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Long-term cigarette smoking causes various human diseases, including respiratory disease, cancer, and gastrointestinal (GI)
disorders. Alterations in gene expression and variable splicing processes induced by smoking are associated with the
development of diseases. This study applied advanced machine learning methods to identify the isoforms with important roles
in distinguishing smokers from former smokers based on the expression profile of isoforms from current and former smokers
collected in one previous study. These isoforms were deemed as features, which were first analyzed by the Boruta to select
features highly correlated with the target variables. Then, the selected features were evaluated by four feature ranking
algorithms, resulting in four feature lists. The incremental feature selection method was applied to each list for obtaining the
optimal feature subsets and building high-performance classification models. Furthermore, a series of classification rules were
accessed by decision tree with the highest performance. Eventually, the rationality of the mined isoforms (features) and
classification rules was verified by reviewing previous research. Features such as isoforms ENST00000464835 (expressed by
LRRN3), ENST00000622663 (expressed by SASH1), and ENST00000284311 (expressed by GPR15), and pathways (cytotoxicity
mediated by natural killer cell and cytokine–cytokine receptor interaction) revealed by the enrichment analysis, were highly
relevant to smoking response, suggesting the robustness of our analysis pipeline.

1. Introduction

Tabaco smoking is among the leading causes of premature
mortality in the world, and this condition can be avoided
[1]. It has been demonstrated to be associated with human
diseases such as respiratory disease, cardiovascular, cancer,
and gastrointestinal (GI) disorders [2–5]. According to the
World Health Organization (WHO), smoking causes over
US$500 billion economic loss globally annually.

Although cigarette smoke is deemed as the main risk
factor for chronic obstructive pulmonary disease, which

increases oxidative stress in the airway epithelium, the path-
ogenesis of most smoking-induced diseases has not been fully
determined [5]. A recent article systematically reviewed pre-
vious studies on smoking-associated DNA methylation and
the alteration of gene expression in human blood samples,
in which 1,758 genes with differentially methylated sites
and differentially expressed genes between smokers and non-
smokers were reported [6]. Therefore, gene expression alter-
ations are important for smoking response. Considering that
alternative splicing is applied by up to 95% of human genes
for producing proteins with different functions, a recent
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study has focused on identifying smoking-associated iso-
forms and found that 3′ UTR lengthening was widely associ-
ated with cigarette smoking [7, 8]. A total of 945 differentially
expressed isoforms were identified in this study by using the
classic statistic method. Machine learning could be applied
without preexisting knowledge to analyze RNA-seq data
and deal with a large number of variables in a much smaller
sample size [9].

In the present study, we applied the Boruta [10] and four
feature ranking algorithms to identify the isoforms with
important roles in distinguishing smokers from former
smokers based on the expression data of 85,437 isoforms
on current and former smokers collected in the previous
study [8]. The incremental feature selection (IFS) method
[11] was employed to further analyze the results yielded by
above methods for extracting optimal features, building effi-
cient classification models, and interesting classification
rules. The literature review and further comparison of these
features identified by four feature ranking methods demon-
strated strong biological relevance of these features (iso-
forms) with smoking response.

2. Materials and Methods

2.1. Data. The RNA-seq data in whole-blood samples on 454
current and 767 former smokers were accessed from the
Gene Expression Omnibus (GEO) database under the acces-
sion number GSE171730 [8]. We separated the samples into
two classes based on their smoking history: current smokers
and former smokers. Each sample contains 85,437 transcript
features. Such data was deeply analyzed by investigating a
binary classification problem containing two classes (current
smokers and former smokers) and 85,437 features. The pur-
pose of this study was to discover essential transcript fea-
tures that can classify smokers and reveal different patterns
for current and former smokers.

2.2. Boruta Feature Filtering. As lots of features were
involved for each smoker sample and only a few of them
have strong associations with smoke, the irrelevant features
should be screened out first and excluded. Here, we selected
the Boruta method [10, 12, 13] to complete this task.

The Boruta is a feature selection method using random
forest (RF), which can be used to confirm whether original
features are statistically more important than the random
features in the prediction. Given a dataset, the Boruta first
generates a random feature for each original one. Its values
are produced by shuffling numbers under the original fea-
ture. RF is performed on such extended dataset to evaluate
the importance of all original and random features. Original
features with importance remarkably better than the highest
importance on random features are labelled as confirmed,
while those that perform worse are categorized as rejected.
Confirmed features are excluded from the dataset, and the
updated dataset is put into the next round. After a number
of rounds, features in the rejection region are dropped, and
confirmed features in each round are kept. Unlike wrapper
approaches, which try to locate some powerfully relevant

features, the Boruta chooses features that are strongly or
weakly important to achieve the best classification accuracy.

The Boruta program downloaded from https://github
.com/scikit-learn-contrib/boruta_py was used in the present
study for analyzing the RNA-seq data. Default settings were
adopted.

2.3. Feature Ranking Algorithms. Relevant features were
selected by the Boruta method. However, their contributions
for prediction were not the same. To clearly classify features
with their importance, four feature ranking algorithms were
employed, including max-relevance and min-redundancy
(mRMR) [14], Monte Carlo feature selection (MCFS) [15],
light gradient boosting machine (LightGBM) [16], and least
absolute shrinkage and selection operator (LASSO) [17]. As
each algorithm has its own defects and merits, the bias may
be produced by only using one feature ranking algorithm.
Each algorithm can give a part of contributions for discover-
ing essential features. A full and systemic evaluation on fea-
tures can be obtained by the usage of different algorithms. A
brief description on these algorithms was as below.

2.3.1. Max-Relevance and Min-Redundancy. The mRMR
algorithm aims at determining the feature subset that has
the highest correlation with the target variable and the low-
est correlation between the features in this set [14, 18–21].
mRMR uses mutual information to quantify feature-target
and feature-feature correlations. However, it is difficult to
obtain such feature subset. mRMR adopts a heuristic way
to generate a feature list, which is constructed by repeatedly
choosing one feature with trade-off on maximum correlation
to the target variable and minimum redundancy to features
that have been chosen. Such list was termed as mRMR fea-
ture list. We utilized the mRMR tool retrieved from Han-
chuan Peng’s web (http://home.penglab.com/proj/mRMR/
in this work), which was run under default parameters.

2.3.2. Monte Carlo Feature Selection. MCFS is a method for
ranking features by randomly selecting features to build
multiple decision trees [15]. It is commonly used to process
biological data [22–24]. In the present research, m transcript
features are chosen at random to build t classification trees
for s times. Each tree is trained and tested using randomly
selected training and test data from the entire dataset. As a
result, s × t classification trees are built. The relative signifi-
cance (RI) of a given feature g is assessed based on how
many trees select this feature and how much it contributes
to prediction:

RIg = 〠
st

τ=1
wAccð Þu 〠

ng τð Þ
IG ng τð ÞÀ Á no:in ng τð Þ

no:in τ

� �v

, ð1Þ

where wAcc is the weighted accuracy, IGðngðτÞÞ represents
the information gain (IG) of node ngðτÞ, (no:inngðτÞ)
denotes the number of samples in node ngðτÞ, and ðno:in τÞ
stands for the number of samples in the tree root. u and v
are two parameters. In this study, we used the MCFS program
obtained from http://www.ipipan.eu/staff/m.draminski/mcfs
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.html, which was performed with default parameters. The list
generated by MCFS was called the MCFS feature list.

2.3.3. Light Gradient Boosting Machine. LightGBM algorithm
is an ensemble method using gradient boosting framework. It
improves the gradient boosting decision tree and has the
advantages, such as high efficiency, support for parallelism,
low GPU memory consumption, and large-scale data pro-
cessing [16]. LightGBM can estimate the feature importance
based on the times appearing in the ensemble trees, and the
high frequency indicates the importance of the feature. The
study adopted the program of LightGBM (https://lightgbm
.readthedocs.io/en/latest/) in Python, and we ran it with
default parameters. For an easy description, the list produced
by LightGBM was described as the LightGBM feature list.

2.3.4. Least Absolute Shrinkage and Selection Operator. In
1996, Robert Tibshirani proposed a new feature selection
technique called the minimum absolute compression method
or LASSO [17]. It employs the L1 paradigm to develop a
penalty function, which can selectively eliminate features by
assigning a higher penalty on features with higher coefficients
and greater prediction errors, leading to a model with fewer
features and that effectively reduces overfitting. Clearly,
features with high coefficients do not contribute favorably
to the prediction and should be scaled down. Consequently,
features can be ranked according to their coefficients. In this
study, the LASSO package collected in the scikit-learn was
adopted, which was performed using its default parameters.
Likewise, the list derived by LASSO was called the LASSO
feature list.

2.4. Incremental Feature Selection. The feature ranking algo-
rithms only sorted features in lists. It was still a problem for
the selection of essential features. Therefore, the IFS method
was employed to determine essential features from each list
based on given classification algorithms [11], which can be
further used to build the efficient classification models
[25–28]. From each feature list, the IFS method first divides
the feature list into n feature subsets whose feature numbers
differ by 1 in turn. Subsequently, various feature subsets
were then used to construct the models using a single classi-
fication algorithm, and the effectiveness of classification was
assessed using tenfold cross-validation [29]. The optimal
model can then be identified based on its performance. In
addition, features employed in best model were referred to
as the optimal features.

2.5. Synthetic Minority Oversampling Technique. In the
investigated data, former smokers were 1.7 times as many
as current smokers. It was not a balanced dataset, which
may produce bias in a model that is built directly based on
it. In view of this, we employed the powerful oversampling
algorithm, synthetic minority oversampling technique
(SMOTE) [30, 31], to tackle this problem. To equalize the
distribution of data among various classes, this method syn-
thesizes new samples of a minority class. It selects one sample
from the minority class as a seed sample and then randomly
chooses one of its k closest neighbors. The following is the
synthesis equation:

s = x + β x − yð Þ, ð2Þ

where x stands for the coordinates of the seed sample in the
Euclidean space, y represents the coordinates of a randomly
selected k-nearest neighbor of x, and β is an arbitrary number
between 0 and 1.

Here, the SMOTE program reported at https://github
.com/scikitlearn-contrib/imbalanced-learn was used. The
default parameters were applied to run the program.

2.6. Classification Algorithm. The IFS technique required the
use of at least one classification algorithm to construct the
model on each feature subset. Four classification algorithms
were used in this instance: the decision tree (DT), the ran-
dom forest (RF), the k-nearest neighbor (KNN), and the
support vector machine (SVM) [32–35]. These classification
algorithms are theoretically sound and are widely used in
machine learning.

2.6.1. k-Nearest Neighbor. KNN is a classic classification
algorithm. For a test sample, k training samples that are
nearest to the test sample are chosen based on a distance
metric, and the class of the test sample is established based
on the classes of these k training samples.

2.6.2. Random Forest. RF constructs many DTs to form a
forest by using bootstrap aggregation. Besides the sample
selection, features are also randomly selected when con-
structing each DT. When classifying a sample, each tree
makes a prediction, and the class with the highest votes is
considered the final decision of RF.

2.6.3. Support Vector Machine. SVM is a powerful classifica-
tion algorithm. According to the distributions of training
samples, it finds the optimal hyperplane for classifying sam-
ples in different classes. In many instances, it is difficult to
build such a hyperplane in the original feature space. In
order to map samples into a new space with a higher dimen-
sion, where the hyperplane is simple to construct, the kernel
approach is used. We can establish its class based on which
side of the hyperplane it is on.

2.6.4. Decision Tree. DT is a relatively simple classification
algorithm that is utilized as a predictive model in medical
diagnostics and biomarker screening [36]. Different from
above three algorithms, the classification principle is much
easier to be understood, which is the greatest merit of DT.
By learning training samples, a tree is built. Such tree gives
a completely open procedure for classifying test samples.
This provides opportunities to figure out its classification
principle. Thus, it is deemed as a white-box algorithm. A
set of rules can also be used to represent DT in addition to
its tree-like structure. Each rule shows a route from the root
to a single leaf. For various classes, these rules can suggest
multiple patterns.

In this study, the above algorithms are implemented by
using the scikit-learn package written in Python [37].

2.7. Performance Evaluation. F1-measure is the primary
metric utilized in this study to assess how well classification
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models perform [38–40]. In fact, it is computed by combin-
ing the values of precision and recall. It indicates that the
model is good when the F1-measure is high. These measure-
ments can be calculated as follows:

F1 −measure =
2 × recall × precision
recall + precision

,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

ð3Þ

where true positive (TP) is the number of positive samples
that are correctly labelled as positive samples, false positive
(FP) is the number of negative samples that are incorrectly
labelled as positive samples, and false negative (FN) indi-
cates the number of positive samples that are mistakenly
labelled as negative samples.

Besides, the following measurements are also widely
used for binary classification, including sensitivity (SN),
specificity (SP), accuracy (ACC), and the Matthews correla-
tion coefficient (MCC), where SN is same as recall, and
others can be computed by

Specificity =
TN

TN + FP
,

ACC =
TP + TN

TP + FP + TN + FN
,

MCC =
TP × TN − FP × FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp ,

ð4Þ

where TP, FP, and FN are same as those in the above para-
graph and TN indicates the number of negative samples that
are correctly labelled as negative samples. They were also
provided in this study to display a more complete evaluation
on different models.

2.8. Functional Enrichment Analysis. Through the above
machine learning algorithms, some essential features (tran-
scripts) can be screened out. These transcripts were con-
verted to the corresponding genes via “bitr” from the
clusterProfiler package in R [41]. Then, the enrichment anal-
ysis of gene ontology (GO) terms and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways was performed on
these genes. The FDR, used to adjust the p value, was picked
up as the key indicator for selecting enriched GO terms and
KEGG pathways. Its cutoff was set to 0.05.

3. Results

In the current study, we developed a computational pipeline,
which combined some feature analysis methods with the
classification models, to investigate the RNA-seq data of
two kinds of smokers. Figure 1 shows the entire procedures.
The detailed results were displayed in this section.

3.1. Results of Feature Selection Methods. The 85,437 original
transcript features were first filtered using the Boruta. 370
features were screened out, which were deemed to be
highly correlated with the target variables. Subsequently,
the 370 transcript features were ranked using four feature
ranking algorithms, resulting in four feature lists (mRMR,
MCFS, LightGBM, and LASSO feature lists), which are
shown in Table S1. In Discussion, we performed a biolog-
ical analysis of some top-ranked features yielded by four
ranking algorithms.

3.2. Results of IFS Method and Feature Intersection. Four fea-
ture lists were obtained by using four feature ranking algo-
rithms. Each of them was fed into the IFS computational
framework and processed in the same manner. First, 370
feature subsets were generated, each containing a few of
the most prominent features from the original feature list.
One of the four classification algorithms listed in Classifica-
tion Algorithm was used to build a model for each feature
subset, and it was then tested using tenfold cross-
validation. The model’s performance was mainly measured
by F1-measure. To display how the performance changed
with different feature subsets, an IFS curve was created. All
these curves under various feature lists and classification
algorithms are shown in Figures 2–5, and the detailed per-
formance is listed in Table S2.

For the IFS results on the mRMR feature list, Figure 2
shows the performance of four classification algorithms
under various feature subsets. It can be shown that when
the top 309, 49, 215, and 341 features in the mRMR feature
list were adopted, DT, KNN, RF, and SVM produced the
greatest F1-measure values of 0.766, 0.796, 0.840, and
0.852. These features made up the best feature set for the
corresponding classification algorithm and can be used to
create the best classification models. Table 1 lists the specific
overall performance of these models, including ACC, MCC,
and F1-measure, while Figure 6(a) illustrates other measure-
ments (SN, SP, and precision). Clearly, the optimal SVM
model provided the best performance among all optimal
models. Thus, we set its optimal features (top 314 features
in the mRMR feature list) as the optimal features extracted
from the mRMR feature list.

For the IFS results on the MCFS feature list, the IFS
curves are illustrated in Figure 3. With the same argument,
the RF model using top 145 features yielded the best perfor-
mance according to Figures 3 and 6 and Table 1. These 145
features constituted the optimal features extracted from the
MCFS feature list.

Referring to the IFS results on the rest feature lists
(LightGBM and LASSO feature lists), we can conclude that
RF model with top 22 features in the LightGBM feature list
and SVM model with top 369 features in the LASSO feature
list provided the highest performance, refer to Figures 4–6
and Table 1. These features made up the optimal feature sets
derived from the above two feature lists.

With the above analysis, four optimal feature subsets
were obtained from four feature lists. The Venn diagram
was plotted to show the relationships between them, as illus-
trated in Figure 7. Detailed intersection results of four
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optimal feature subsets are shown in Table S3. We can see
that 15 transcript features occurred in all four optimal
feature subsets, which were deemed to be highly associated
with smoking and would be analyzed biologically in the
subsequent discussion section.

3.3. Classification Rules. According to the results listed in the
above section, DT generally yielded the lowest performance.
However, it can offer more insights than other three classifi-
cation algorithms as it is a white-box algorithm. Thus, DT
was picked up again in this section. The IFS findings show
that the numbers of optimal features for DT on mRMR,
MCFS, LightGBM, and LASSO feature lists were 309, 64,

32, and 370, respectively. We used these features to represent
all smoker samples, and DT was applied to such data for
generating four trees. From these trees, four sets of classifica-
tion rules were accessed, as shown in Table S4. The numbers
of rules used to distinguish two types of samples in each set
of rules are shown in Figure 8. The detailed analysis of the
rules that can distinguish the two classes with the largest
number of samples would be provided in Discussion.

3.4. Results of Enrichment Analysis. Four optimal feature
subsets extracted from four feature lists were merged into
one set, resulting in 370 features. The corresponding genes
to the transcripts in the merged set were picked up for

454
current
smokers

767
former

smokers

85,437

transcript features

Feature list

Feature subsets

SMOTE

DT RF

KNN SVM

Essential genes

Efficient classification
models

Classification rules

Data Feature engineering

Incremental feature selection

Results

Feature1 Feature2 ……

Sample1

Sample2

……

Feature matrix

Boruta

mRMR MCFS LightGBM LASSO

mRMR
feature list

MCFS
feature list

LightGBM
feature list

LASSO
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Figure 1: Process flow diagram for the full analysis. After being first filtered by the Boruta, the 85,437 transcript features from the 1221
smokers were then sorted by feature importance using four feature ranking algorithms: mRMR, MCFS, LightGBM, and LASSO. The IFS
computational framework was then performed based on four sorted feature sets, and four effective classification algorithms were used in
this process. Eventually, the essential genes (converted from important features) and the classification rules were extracted.
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enrichment analysis. The significant enrichment results
after FDR estimation are shown in Table S5. Furthermore,
the top 5 entries of each of the three parts of GO enrich-
ment results and the top 5 pathways of KEGG enrichment
results were selected for visual presentation, as shown in
Figure 9. GO enrichment results show that immunoglobu-
lin complex, complement activation, and humoral immune
response mediated by circulating were significantly enriched
by the identified genes. The cytotoxicity caused by natural
killer cells, cytokine-cytokine receptor interaction, and viral
protein-cytokine interaction was all considerably enriched
according to the KEGG enrichment. Further analysis indi-
cated the association of these results with different smoking
populations in Discussion.

4. Discussion

4.1. Functional Enrichment Analyses. To illustrate the bio-
logical significance of the features and rules identified in this
study, we clustered the 370 features with GO terms and
KEGG pathway, respectively. As expected, all the top-
ranked GO terms are involved in immune response such
as complement activation, humoral immune response, and
immunoglobulin complex. Cigarette smoke exposure can
affect immune response significantly and may cause multiple
diseases [42]. Similarly, most of the enriched KEGG path-
ways also represented immune responses, such as natural
killer cell-mediated cytotoxicity, interaction of cytokine-
cytokine receptor, and interaction between viral protein
and cytokine receptor. These pathways have been reported
to be related to cigarette smoke in previous studies. For
instance, cigarette smoke inhibits NK cell ability to kill

tumor cell lines and increases the amount of proinflamma-
tory cytokines while downregulates the anti-inflammatory
cytokines [43, 44]. Smoke was also found to increase the
viral load and cell death, which leads to more severe viral
myocarditis [45]. Interestingly, the features were also
enriched in pathways of diseases, such as graft-versus-host
disease, autoimmune thyroid disease, and type I diabetes
mellitus. Smoking was found to be able to both increase
and decrease the risks of autoimmune thyroid diseases
[46]. Moreover, the animal models treated with nicotine
were found to alter the expression of pancreatic cytokine,
which leads to a lower incidence of type I [47].

4.2. Analysis of Highly Ranked Transcripts in Four
Algorithms. As shown above, these 370 features were ranked
by four algorithms, and each of which produced a set of
optimal features. We compared the four sets and investi-
gated their biological significance related to smoking. Inter-
estingly, the optimal features by LASSO included 369
features, and the mRMR produced an optimal set of 314 fea-
tures, indicating that these two methods tend to capture fea-
tures comprehensively. By contrast, the optimal feature sets
have 22 and 145 features by LightGBM and MCFS, respec-
tively, and the optimal models provided higher F1-measure
(Table 1) than the optimal models on the optimal feature
sets of LASSO and mRMR, indicating that these two feature
ranking algorithms can capture the features with higher
effects.

Meanwhile, 15 features were shared by all four optimal
feature sets, suggesting the significance of these features in
responding to smoking. Based on the review of literature,
we found that 12 features were proved to be relevant to
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Figure 2: IFS curves for showing the performance of four classification algorithms according to F1-measure on the mRMR feature list.
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smoking. Features ENST00000464835 and ENST0000
0308478 are two transcripts of gene LRRN3, which are most
significantly associated with smoking [48]. ENST00000622663
and ENST00000367467 were two transcripts of the gene
SASH1, whose expression changes were associated with smok-
ing in human monocytes [49]. Two GWAS studies found that

gene GPR15 is strongly associated with smoking, and its
expressed transcript ENST00000284311 is among the opti-
mal features by all four methods in this study [50, 51].
Other features including ENST00000392054 (expressed by
PID1), ENST00000586582 (expressed by SEMA6B), ENST
00000393590 (expressed by P2RY6), ENST00000422622
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Figure 4: IFS curves for showing the performance of four classification algorithms according to F1-measure on the LightGBM feature list.
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Figure 3: IFS curves for showing the performance of four classification algorithms according to F1-measure on the MCFS feature list.
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(expressed by SSPN), ENST00000339223 (expressed by
FPR3), ENST00000341184 (expressed by MGAT3), and
ENST00000316418 (expressed by AHRR) are supported by
previous studies [52–58]. Therefore, the features identified
using all four methods have strong associations with smoking.

In comparison with LASSO or mRMR, the two other
algorithms LightGBM and MCFS produced relative smaller

number of optimal features. However, these two methods
shared only half or less optimal features with each other. A
further investigation unveiled that those optimal features
by MCFS but not LightGBM were either transcripts of
immunoglobulins or unclear in the relevance to smoking.
This result indicated the bias or capability of MCFS methods
in capturing the features involved in immune response. By

Table 1: Performance of the optimal models based on various classification algorithms and lists yielded by various feature ranking
algorithms.

Feature ranking algorithms Classification algorithms Number of features F1-measure MCC ACC

mRMR

DT 309 0.766 0.623 0.822

KNN 49 0.796 0.665 0.831

SVM 314 0.852 0.761 0.886

RF 215 0.840 0.742 0.878

MCFS

DT 64 0.765 0.620 0.820

KNN 62 0.805 0.679 0.838

SVM 143 0.846 0.750 0.880

RF 145 0.854 0.764 0.888

LightGBM

DT 32 0.800 0.676 0.846

KNN 18 0.833 0.728 0.867

SVM 33 0.868 0.788 0.899

RF 22 0.883 0.811 0.911

LASSO

DT 370 0.735 0.568 0.794

KNN 160 0.718 0.525 0.753

SVM 369 0.826 0.718 0.866

RF 370 0.811 0.695 0.856
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Figure 5: IFS curves for showing the performance of four classification algorithms according to F1-measure on the LASSO feature list.
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contrast, those optimal features identified by LightGBM but
not MCFS were involved in diverse functions or biopro-
cesses. For example, ENST00000297785 was a transcript
expressed by the gene ALDH1, which was upregulated by
smoking, while another feature ENST00000423064, a tran-
script of HGF, was found to be upregulated in male smokers
[59]. And many risk factors including smoking were found
to be associated with serum HGF [60]. Therefore, different
algorithms identify features with different focus, and a com-
bination of multiple algorithms is recommended for a com-
prehensive analysis to complement with each other.

4.3. Analysis of Classification Rules. Further analysis on the
rules was also conducted to investigate the relevance to
smoking. The top-ranked rule in each of the four algorithms
received much more passed courts than the second, indicat-
ing that the top rule outperformed all the others in terms of
precision. Therefore, we focused on the gene expression pat-
tern in the top rule of each algorithm. Among the 38 features
in the four top rules, only two features were shared by all
four top rules from four algorithms, ENST00000284311
and ENST00000586582, which are the transcripts of
GPR15 and SEMA6B. Both features were strongly associated
with smoking responses by previous studies [50–52]. The
only feature shared by the three top rules was ENST0000
0390539, which is a transcript of immunoglobulin. Immu-
noglobulin has four other features, indicating that these
immunoglobulin isoforms might play a more important
role in smoking response than others. Other than the
immune response, the epigenetic change is also a key

player in smoking response. Our study revealed four fea-
tures from these 38 top-rank rules, namely, ENST0000
0395002 from FAM13A, ENST00000394718 from AKAP5,
ENST00000341184 from MGAT3, and ENST00000316418
from AHRR. These genes were associated with smoking
response [57, 61–63]. Moreover, 17 features have not been
studied, indicating their roles in smoking response. These
genes or features could be good candidates and further
investigated in future studies to unveil the mechanisms
of smoking response.
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Figure 7: Venn diagram of the optimal feature subsets obtained
from the mRMR, MCFS, LightGBM, and LASSO feature lists. The
circles indicate transcripts that were identified as optimal features
by different ranking algorithms.
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5. Conclusions

In this study, some widely used machine learning methods
were applied on transcript expression data to reveal the
essential features of different populations with different
smoking history. Three aspects of the results were obtained.
First, a list of features that could be used to determine the

difference between current and former smokers were
extracted. These features provided a more detailed descrip-
tion of the alteration of biological processes in the human
body by smoking at the transcript level. Second, efficient
classification models were built to identify current and for-
mer smokers. Finally, specific classification rules for distin-
guishing current smokers from former smokers were built.

5454 6058 48434745

mRMR MCFS LightGBM LASSO

Current smoker
Former smoker

Figure 8: Number of rules utilized to distinguish each class in each classification rule set extracted based on the mRMR, MCFS, LightGBM,
and LASSO feature lists. A large number of classification rules were built to describe two kinds of smokers. The number of classification rules
for each kind of smokers was approximately the same, indicating that our method was unbiased.
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These rules quantitatively described the role of transcript
expression in differentiating smoking populations, thus pro-
viding a theoretical basis for the treatment of smoking-
related diseases.
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