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Abstract

Rapeseed oil (canola, Brassica napus L.) is an important healthy vegetable oil throughout

the world, the nutritional and economical value of which largely depends on its seed fatty

acid composition. In this study, based on 201,187 SNPmarkers developed from the SLAF-

seq (specific locus amplified fragment sequencing), a genome wide association study of

four important fatty acid content traits (erucic acid, oleic acid, linoleic acid and linolenic acid)

in a panel of 300 inbred lines of rapeseed in two environments (JXAU and JXRIS) was car-

ried out. A total of 148 SNP loci significantly associated with these traits were detected by

MLMmodel analysis respectively, and 30 SNP loci on A08 and C03 chromosomes were

detected in three traits of erucic acid, oleic acid and linoleic acid contents simultaneously.

Furthermore, 108 highly favorable alleles for increasing oleic acid and linoleic acid content,

also for decreasing erucic acid content simultaneously were observed. By a basic local

alignment search tool (BLAST) search with in a distance of 100 Kb around these signifi-

cantly SNP-trait associations, we identified 20 orthologs of the functional candidate genes

related to fatty acid biosynthesis, including the known vital fatty acid biosynthesis genes of

BnaA.FAE1 and BnaC. FAE1 on the A08 and C03 chromosomes, and other potential candi-

date genes involving in the fatty acid biosynthesis pathway, such as the orthologs genes of

FAD2, LACS09, KCS17, CER4, TT16 and ACBP5. This study lays a basis for uncovering

the genetic variations and the improvement of fatty acid composition in B. napus.

Introduction

Canola (rapeseed; Brassica napus, AACC genome, 2n = 38) is the world’s second largest oil pro-

ducing crop after soybean (Glycine max L. Merrill), cultivated in temperate regions of many

countries worldwide, and accounts for 14% of all edible vegetable oil production [1]. The nutri-

tional and healthy oil qualities of canola seed are mostly determined by the fatty acid composi-

tions [2]. Canola oil is rich in unsaturated fatty acids compared with other vegetable oils,
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comprised primarily of monounsaturated oleic acid and polyunsaturated linoleic and linolenic

acid having a 2:1 optimal ratio [3, 4]. Of these the oleic acid (C18:1) and linoleic acid (C18:2) are

considered to be healthy and nutritious. However, the three double-bonds of extracted linolenic

acid (C18:3) are easily oxidized, which leads to a reduced frying thermal stability and storage

time of the oil. With erucic acid originally thought to lead to health problems and difficult to

digest in humans and livestock due to its long-chain, modern canola-type rapeseed was selected

based on ‘double-low’ seed erucic acid and glucosinolate content [5], Reducing erucic acid and

linolenic acid has continued to be an important target for canola/rapeseed production [6].

The genetic basis of seed fatty acid biosynthesis and modification pathways have been well

characterised in Arabidopsis thaliana [7–9]. Barker et al (2007) established desaturation and

elongation pathways well, along with substrate: product relationships assigned to specific

enzymes [10]. To better understand the genetic control of seed fatty composition and biosyn-

thesis in rapeseed, in the last few decades, many underlying QTLs of seed quality traits have

been detected in bi-parental segregating populations. These QTL have included traits such as

oil content [11–14], protein content [15, 16], glucosinolate content [17, 18], and fatty acid

composition [19–21]. In a number of cases, some candidate genes have been identified that

coincide with the position of QTL. For example, four loci for B. napus orthologues of FAD2

(BnaFAD2 loci) were mapped to A1, A5, C1 and C5 chromosomes [22], Schierholt et al.

(2000) also mapped a locus linked to BnaFAD2 on A05 [23], and Hu et al. (2006) identify a

major locus for high oleic acid (C18:1) on A5 chromosome [3], which was proven to be the

Fatty acid desaturase-2 (FAD2) gene. In addition, two important FAE1 loci on chromosome

A08 and C03 were described by Qiu et al. (2006) [11].

In recent years, genome wide association study (GWAS), also known as association mapping

based on linkage disequilibrium, have aimed to identify genetic variants linked to traits. GWAS

uncover QTLs or genes from natural populations, and have the advantage of higher resolution

and greater cost-effectiveness relative due to screening a larger effective number of recombina-

tion events than are accessible in moderate size bi-parental segregating populations. GWAS has

successfully been demonstrated to be a powerful tool for dissecting complex traits for crop

improvement programs, with the availability of numerous SNPs it has been applied to Zea mays,

Triticum aestivum andOryza sativa [24]. In recent years, many studies have used the Illumina

Infinium Brassica 60K SNP array and Dart-seq genotyping approaches to carry out GWAS to

detect genetic variation for flowering time, as well as seed quality traits in rapeseed [25–33]. The

number of robust and well-distributed SNPmarkers across genome is significant for the effi-

ciency of GWAS in wider germplasm sets. Development of next generation sequencing (NGS)

allows identification of a large number of genetic makers for associating with traits of interest

based on linkage disequilibrium quickly and efficiently [34]. To identify novel loci and candidate

genes that may contribute to variation in fatty acid composition, we carried out an extensive

GWAS based on 201,817 SNPs previously developed by SLAF-seq (specific length amplified

fragment sequencing) [35,36] and a collection of 300 inbred rapeseed lines. Interactions between

the traits were investigated and significantly associated SNP loci were explored along with candi-

date genes. Favourable allelic variants contributing to an optimal fatty acid composition were

identified. This study provides useful information for a more comprehensive understanding of

the genetic variation and metabolism mechanism of important fatty acid composition.

Materials andmethods

Plant materials, growth conditions and field trials

A world-wide collection of 300 diverse rapeseed inbred lines (S4 generation or greater) (S1

Table) was assembled. The provenance and meta-data and genetic relationships for all
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accessions have been described previously [35,36]. The association population was planted and

harvested in the crop field of Jiangxi Agricultural University (JXAU, 115.84E, 28.77N) and

Jiangxi Institute of Red Soil (JXIRS, 116.27E, 28.37N) with two biological replications per

experimental site in 2014–2015. All seeds were sown on September 29th 2014 simultaneously

in both places. Each variety was planted in a plot with three rows (40 cm line width and 20 cm

plant distance), and each row had 12 plants (final seeding time was at the 5–7 leaf phase). Field

experiments were arranged and laid out in a randomized complete block design at all sites. All

rapeseed inbred lines grown in both environments was cultivated under uniform agronomic

practices. Ripe seeds from six plants each accession were harvested and used for seed quality

trait analysis after harvests.

Fatty acid compositions evaluation and statistical analysis

The harvested seeds (2g each accession) of 300 rapeseed lines were analysed for estimates of

the four fatty acids (erucic acid, oleic acid, linoleic acid and linolenic acid) (%) using DA7200

near infrared spectroscopy (NIRS) (DA 7200, Perten Instruments, Huddinge, Sweden), and

the data of four fatty acid content from NIRS were adjusted by the results of gas chromato-

graph. The value of each fatty acid was expressed as a percentage of the total amount of fatty

acids identified. The four fatty acid composition traits of each accession were defined as the

mean of the two replicates in the same location. The correlation coefficients between each pair

of traits were determined using Student’s t-test, and the variance and statistical analysis of four

components were obtained using DPS software [37].

SNP genotyping and population structure analysis

Total genomic DNA was extracted from young leave of each rapeseed accession using a modi-

fied cetyltrimethylammonium bromide (CTAB) method based on Murray & Thompson

(1980) [38], the DNA concentrations and purities of all samples were calculated by a Nano-

drop 2000 UV-Vis spectrophotometer (NanoDrop, Wilmington, DE, USA). Quantified DNA

samples were used for SLAF sequencing by an Illumina HiseqTM 2500 [39]. The library con-

struction, paired-end sequencing and SNP calling were conducted as previously described

[35,36], a total of 201,817 SNPs with minor allele frequency (MAF)> 0.05 and integrity> 0.8

were selected and used for subsequent analysis, population structure (Q matrix) and relative

kinship (K matrix) were analysed by using the Admixture software package [40] and SPAGeDi

software [41], respectively, as previously described in our previous research [35,36].

Genome wide association analysis

Based on the 201,817 SNPmarkers developed for the 300 rapeseed accessions, genome-wide

association analysis for the four fatty acid traits was carried out by mixed linear models (MLM)

using the Tassel 5.0 software [42]. Fixed effects and random effects in the MLMmodel were

assessed by a Q and Kmatrix, respectively. The Manhattan plot and Quantile-Quantile plot (Q-Q

plot) was drawn by QQman [43] and GGplot2 software [44]. The ideal threshold value was set as

1/201,817 SNPs (-log10(p) = 5.3) for identifying the marker-trait associations. Finally, to ensure

the accuracy of significant SNPs associated with traits, we removed the unique SNPs associated

with a trait in the range of LD decay, others were considered as valid associated-trait SNPs.

Discovery of useful allelic variation for fatty acid composition

The epistatic effect of linked candidate SNPs was evaluated using the epistatic association map-

ping (EAM) method [45]. When the effect value of SNP is positive, it was taken as increasing

Genome wide association study of four important fatty acid composition in Brassica napus

PLOSONE | https://doi.org/10.1371/journal.pone.0221578 August 23, 2019 3 / 20

https://doi.org/10.1371/journal.pone.0221578


effect allele for trait value, conversely, when the effect value is negative as a decreasing effect

allele.

SNPs with positive allelic effect values highly associated with oleic acid content and linoleic

acid content were analysed, and the SNPs with negative allelic effect value related to erucic

acid content and linolenic acid content were counted. Furthermore, the number of varieties

with favourable alleles for fatty acid composition were counted.

Prediction of candidate genes for four fatty acid composition

Candidate genes located within the 100 Kb region upstream or downstream of significant asso-

ciated-trait SNPs were identified based on GO terms (fatty acid biosynthetic process; very

long-chain fatty acid metabolic process; fatty acid elongation; fatty acid metabolic; acetyl-CoA

metabolic process; fatty-acyl-CoA reductase activity; phosphatidylinositol transporter activity

etc.) for fatty acid synthesis, desaturation, elongation and metabolism. Then the identified can-

didate genes related to fatty acid composition were further confirmed by BLASTX searching

against the Arabidopsis protein database.

Candidate gene expression analysis by qRT-PCR

Seven rape varieties from this studied population with significantly different fatty acid contents

were selected to carry out the expression analysis of candidate genes (S2 Table), the total RNA

from their frozen root, stem, leaf, flower, and seed were extracted using Eastep1 Super total

RNA extraction Kit (Promega, Beijing, China) according to the manufacturer’s instructions.

RNA quality and quantity were checked using NanoDrop 2000 spectrophotometer (Thermo

Fisher Scientific, Wilmington, DE) and RNA integrity was determined by agarose gel

electrophoresis.

Three candidate genes (ACP5, FAD2, KCS17) that are significant for fatty acid metabolism

were selected to validate the GWAS results by qPCR. The primers for PCR amplification of the

three candidate genes were designed with Primer3Plus [46] under strict standards and are pro-

vided in supplement file (S3 Table).

A total of 1 μg of total RNA was reverse-transcribed to complementary DNA (cDNA) using

the PrimeScriptTM RT reagent Kit with gDNA Eraser (Perfect Real Time) (TaKaRa, Japan).

according to the manufacturer’s instructions. A 20 ul reaction was prepared with 10 ul of

SYBR Green Master mix for real time quantitative PCR (Takara, Japan), 1 ul of each primer

pair and 1 ul of cDNA templates, 7 ul ddH2O was added to the final reaction volume of 20 ul.

The PCR amplification of the target genes was performed on a CFX96 Real-Time PCR system

(Biorad, Hercules, CA) with the program as follows: 1 cycle of 95˚C for 20s; and 40 cycles of

95˚C for 15s, 60˚C for 30s and 72˚C for 30s; a final melt curve analysis in which the tempera-

ture was increased from 55˚C to 95˚C at a rate of 0.5˚C/5s; and a maintenance at 4˚C. In every

sample, β-actin was taken as the house-keeping gene, at least 3 technical replicates were per-

formed for each experiment. The relative quantification of gene expression was calculated

using the 2-ΔΔCT method.

Results

Phenotypic variation and correlation analysis for four fatty acid
compositions in 300 rapeseed accessions

Continuous and extensive phenotypic variations for each of the four fatty acid composition

traits were observed in both environments (JXAU and JXIRS). Linolenic acid content was nor-

mally distributed, whilst the contents of erucic acid, oleic acid and linoleic acid had

Genome wide association study of four important fatty acid composition in Brassica napus
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multimodal distributions across the 300 accessions (Fig 1). Descriptive statistical analysis was

summarized in Table 1 for oleic acid [C18:1], linoleic acid [C18:2], linolenic acid [C18:3] and

erucic acid [C22:1] of 300 accessions under two JXAU and JXIRS environments. The average

erucic acid content was 22.23% and 22.72%, ranging from 0 to 56.38% with each CV of 78.92%

and 81.90% in JXAU and JXRIS respectively, which was the largest variation of all results; the

average content of oleic acid was 48.97% (JXAU) and 49.37% (JXIRS), ranging from10.01%

from 81.29% severally; the average linoleic acid content was 15.51% (JXAU) and 14.66%

(JXIRS), ranging from 4.35% to 22.64% with the CV of 19.17% and 20.47%, and finally the

average content of linolenic acid was 6.89% and 6.67% in two places, ranging from 4.63% to

9.82% with low CV of 9.97% and 11.48%. These data indicated a broad phenotypic variability

in four fatty acid compositions within the studied rapeseed population.

There was strong evidence based on ANOVA that traits varied significantly across the 300

genotypes, and had very significant difference under the interaction between genotype and

environment (G×E) (P<0.01; Table 2). However, except for oleic acid content, there were no

significant effects in other three fatty acids between the two environments. For the correlations

between four traits, oleic acid content in both environments had a highly significant negative

correlation with erucic acid and linolenic acid content (Table 3). Here, their phenotypic corre-

lation coefficients of -0.8376�� and -0.5862�� in JXAU and -0.7942�� and -0.2775�� in JXIRS

respectively (P<0.01) were observed, but which has a significant positive correlation with lino-

leic acid content with phenotypic correlation coefficients of 0.4215�� in JXAU and 0.5824�� in

JXIRS. Moreover, linoleic acid content had a highly significant positive correlation with linole-

nic acid content, with phenotypic correlation coefficients of 0.6879�� (JXAU) and 0.5748��

(JXIRS).

Genome-wide association analysis for the four fatty acid content traits in
the 300 rapeseed accessions

To reveal the genetic variations of four fatty acid compositions in B. napus, GWAS for these

traits based on MLMmodels was conducted, The predictive QQ plots show expected distribu-

tion agrees of p-values have a high consistency with the observations (Fig 2), and the signifi-

cantly associated SNPs per traits were displayed on Manhattan plots (Fig 3). The total results

of the significant SNP loci associated with the four fatty acids combined under two environ-

ments are given in Table 4. GWAS identified 148 SNPs significantly associated with four fatty

acid content traits on 8 chromosomes. However, the majority of trait-linked SNPs were mainly

distributed on A08 and C03 chromosomes, with 82 and 48 significant SNP on chromosome

A08 and C03, respectively (S4–S7 Tables), and all trait-linked closely SNPs explained 6.09%

~16.55% of observed phenotypic variation.

A total of 78 SNPs of which associated with erucic acid content significantly were detected

in GWAS, 12 (15%) were both detected in two environments (S4 Table). In addition, 57 in

JXAU and 37 in JXIRS with 22 same SNP loci on 5 chromosomes for oleic acid were detected

(S5 Table). Furthermore, we identified 118 SNPs for linoleic acid content trait (80 in JXAU

and 38 in JXIRS with 21 uniform SNP loci (S6 Table), but only 2 significant SNP loci in JXAU

were found (S7 Table). In addition, 51 peak SNPs (30 of erucic acid, 34 of oleic acid, 37 of lino-

leic acid and 12 of linolenic acid) were detected on 8 chromosomes (Table 5).

For the SNP locus analysis, there were some SNP loci significantly associated with several

traits simultaneously. For example, a total of 30 SNP loci on A08, C03 and C06 chromosomes

were detected in three traits of erucic acid content, oleic acid content and linoleic acid content.

Apart from what is outlined above, 16 SNP loci linked to erucic acid content and oleic acid

content, 25 loci for oleic acid content and linoleic acid content, and 7 SNPs for erucic acid

Genome wide association study of four important fatty acid composition in Brassica napus
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Fig 1. Frequency distribution of four fatty acid content traits of B. napus.

https://doi.org/10.1371/journal.pone.0221578.g001
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content and linoleic acid content concurrently. These consistent SNPs detected simultaneously

in different traits indicated that they might control the different fatty acid composition traits

synchronously. What’s more, we found two remarkable associated regions on chromosome

A08 and C03 were consistent with the QTL results based on bi-parental mapping previously

[19, 31, 47].

To identify highly favourable alleles with for fatty acid composition in B. napus, we investi-

gated the allelic effects of all the significantly associated SNPs. We observed 108 highly favour-

able alleles for increasing oleic acid and linoleic acid content, also for decreasing erucic acid

content simultaneously (S8 Table). Specially, we found 66 highly favourable alleles for reduc-

ing the content of erucic acid and linolenic acid (S9 Table), 82 and 105 highly favourable alleles

contributed to increase oleic acid and linoleic acid content respectively (S10 Table, S11 Table).

Discovery of SNP loci and those favourable alleles in current study will provide insight into the

genetic basis of four fatty acid biosynthesis in rapeseed.

Candidate genes identification of four fatty acids in B. napus

To further reveal the molecular function of the SNPs significantly associated with the four

traits, we extracted the genes within the 100 Kb upstream or downstream regions of the trait-

associated SNPs in the reference genome of B. napus “Darmor v4.1”. We found 802 genes were

identified located in the candidate regions around 52 SNPs (S12 Table), 29 of these candidate

genes were enriched into fatty acid biosynthetic process, fatty acid metabolic process and Lipid

transport and metabolism in the GO terms annotation analysis (S13 Table). 20 fatty acid com-

position candidate genes were homologous to A. thaliana genes involved in metabolic net-

works of fatty acids. These candidate genes were located in four chromosomes (A08, A09, A10

and C03), 16 of which were distributed on the A subgenome, the chromosome A08 have the

Table 1. Statistical analysis of four fatty acids of rapeseed.

Trait Environment Mean±SE (%) Range (%) Coefficient of variation CV (%) Shapiro wilk

Erucic acid JXAU 22.23±1.01 0.03–54.71 78.92 W = 0.887946 P = 0.000000

JXIRS 22.72±1.07 0–56.38 81.90 W = 0.876088 P = 0.000000

Oleic acid JXAU 48.97±0.95 11.39–81.29 33.63 W = 0.972434 P = 0.000016

JXIRS 49.37±1.10 10.01–79.90 38.48 W = 0.945312 P = 0.000000

Linoleic acid JXAU 15.51±0.17 5.21–22.64 19.17 W = 0.91188 P = 0.000001

JXIRS 14.66±0.17 4.35–22.35 20.47 W = 0.979837 P = 0.000311

Linolenic acid JXAU 6.89±0.04 4.85–9.82 9.9 7 W = 0.988571 P = 0.018354

JXIRS 6.67±0.04 4.63–9.14 11.48 W = 0.996549 P = 0.764799

https://doi.org/10.1371/journal.pone.0221578.t001

Table 2. Variance analysis of seed fatty acid composition of rapeseed in two environments.

Source of variation DF Erucic acid
(%)

Oleic acid
(%)

Linoleic acid
(%)

Linolenic acid
(%)

Block 1 39.6692 68.8289 70.1079�� 14.5636��

Environment (E) 1 25.0014 123.3815� 1.6539 0.863

Genotype (G) 299 332.3849�� 281.0727�� 13.891�� 1.1998��

G×E 299 286.9632�� 274.9371�� 11.7758�� 0.9602��

Error 599 48.36 31.9287 2.2298 0.3323

Note
�,�� present significant at 5% and 1% probability levels respectively.

https://doi.org/10.1371/journal.pone.0221578.t002
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most genes (12), and chromosome A09 and A10 have 2 candidate genes, respectively, chromo-

some C03 have other 4 fatty acid candidate genes (Table 6), which suggested the A subgenome

pay a more important role than C subgenome in the metabolic networks of fatty acids of

rapeseed.

Some genes tagged by associated SNPs in our study represent known fatty acid composition

genes, and were enriched in biological processes of FAs biosynthesis. For erucic acid, two

Fatty acid elongation 1 (FAE1) orthologous genes (BnaA08g11130D and BnaC03g65980D)

were found in the distance of 40.93 Kb from SNP Bn-A08-10146770 and 65.37 Kb form Bn-

C03-55618985 respectively, which were well-known Bna.FAE1 homologs controlling erucic

acid content found in previous studies [25, 31, 48–50]. Moreover, another two candidate genes

of BnaA08g11140D and BnaC03g66040D orthologous to 3-ketoacyl-CoA synthase 17 (KSC17)

in the distance of 47.02 Kb from SNP Bn-A08-10146770 and 98.16 Kb form Bn-C03- 55712102

were detected respectively, which is also a member of the 3-ketoacyl-CoA synthase family

involved in the biosynthesis of very long chain fatty acids [51]. For the synthesis of unsaturated

fatty acids, which are affected by the fatty acid desaturase activity in plant, the fatty acid desa-

turase genes have been proved as the major genes for the control of oleic acid content as same

as the ratio of polyunsaturated fatty acid, we found the important candidate genes of

BnaC03g03500D orthologous to Fatty acid desaturase 2 (FAD2) in the distance of 45.18 from

Bn-C03-1664875, which is the major enzyme responsible for the synthesis of 18:2 fatty acids in

plant endoplasmic reticulum [3], and FAD2 gene had been mapped in B. napus on chromo-

somes A1, A5, C1, and C5 in previous studies [4, 52]. Furthermore, many other important can-

didate genes for fatty acid biosynthesis were detected, which were orthologous to A. thaliana,

such as Dermatan sulfate epimerase-like (DSEL), Acyl carrier protein 5 (ACP5), Long chain

acyl-CoA synthetase 9 (LACS9) and so on, these candidate genes except for BnaA.FAE1

(BnaA08g11130D) and BnaC. FAE1 (BnaC03g65980D) have not been verified in previous

genetic analyses, which are likely play important roles in fatty acid synthesis and transport.

Therefore, these candidate genes detected in this study should be certified by further analysis

in the future.

The expression of three candidate genes in diverse rapeseed accessions and
tissues

In order to validate the candidate genes significantly associated fat acids compositions, we

selected three key genes involved in fat acid synthesis and measured their gene expression in

five different tissues (root, stem, leaf, flower and seed) of seven diverse rapeseed accessions

using qRT-PCR. We found the three candidate genes have high expression in seeds or flowers

of these selected rapeseed (S1 Fig), and the expression of ACP5 have a strong positive correla-

tion with erucic acid (0.68), have strong negative correlation with oleic acid (-0.67) and linoleic

acid (-0.71), suggested the high expression of ACP5 could promote the erucic acid synthesis,

Table 3. The correlation analyses four fatty acid composition of B.napus in JXAU/JXIRS.

Correlation coefficient Erucic acid (%) Oleic acid (%) Linoleic acid (%) Linolenic acid (%)

Erucic acid (%) 1 -0.8376��/-0.7942�� -0.6653��/-0.6449�� 0.0218��/0.1321

Oleic acid (%) 1 0.4215��/0.5824�� -0.5862��/-0.2775��

Linoleic acid (%) 1 0.6879��/0.5748��

Linolenic acid (%) 1

Note
�,�� present significant at 5% and 1% probability levels respectively.

https://doi.org/10.1371/journal.pone.0221578.t003
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Fig 2. Quantile-quantile plots of estimated-lg (P) from association analysis of four fatty acid content traits using
MLMmodel in two environments (JXAU and JXIRS).

https://doi.org/10.1371/journal.pone.0221578.g002
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but decrease the oleic acid and linoleic acid. FAD2 and KCS17 have positive correlation with

oleic acid and linoleic acid, indicated they could increase the two fat acids in the studied popu-

lation (Table 7).

Discussion

Fatty acid compositions in seed of rapeseed play important roles in improving the edible oil

nutritional and storage quality. In this study, we investigated the four important fatty acid con-

tent traits of erucic, oleic, linoleic and linolenic for 300 rapeseed accessions, the four traits

exhibited large variation in two different environments, and there proved to be have the weak

Fig 3. Manhattan of GWAS for four fatty acid content traits of B. napus by MLM in two environments (JXAU and JXIRS).

https://doi.org/10.1371/journal.pone.0221578.g003
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or no genetic relationship among 300 accessions in our previous study [35,36], validating the

suitability of GWAS for these traits in this study population [53]. In addition, there are high

correlations among these fatty acid traits, significant negative correlation between the content

of erucic acid and oleic acid was identified, and linoleic acid content trait had high positive

correlation with other three traits, they were co-localized in a small region on chromosome

A08 and C03 chromosomes, the strong correlation between these traits was also observed in

previous studies [19, 21, 45, 54]. Furthermore, in current study, although the materials were

grown in two near environments with near locations, but there were very distinct differences

in these fatty acid compositions under the interaction between genotype and environment, we

speculate the acid soil with low pH value (4.67) in JXIRS was the main reason resulting in very

distinct differences of four fatty acids content [55].

Fatty acid composition are typical quantitative traits, based on the genetic markers (SNP,

SSR, RFLP and AFLP), bi-parent population and statistical methods, many QTLs for fatty acid

composition distributed on most of chromosomes of B. napus were detected in the past few

decades [3, 4, 19–21, 25, 30]. Recent efforts have also been made in detecting the genetic loci

responsible for fatty acid composition in B. napus based on the Illumina Infinium Brassica

60K SNP array, some genome wide analysis were carried out to identified genomic region and

candidate genes associated with fatty acid content in the past few years [26, 27, 31]. In this

study, using 201,187 genome-wide SNP markers developed by SLAF-seq technology [35,36],

we carried out the GWAS for four fatty acid traits in 300 rapeseed inbred lines, and hundreds

of SNP loci highly associated with the four fatty acid compositions traits were identified on 8

Table 4. Summary of SNP loci associated with four fatty acid composition in B. napus.

Trait Environments Chromosome P value R (%) No. of SNPs

Erucic acid JXAU A08 4.09E-06–6.33E-07 7.06–10.57 24

Erucic acid JXIRS A08 2.93E-06–1.79E-07 7.03–9.41 9

Erucic acid JXAU A09 3.60E-06 7.24 1

Erucic acid JXIRS A09 4.53E-06 7.23 1

Erucic acid JXAU C03 4.93E-06–5.92E-08 6.68–9.20 29

Erucic acid JXIRS C03 4.41E-06–1.81E-07 6.98–8.82 10

Oleic acid JXAU A08 4.88E-06–3.10E-07 7.26–11.35 30

Oleic acid JXIRS A08 4.88E-06–2.26E-07 7.40–9.90 18

Oleic acid JXIRS A10 2.21E-06 8.78 1

Oleic acid JXAU C03 4.90E-06–1.84E-07 7.04–8.92 25

Oleic acid JXIRS C03 4.11E-06–1.06E-07 7.25–9.34 15

Oleic acid JXAU C07 3.05E-07–2.55E-07 6.09–6.40 2

Oleic acid JXIRS C07 4.23E-06–4.11E-07 6.15–6.19 2

Oleic acid JXIRS C08 2.57E-06 10.02 1

Linoleic acid JXAU A06 1.16E-06–9.42E-07 8.76–15.15 2

Linoleic acid JXAU A08 4.45E-06–3.883E-9 7.89–16.55 41

Linoleic acid JXIRS A08 4.76E-06–7.93E-9 7.48–16.25 32

Linoleic acid JXIRS A09 1.70E-08 16.19 1

Linoleic acid JXAU A10 3.15E-06 8.36 1

Linoleic acid JXAU C03 4.97E-06–8.45E-08 7.59–16.39 36

Linoleic acid JXIRS C03 3.62E-06–6.82E-07 7.43–9.64 4

Linoleic acid JXIRS C07 3.59E-06 7.54 1

Linolenic acid JXAU A10 1.49E-07 12.75 1

Linolenic acid JXAU C02 1.75E-06 12.70 1

https://doi.org/10.1371/journal.pone.0221578.t004
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Table 5. Peak SNPs associated with four fatty acid contents in seed of B. napus.

Chromosome Position P value R2 Erucic acid Oleic acid Linoleic acid Linolenic acid

A06 11711750 5.47E-08 0.13304
p

A08 5233235 2.72E-07 0.04969
p p p

A08 7774253 3.60E-06 0.04354
p

A08 8025760 3.91E-07 0.06056
p p

A08 8268443 3.02E-07 0.06263
p p

A08 8347808 4.08E-07 0.05391
p p

A08 8390189 4.08E-08 0.09987
p p p

A08 8395297 1.73E-08 0.07549
p p p

A08 8571699 1.70E-07 0.05227
p p p

A08 9171259 2.51E-06 0.04949
p

A08 9312382 1.75E-07 0.06197
p p

A08 9639695 3.88E-07 0.09779
p p p

A08 10146770 2.02E-09 0.09783
p p p

A08 10180037 5.94E-08 0.09362
p

A08 10233049 9.15E-07 0.07426
p p p

A08 10337576 8.26E-08 0.07682
p p p

A08 10406725 2.62E-08 0.11265
p

A08 10433764 2.58E-10 0.09296
p p p

A08 10442011 2.48E-08 0.10185
p p p

A08 10461292 1.25E-07 0.09281
p p p

A08 10471805 1.30E-11 0.14511
p p

A08 10472012 1.03E-11 0.13556
p p

A08 10481532 2.58E-10 0.12307
p

A08 10495971 1.12E-10 0.10555
p

A08 10515263 2.19E-11 0.10883
p p p

A08 10582811 9.13E-12 0.11441
p p p

A08 10889000 3.95E-08 0.09829
p

A08 10958311 4.07E-09 0.093
p

A08 11136986 4.91E-08 0.06772
p

A08 11158551 9.94E-08 0.05835
p p p

A09 1752479 2.05E-10 0.13748
p

A09 2539185 3.50E-07 0.05646
p

A10 14591650 3.37E-09 0.13573
p

C02 30041401 1.19E-07 0.13582
p

C03 54305474 2.39E-09 0.06921
p p

C03 54320531 6.05E-09 0.068
p p

C03 55442122 1.24E-07 0.07011
p p p

C03 55522999 7.05E-08 0.073
p p p

C03 55566645 2.19E-08 0.07326
p p

C03 55697602 5.89E-09 0.06611
p p p

C03 55712102 5.81E-07 0.06493
p p p

C03 55738483 4.18E-10 0.06887
p p p

C03 55741015 3.81E-08 0.0739
p p p

C03 55851909 1.48E-06 0.06278
p

C03 55917656 7.45E-08 0.13888
p

C03 55936314 7.56E-08 0.08354
p p p

C03 56690589 6.61E-08 0.09359
p

(Continued)
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chromosomes of B. napus, many of these SNPs were simultaneously detected in two environ-

ments, most of significantly associated SNPs (more than 80%) for the content of erucic acid,

oleic acid and linoleic acid were identified on A08 and C03 chromosomes, which was in accor-

dance with above QTL and GWAS studies for fatty acid composition, from this we can infer

that the genomic region controlling the fatty acid biosynthesis were mainly distributed on A08

and C03 chromosomes. In addition, we also found a few trait-associated SNPs on other chro-

mosomes, some identical chromosome regions were exist in Qu et al. (2017) [31], for example,

the significant SNPs associated with olenic acid on A09 chromosomes and the candidate gene

of BnaA09g05410D (orthologous to Transparent testa 16 TT16) was identified both in two

studies, but other related gene groups found in A02 and C01 linkages of Qu et al. (2017) were

not detected in current study[31], which probably attribute to the different population used in

different studies. Under the reference-guided analysis, As the physical position and alleles of

SNP markers used in this study are known, therefore, breeders and researchers could easily

obtain valuable information for other related rapeseed research based on our results. In addi-

tion, by evaluating the allelic effects of trait-associated SNPs, we observed many favourable

alleles for decreasing the erucic acid content, which had positive effects for increasing the oleic

and linoleic acid content in the same time, these SNPs could be used for low-erucic and high-

oleic acid rapeseed breeding in the future.

The genetic basis of seed fatty acid biosynthesis and modification pathways have been well

characterised in Arabidopsis thaliana [9]. Well established desaturation and elongation path-

ways, along with substrate: product relationships assigned to specific enzymes [10], which was

a co-operation of many genes of seed development, energy metabolism, fatty acid and triacyl-

glycerol (TAG) biosynthesis pathways [9, 56]. De novo synthesis of fatty acids occur in the seed

plastid, where the palmtic acid (16:0), stearic acid (18:0) and oleic acid (18:1) are formed and

then released to the endoplasmic reticulum (ER) by two kinds of acyl-ACP thioesterase

enzymes (FATA and FATB with high affinity to 18:1-ACP and 16:0-ACP respectively) [57, 58].

These fatty acids were modified by desaturation enzymes (FAD2 and FAD3) to produce the

polyunsaturated linoleic (18:2) and linolenic acid (18:3) [52, 59], the gene expression analysis

in this study supported further that the FAD2 gene would promote the linolenic acid synthesis.

In addition, the fatty acids could be elongated to erucic acid by FAE1 gene or esterified to glyc-

erol to produce the TAG stored as a major seed oil form in plants [60]. In current study, a total

of 14 candidate genes were detected on A08 chromosomes, including DSEL, FAE1,MCCB,

CCOAOMT1 andWIN2 etc. In addition, there were 4 fatty acid biosynthesis genes were found

on C03 chromosomes, including FAD2, ATCHS, FAE1 and KCS17 etc., Specially, two known

homoeologous genes (namely BnaA.FAE1 and BnaC.FAE1) controlling erucic acid content

were identified in our study [25, 31, 50, 61], and candidate genes BnaA08g11140D and

BnaC03g66040D orthologous to KCS17 of A. thaliana involving in the biosynthesis of very

long chain fatty acids were also found on chromosomes A8 and C3. Moreover, the gene of

Table 5. (Continued)

Chromosome Position P value R2 Erucic acid Oleic acid Linoleic acid Linolenic acid

C07 6271446 3.74E-07 0.04589
p

C07 18403416 4.73E-07 0.04454
p

C08 4845350 2.88E-07 0.0493
p

C08 14472595 3.58E-08 0.08004
p p

Note

"
p
" indicates the corresponding trait that the significant associated SNP locus.

https://doi.org/10.1371/journal.pone.0221578.t005
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Table 6. Candidate genes tagged by the associated SNPs with fatty acid biosynthesis and metabolism in B. napus and their orthologs in A. thaliana.

Gene Chr. Gene
start

Gene
end

SNP
location

Distance
(Kb)

Arabidopsis
genes

LD interval
(bp) (R2

>0.6)
Alias Description

BnaA08g08120D A08 8006912 8010592 8025760 18.848 AT4G20930 6-phosphogluconate dehydrogenase
family protein

BnaA08g08850D A08 8588827 8591995 8571653 17.174 AT4G18550 7205628–
8404857

DSEL Dermatan sulfate epimerase-like

BnaA08g09510D A08 9087020 9088618 9171259 84.239 At4g20830 8404821–
8659578

FAD-binding Berberine family protein

BnaA08g09990D A08 9372442 9374898 9312398 60.044 AT4G20930 8404821–
9237980

6-phosphogluconate dehydrogenase
family protein

BnaA08g11130D A08 10187701 10189221 10146770 40.931 AT4G34520 9296073–
9461455

FAE1 Fatty acid elongase 1

BnaA08g11140D A08 10193789 10195213 10146770 47.019 AT4G34510 10146770–
10233049

KCS17 3-ketoacyl-CoA synthase 17

BnaA08g11440D A08 10385625 10391818 10433764 41.946 AT4G33790 10146770–
10233049

CER4 Eceriferum 4

BnaA08g11650D A08 10512857 10515956 10433764 79.093 AT4G34030 10337911–
10495999

MCCB 3-methylcrotonyl-CoA carboxylase

BnaA08g11810D A08 10599612 10600625 10507743 91.869 AT4G233355 10337911–
10495999

Bifunctional inhibitor/lipid-transfer
protein/seed storage 2S albumin

superfamily protein

BnaA08g11640D A08 10507282 10508723 10582811 75.529 AT4G34050 10507743–
10625538

CCOAOMT1 Caffeoyl-CoA O-methyltransferase 1

BnaA08g12350D A08 10994361 10997455 10958311 36.05 AT4G31810 10496004–
10641083

Enoyl-CoA hydratase/isomerase family
protein

BnaA08g12370D A08 11043381 11046227 10958311 85.07 AT4G31750 10958311–
11136986

WIN2 HOPW1-1-interacting 2 (WIN2)

BnaA09g03610D A09 1823513 1824394 1752479 71.034 AT5G27200 10958311–
11136986

ACP5 Acyl carrier protein 5

BnaA09g05410D A09 2642292 2646291 2554018 88.274 AT5G23260 1733014–
1984004

TT16 Transparent testa 16

BnaA10g20970D A10 14540117 14540680 14591650 50.970 AT1G77590 2539185–
2943582

LACS9 Long chain acyl-CoA synthetase 9

BnaA10g21150D A10 14626208 14627791 14591650 34.558 AT5G67030 14516759–
14778935

ZEP Zeaxanthin epoxidase

BnaC03g03500D C03 1710052 1711864 1664875 45.177 AT3G12120 14516759–
14778935

FAD2 Fatty desaturase 2

BnaC03g65730D C03 55426564 55428053 55442089 15.525 AT5G13930 1557947–
1756319

ATCHS Chalcone synthase

BnaC03g65980D C03 55684352 55685779 55618985 65.367 AT4G34520 54559600–
55522974

FAE1 Fatty acid elongase 1

BnaC03g66040D C03 55810262 55811686 55712102 98.160 AT4G34510 55256311–
55847797

KCS17 3-ketoacyl-CoA synthase 17

https://doi.org/10.1371/journal.pone.0221578.t006

Table 7. The correlation analyses between the expression of three candidate genes and four fatty acid composition
of B.napus in JXAU.

Correlation coefficient (R) ACP5 FAD2 KCS17

Erucic acid 0.68 -0.15 -0.46

Oleic acid -0.67 0.29 0.50

Linoleic acid -0.71 0.23 0.51

Linolenic acid -0.39 0.16 -0.22

https://doi.org/10.1371/journal.pone.0221578.t007
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BnaA08g11440D near the SNP locus of Bn-A08-10317341 (68.284 Kb) is orthologous to A.

thaliana CER4 encoding an Alcohol-Forming Fatty Acyl-Coenzyme A Reductase involved in

the synthesis of very long chain fatty acids [62]. These results obviously indicate that there are

genomic regions controlling the seed fatty acid biosynthesis on A08 and C03 chromosomes.

By the way, some important fatty acid candidate genes were also scanned on other chromo-

somes. On A09 chromosome, the candidate gene of BnaA09g03610D orthologous to Acyl car-

rier protein 5 (ACP5) was located in the distance of 71.03 Kb from SNP Bn-A09-1752479 on

chromosome A09, which is a small acidic proteins functioning as important cofactors in the de

novo synthesis of fatty acids, overexpression of AtACP5 further led to an a decrease of oleic

acid (C18:1) and an increase of palmitic acid (C16:0) [63], the gene expression of ACP5 in this

study have strong negative relationship with oleic acid, suggested it seem to has the same gene

function as AtACP5. In addition, On A10 chromosome, three candidate genes were ascribed

to fatty acid, BnaA10g20970D orthologous to A. thaliana Long chain acyl-CoA synthetase 9

(LACS9) encoding major plastid long chain acyl-CoA synthetase with a slight substrate prefer-

ence of oleic acid over any of the other fatty acids. Protein-tyrosine phosphatase-like (PTPLA)

(BnaA10g21780D) with acyl-CoA dehydratase activity has a potential role in synthesis of

VLCFAs (very long chain fatty acids) under the interaction with Eceriferum 10 (CER10), which

is a component of the microsomal fatty acid elongase complex. On C06 chromosome, FatA

acyl-ACP thioesterase (FATA) affects the oil content and fatty acid composition of the seeds in

Arabidopsis when reducing expression of FatA thioesterases [64]. Our GWAS analysis led to

the identification of promising candidate genes for fatty acid biosynthesis and metabolism

efficiently.

Conclusion

In this study, based on GWAS with MLMmodel analysis, significant association signals for

the content of erucic acid, oleic acid, linoleic acid and linolenic acid in seeds of B. napus were

found on A06, A08, A09, A10, C02, C03, CO6, C07 and C08 chromosomes in two environ-

ments. The genomic regions controlling the fatty acid biosynthesis were inferred to distribute

mainly on A08 and C03 chromosomes. 20 orthologs of the functional candidate genes related

to fatty acid biosynthesis in a distance of 100 Kb around these significantly SNP-trait associa-

tions were identified by BLAST analysis and comparison of previous linkage mappings,

including the known vital fatty acid biosynthesis genes of BnaA.FAE1 and BnaC. FAE1 on the

A08 and C03 chromosomes, and other potential candidate genes involving in the fatty acid

biosynthesis pathway, such as the orthologs genes of FAD2, LACS09, KCS17, CER4, TT16 and

ACBP5. This study lays a foundation for uncovering the genetic variations and the improve-

ment of fatty acid composition in B. napus.
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64. Moreno-Pérez AJ, Mónica VC, Vaistij FE, Salas JJ, Larson TR, Rafael G, et al. Reduced expression of
FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Planta.
2012; 235(3):629–39. https://doi.org/10.1007/s00425-011-1534-5 PMID: 22002626.

Genome wide association study of four important fatty acid composition in Brassica napus

PLOSONE | https://doi.org/10.1371/journal.pone.0221578 August 23, 2019 20 / 20

https://doi.org/10.1105/tpc.7.3.309
http://www.ncbi.nlm.nih.gov/pubmed/7734965
https://doi.org/10.1111/j.1469-8137.2008.02619.x
http://www.ncbi.nlm.nih.gov/pubmed/18811617
https://doi.org/10.1104/pp.106.086785
http://www.ncbi.nlm.nih.gov/pubmed/16980563
https://doi.org/10.3389/fpls.2017.00987
http://www.ncbi.nlm.nih.gov/pubmed/28642782
https://doi.org/10.1007/s00425-011-1534-5
http://www.ncbi.nlm.nih.gov/pubmed/22002626
https://doi.org/10.1371/journal.pone.0221578

