for
this GM12878 PCHiC dataset from the same GEO repository and ask whether the
PCHiC loop calls from FitHiChIP or CHiCAGO better recover loops called from
GM12878 in situ Hi-C data by HiCCUPS.

Aggregate peak analysis. We use Hi-C contact maps (binned at 5 kb) for
GM12878 and K562 cell lines3 that are normalized by ICE33 to perform APA
analyses of loop calls by different methods on HiChIP data or calls from other
experiments such as Hi-C, ChIA-PET, and PCHiC. For each called loop, APA
extracts the normalized Hi-C contact counts of all locus pairs 50 kb up- and
downstream, which corresponds to a matrix of 21 × 21 dimensions for 5 kb reso-
lution. It then aggregates these small matrices centered on each individual loop call
to generate an aggregate heatmap and to compute several enrichment scores11).
The APA score displayed on top of each of plot is the ratio of the central pixel and
the mean of pixels 15–30 kb downstream of the upstream loci and pixels 15–30 kb
upstream of the downstream loci. The symbol R shown at the center of each APA
plot is the ratio of the central element to the rest of the elements in the 21 × 21
matrix extracted from Hi-C data. The corner-specific APA score displayed at each
corner of each APA plot is the ratio of central element to the mean of individual
corner regions defined as 10 kb offset from boundary elements in both up- and
downstream loci. True looping (highly significant) interactions are expected to
have higher contact counts compared to neighboring bins and, hence, higher APA
scores indicate that corresponding loops are highly supported by Hi-C data. For
visualization purposes, APA considers loops within distance range 150 kb–1Mb11.

As the number of FitHiChIP or hichipper loops are substantially higher than
reference HiCCUPS or ChIA-PET loops, we use top-k HiChIP loops (determined
by higher statistical significance) for APA analysis, where k is the number of loops
reported by the more stringent method, which is either HiCCUPS or ChIA-PET.
Also, since HiCCUPS loops for several datasets come with a mix of 5 and 10 kb
resolution calls, when dealing with 10 kb loops in APA plots, we pick the 5 kb bin
on each side that has the smaller coordinate.

APA scores for overlapping and exclusive loops. Let k be the number of
reference loops (HiCCUPS or ChIA-PET) within the distance range 150 kb–1Mb.
We then select the top-k loops in terms of higher statistical significance from
FitHiChIP within the same distance range and compute their overlap with the
reference set of loops, by allowing a slack of 5 kb. We then perform the APA
analysis for loops that overlap and for those that are exclusive to one method or
the other.

Overlap between HiChIP and Hi-C loop calls. In order to find what fraction of
the loops we identify from HiChIP data by different settings of FitHiChIP or by
existing methods, are also identified from Hi-C data, we employ two different
significance calling methods to Hi-C data. We use HiCCUPS3 as a stringent
method with high specificity (results downloaded from the datasets5,19 mentioned
in Supplementary Table 3). We also apply FitHiC7, a more lenient method with
higher sensitivity, on the in situ Hi-C datasets of GM12878 or K562 cell lines at 5
kb resolution. We then use these two reference sets of Hi-C loops to compute
overlap with loops called from HiChIP data. Loop overlap is computed by allowing
5 kb slack.

CTCF motif orientation analysis. To find the CTCF motif orientation of the
GM12878 cohesin HiChIP loops generated either by FitHiChIP or the competing
methods, we have used the hg19 CTCF peaks provided in ENCODE [encode-
project.org/experiments/ENCSR000DZN (file ENCFF710VEH.bed). The routine
motifs of Juicer tool43 [https://github.com/aidenlab/juicer] was applied on the input

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11950-y

12 NATURE COMMUNICATIONS |         (2019) 10:4221 | https://doi.org/10.1038/s41467-019-11950-y | www.nature.com/naturecommunications

https://github.com/aidenlab/juicer
www.nature.com/naturecommunications


set of HiChIP loops. Loops having CTCF motif information (either + or −) in both
interacting bins were only considered, from which we computed the frequency and
percentage of loops with convergent, divergent, and tandem orientation CTCF
motif pairs.

Simulating HiChIP data from Hi-C and ChIP-seq. Using coverage values of each
5 kb genomic bin (bedtools coverage) from reference ChIP-seq data (Supplementary
Table 1), we simulate HiChIP maps by non-uniformly sampling Hi-C contacts
such that the resulting row/column sums correspond to the vector of computed
ChIP-seq coverage values. Let us denote this vector by V and denote the intra-
chromosomal Hi-C contact map for chromosome 1 of GM12878 at 5 kb resolu-
tion3 as a symmetric non-negative matrixM0. The objective is to transformM0 into
a matrix Mt whose row and column sums (corresponding to the coverage values of
individual bins) emulate the 1D coverage in V after t iterations. We implement the
iterative optimization algorithm provided in44,45. First we define the following
notations:`

1. M0[i, j]= contact count of the input Hi-C intra-chromosomal matrix,
between bins i and j.

2. Mt[i, j]= contact count of the output Hi-C intra-chromosomal matrix,
between bins i and j, at the iteration t.

3. V[i]= reference ChIP-seq coverage of ith bin.
4. Mt[i,]= row sum for bin i with respect to the matrix Mt.
5. Mt[,j]= column sum for bin j with respect to the matrix Mt.

The algorithm performs in alternate iterations, row- and column-wise scaling of
the input matrix M:

● In the row-wise scaling, Mt[i,]=
Mt�1 ½i;� ´V ½i�
P

8i
Mt�1 ½i;�

.

● In the column-wise scaling, Mt[,j]=
Mt�1 ½;j� ´V ½j�
P

8j
Mt�1 ½;j�

.

This algorithm has been previously proven to converge to the desired coverage
distribution V44,45. In our implementation, convergence is declared if either the
number of iterations t reaches 500 or the sum of difference between matrices at
consecutive iterations becomes less than a predefined threshold ε. For both
GM12878 cohesin and H3K27ac-simulated HiChIP datasets, we obtain >0.995
correlation between the row (or column) coverage vector of the resulting matrixMt

and the ChIP-seq coverage vector V. Finally, entries inMt are then further scaled to
have the sum of contact counts equal to that of the real intra-chromosomal HiChIP
contact matrices (for chromosome 1) of GM12878 cohesin or H3K27ac (merged
replicates; mentioned in Supplementary Table 1). The scaled contact matrix is then
used for loop calling by applying FitHiChIP(L) with peak-to-all foreground and 20
kb to 2Mb genomic distance range.

In order to achieve randomization in simulated HiChIP matrices, we randomly
shuffle the ChIP-seq coverage values in V before the iterative optimization. We
perform five different random shuffling of V to generate five simulated maps.
While reporting simulation results, we present the average value across these five
shuffled maps.

Overlap of the loop calls from simulated (either shuffled or not) HiChIP
datasets with respect to other loop calls is computed similar to real HiChIP data.
Briefly, loops within a distance range of 20 kb to 2 Mb on each side are considered
and the overlap is computed with a 5 kb slack with respect to each individual set
involved in the analysis.

Differential analysis of HiChIP loops. In this work, two replicates of GM12878
H3K27ac and three replicates of K562 H3K27ac HiChIP data19 are used to
showcase our differential analysis pipeline. First, edgeR26,27 using the functions
estimateDisp and exactTest with default parameters is applied to the union set of all
peak-to-all locus pairs with non-zero contact count in at least one out of the five
replicates (20 M pairs). The results from edgeR are further filtered using an FDR of
5% and an absolute fold change >2, in order to get all significant differences. We
refer to this set as differential contact enrichments. These differential calls are then
further segregated into five different groups with respect to cell type-specific dif-
ferences in the underlying ChIP-seq signal (ENCODE31) for each end. This is
achieved by first classifying each 5 kb bin (total 619,150 bins) using the difference
between ChIP-seq coverage values of GM12878 and K562 H3K27ac, which are
scaled to have an equal overall coverage. This classification involves application of
edgeR with default parameters and an FDR of 5% to the scaled coverage values as
well as taking the difference between the two signals. As a result, each bin is
assigned to either one of the following three categories:

1. HD (high difference): Significant difference (edgeR) of ChIP coverage between
two categories.

2. ND (no difference): Non-differential bins with <25% difference of ChIP
coverage between GM12878 and K562.

3. LD (low difference): All the remaining bins which, by definition, are non-
differential but have ≥25% difference of ChIP coverage.

Using these three bin-level categories, five different locus pair-level categories
for differential calls are created as follows: (1) ND–ND, (2) LD–ND, (3) LD–LD,
(4) HD–LD/ND, and (5) HD–HD.

To further improve the specificity of differential calls, for each of the above-
described categories, only the differential contact enrichments overlapping with
statistically significant loops (using FitHiChIP(S) with an FDR of 1%) in at least
one replicate of one cell type are extracted, which are referred to as differential
loops. This overlap with loop calls enforces higher stringency and, accordingly,
greatly reduces the number of reported differences. These differential loops are
further filtered for subsets that are exclusive to either GM12878 or K562 (i.e.,
significant in at least one replicate of one cell type and none of the other).

For comparison of different sets of differential loops with respect to support
from HiChIP data, merged HiChIP replicates of GM12878 and K562 H3K27ac
HiChIP data are used to create APA plots for differential calls exclusive to (or up
in) each cell type. The distribution of differences in underlying ChIP-seq coverage
values are plotted and compared against the null hypothesis that the mean absolute
difference is <5% using one-sample t test (R function t.test) with a p value threshold
of 1e−6, in order to highlight differences across the three groups of differential
loops considered. To find out the difference between cell-specific Hi-C contact
counts corresponding to differential loop calls, GM12878 (primary+ replicate) and
K562 (primary) Hi-C datasets are utilized after scaling the two Hi-C matrices to
have an equal sum. The log 2 fold change of K562 contact counts divided by that of
GM12878 are plotted for each of the three groups and one-sample t tests are
conducted to test whether the mean of each distribution is equal to zero (p value
threshold of 1e−6).

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The publicly available data sets analyzed in this study are summarized in the
Supplementary Tables 1–5 with accession IDs and references. The description of source
data underlying all main and Supplementary Figs. is provided as a Source Data file. The
actual source data, as summarized by this Source Data file, are provided and archived on
Zenodo [https://doi.org/10.5281/zenodo.3255048].

Code availability
Source code for FitHiChIP, along with its README and execution instructions are
available at https://github.com/ay-lab/fithichip. We also provide a code capsule for
FitHiChIP on Code Ocean [https://codeocean.com/capsule/290e862d-0319-44e9-b192-
d13eb394126b].
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