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ABSTRACT When discussing the commercial applications of photovoltaic (PV) systems, one of the most

critical problems is to estimate the efficiency of a PV system because current (I) – voltage (V) and power (P) –

voltage (V) characteristics are highly non-linear. It should be noted that most of themanufacturer’s datasheets

do not have complete information on the electrical equivalent parameters of PV systems that are necessary

for simulating an effective PV module. Compared to conventional approaches, computational optimization

and global research strategies are more acceptable as an effective alternative to parameter estimation of

solar PV modules. Recently, a Gradient-based optimizer (GBO) is reported to solve the engineering design

optimization problems. However, the basic GBO algorithm is stuck in local optima when handling complex

non-linear problems. In this sense, this paper presents a new optimization technique called the Chaotic-

GBO (CGBO) algorithm to derive the parameters of PV modules while offering precise I-V and P-V

curves. To this end, the CGBO algorithm is based on a chaotic generator to obtain the PV parameters

combined with the GBO algorithm. There are five case studies considered to validate the performance

of the proposed CGBO algorithm. A quantitative and qualitative performance evaluation reveals that the

proposed CGBO algorithm has improved results than other state-of-the-art algorithms in terms of accuracy

and robustness when obtaining PV parameters. The average RMSE values and runtime of five case studies

are equal to 9.8427E-04, 2.3700E-04, 2.4251E-03, 4.3524E-03 and 1.8349E-03, and 18.44, 17.78, 18.18,

18.28 and 17.97, respectively. The results proved the superiority of the proposed CGBO algorithm over

the different selected algorithms. For future research, this study will be backed up with external support at

https://premkumarmanoharan.wixsite.com/mysite.

INDEX TERMS Chaotic-gradient-based optimizer (CGBO), chaotic generator, gradient-based optimizer

(GBO), parameter estimation, photovoltaics.

I. INTRODUCTION

Solar power sources are viable and promising alternatives

to diverse forms of renewable energy sources [1]. Indeed,

The associate editor coordinating the review of this manuscript and

approving it for publication was Huaqing Li .

the availability, sustainability, and inexhaustibility of solar

energy have enabled it one of the most vital forms of renew-

able energy in recent decades. Their incorporation into clas-

sical power systems with high penetration is equipped to

enhance the output in terms of steady-state and dynamic per-

formance [2]. A detailed model that specifically defines the
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behavior of photovoltaic panels for various industrial appli-

cations (array fault detection, power controller and controller

configuration, maximum power point tracking techniques,

grid integration, etc.) is quite essential and thus increases

the overall performance of PV systems [3]. Accurate mod-

eling of PV modules is therefore required to reflect their

characteristics for further study. As per the scientific studies

relating to the field of PV system modeling, a single-diode

equivalentmodel (SDeM) [4], double-diode equivalentmodel

(DDeM) [5], and three-diode equivalent model (TDeM) [6]

can be used to represent the PV cell or module. The cell

or module parameters that should be estimated for each PV

model are photocurrent Ip, diode ideality factor n, series

resistance Rs, shunt resistance Rp, and diode-reverse satura-

tion current Isd . For the SDeM, DDeM, and TDeM, respec-

tively, the number of unknown parameters is five, seven, and

nine [7].

Numerous techniques have been reported to estimate the

parameters of the various models based on the experimen-

tal samples or the datasheet information. The methods are

classified as follows: numerical methods, analytical methods,

and heuristics methods [8]–[10]. In the literature, numerical

methods are commonly used; such techniques use numeri-

cal solutions to identify a network of a few non-linear PV

model-related equations [11], [12]. The analytical techniques

use a sequence of generalizations and assumptions to evaluate

the model parameters to obtain explicit equations, usually

depending on multiple critical points on the I-V character-

istics [9], [10], [13]. The authors [14] presented an analytical

method to extract the five parameters of the SDeM, and the

authors also investigated the performance of the parameters

on open-circuit voltage, short-circuit current, and maximum

power point. Biological events typically inspire the heuristic

techniques to approximate the parameters of the model to

solve specific weaknesses and challenges of the first two

techniques, such as differentiability, convexity, and extreme

sensitivity to the initial parameter values. It should be stated

that, because of its precision, reliability, and unregulated

by the initial values, a heuristic approach may have good

outcomes than the other methods [7], [15]–[17].

In recent years, several researchers have made a great deal

of effort to use algorithm-based on metaheuristics to solve

such problems. These structures are influenced by natural

events, such as swarming activities, mechanisms focused

on nature, and physics. Genetic algorithm (GA) [18], [19],

particle swarm optimization [20]–[22], enhanced leader par-

ticle swarm optimization algorithm (PSO) [23], niche particle

swarm optimization in parallel computing algorithm [24],

several versions of differential evolution (DE) [25]–[28],

penalty-based DE algorithm [29], sunflower optimizer [30],

grey wolf optimizer (GWO) [31], whale optimizer algo-

rithm (WOA) [32], harris-hawk optimizer (HHO) [33],

improved salp swarm algorithm (ISSA) [34], several ver-

sion of JAYA algorithm [35], multiple learning backtracking

search algorithm [36], coyote optimization algorithm [37],

teaching-learning-based optimization and its various ver-

sions [38]–[42], political optimizer (PO) [4], evolutionary

shuffled frog leaping algorithm [43], slime-mould optimizer

(SMO) [44], [45], marine predator algorithm (MPA) [46],

equilibrium optimizer (EO) [47], ions motion optimization

(IMO) [48], improved PSO (IPSO) [49], Forensic-based

investigation algorithm [50], and improved learning-search

algorithm [51] are among good heuristic-based structures.

Some studies have endeavored to hybridize a few of these

strategies to boost their performance, such as hybrid grey

wolf optimizer with cuckoo search algorithm [52], hybrid

firefly with pattern search algorithms [53], hybrid grey wolf

optimizer with particle swarm algorithm [54], hybrid WO

with DE algorithm [26], hybrid GA with simulated annealing

algorithm [18], etc. Based on the literature study, the compar-

ison between fewwell-known algorithms based on the control

parameters is presented in Appendix (Refer to Table 25).

It is important to note that the random number generator

is the basis of all the algorithms and approaches mentioned

earlier. It can be concluded that each method has its own pros

and cons, and therefore all complicated problems cannot be

solved by any learning algorithm. Furthermore, there is still

no clear answer, or it is tough to decide that optimization

approach A would be most appropriate for problem B of

many features such as modality, control variables, convexity,

degree of non-linearity, separability, etc., as per the no-free-

lunch (NFL) theorem [55]. In such pursuits, the effort contin-

ues until such an answer is obtained.

On the other side, numerous early efforts have also shown

that several useful optimization techniques, the introduction

of chaos theory can lead to a massive enhancement compared

to its original variant. As a piece of evidence, chaos theory has

been evaluated to produce random sequences because chaotic

patterns are simultaneously deterministic and uncontrollable

and can therefore be seen as a random number generator [56].

Several chaos generators, such as Sprott, Linz-Sprott, Chua,

Rossler, and Lorenz types, have been intended to support data

encryption and parallel computing application areas. Several

other productive features of chaos theory make them perfect

for many engineering applications, such as power systems,

communication systems, image segmentation, feature selec-

tion, mechanical design systems, encrypted systems, and so

on. Moreover, to obtain the parameters of solar PV models,

published studies have integrated chaotic patterns and various

forms of optimization techniques. Artificial bee colony with

the chaotic pattern is employed in [57]. The authors intro-

duced a logistic-chaotic map in [58] to solve updating process

of the JAYA algorithm. The authors of [35] introduced chaotic

adaptive weight factors with the JAYA algorithm to estimate

the parameters of various PV models. In [59], different PV

model parameters are obtained under multiple climatic con-

ditions based on the fractional chaotic ensemble PSO. The

static and dynamic fractional-order parameters of PV models

are estimated in [60] via chaotic and comprehensive learning

PSO. The authors of [61] applied four chaoticmaps during the

parameter identification of SDeM and DDeM to enhance the

basicWO’s productivity. A new variant of the HHO algorithm
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is based on chaotic drifts to obtain the unknown parameters

of PV cells and modules modeled via SDeM and DDeM [62].

Another variant of HHO is combining crisscross algorithm

features and the Nelder-mead simplex method to improve the

solution accuracy [63].

While various optimization techniques have been success-

fully introduced to the extraction of PV module parame-

ters, it is still essential to implement a new algorithm to

achieve greater precision and, as a result, to enhance the

overall efficiency of various industrial Photovoltaic systems,

mainly when there is a wide selection of errors such as

10e-4. Since the NFL theorem suggests that no algorithm can

provide appropriate results and best results in all optimization

problems, these optimization techniques, and their variants

have been developed many times [55]. Despite the various

apparent methods referred to above to identify the ambiguous

parameters of PV models with acceptable performance, and

yet again, there is still space for progress to define the PV

models specifically.

The key objective of this paper is indeed to obtain the

parameters of the PVmodels of SDeMandDDeMby leverag-

ing the significance of combining a chaos map with the basic

gradient-based optimizer (GBO) [64]. Newton’s equations

inspire the GBO algorithm, and the exploration and exploita-

tion balance is maintained by the local escaping operator

and gradient search rule. In the updating stage of the GBO

algorithm, the suggested technique exploits sensitivity to the

initial conditions of systems to check for a new solution and

thereby achieve a desirable improvement in the objective

values, i.e., Root-Mean-Square-Error (RMSE) values [65].

The basic version of the GBO algorithm gets trapped by the

local optima when handling non-linear multimodal objective

functions. In addition, due to the randomness, the conver-

gence speed is low. The basic version needs to be modified

to improve the solution accuracy as well as convergence

speed. Therefore, a chaotic drift is introduced along with the

GBO algorithm to improve the solution accuracy and conver-

gence speed. The development of the basic GBO algorithm

by changing the parameters that govern the exploration and

exploitation stages is one of the key contributions of this

paper, thereby reducing its search space to achieve appropri-

ate balance using the chaotic tent map. The experimental sam-

ple of PV SDeM and DDeM is used to assess the proposed

chaotic-based GBO (CGBO) algorithm. The findings of the

suggested algorithm are contrasted to that of other state-

of-the-art algorithms. The findings demonstrated that the

CGBO is more efficient and superior to different algorithms.

A review of results reveals that the GBO algorithm with a

chaotic-based search sequence outperforms several modern

well-known optimization techniques in terms of reliability

and precision when extracting the parameters of various PV

models. The highlights of the paper are as follows.

• A new version of the GBO algorithm called the CGBO

algorithm is introduced to solve the parameter estima-

tion problem of various PV models.

• The chaotic tent map replaces the randomness of the

GBO algorithm and helps to increase the solution accu-

racy and convergence speed.

• The proposed CGBO is verified on various PV models,

such as SDeM, DDeM, and PV models, and compared

with different state-of-the-art algorithms.

• The performance of CGBO is assessed in terms of the

convergence speed and RMSE values in comparison to

different optimizers.

• The CGBO algorithm is also validated under different

operating conditions and demonstrated high accuracy in

the experimental and optimized values.

The structure of the paper is planned as follows.

Section 2 explains the mathematical modeling of various PV

models; in addition, the problem formulation is also pre-

sented. Section 3 discusses the formulation of the proposed

CGBO algorithm, and Section 4 discusses the experimental

findings in detail. Section 5 delivers the concluding remarks

and future research directions.

II. MODELING OF PHOTOVOLTAIC MODELS AND

PROBLEM FORMULATION

The SDeMandDDeMare considered to be effective PVmod-

els as per the detailed study from various literature [66]–[69].

Therefore, this section of the paper discusses the mathemat-

ical modeling of different photovoltaic models. In addition,

the objective function formulation is also discussed in this

section.

A. MATHEMATICAL MODELLING

Various methodologies were used in the literature for photo-

voltaic cell/module simulation. In a recent study, the equiva-

lent circuit of the cell/module is usually used among all the

current approaches. The key benefit of using this model is

the simplicity with which it can be implemented using the

MATLAB software tool. The preceding Shockley equation

defines the PV cell’s I-V characteristic.

Id = Isd

[

exp

(

q× Vd

aKT

)]

(1)

where Id denotes the diode current, Isd denotes reverse satura-

tion current of the diode, q(= 1.60217646×10−19C) denotes

electron charge, k(= 1.380653 × 10−23J/K) denotes Boltz-

man’s constant, a denotes diode ideality factor, T denotes

temperature in K, and Vd denotes the diode voltage. When

the PN junction gains an electron from the sunlight, a set

of electron-holes is formed in the presence of irradiation.

This produces a potential gap around the junction. At which

point, charge carriers continue to pass via the external circuit,

resulting in an electrical current Ip, which is referred to as the

photocurrent. As a result, the ideal model of the cell has a

current generator connected in parallel with the diode. The

output current I of the PV cell for the new model is given in

Eq. 2.

I = Ip − Isd

[

exp

(

q× Vd

aKT

)]

(2)
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FIGURE 1. SDeM of the PV cell.

Since the PV cell supplies ohmic losses, the model has to

consider the effect of series resistance Rs. Therefore, the out-

put current of the PV cell by considering the impact of Rs is

given in Eq. 3.

I = Ip − Isd

[

exp

(

q (V + IRs)

aKT

)

− 1

]

(3)

where V denotes the output voltage. However, the model

discussed above is not accurate because the model does not

consider the effect of the leakage current of the cell. There-

fore, the impact of shunt resistance needs to be considered

when describing the actual model of the PV cell. By combin-

ing all the elements and parameters, the PV cell is modeled

initially as SDeM. The SDeM is a simple and most preferred

PV model for the analysis. The SDeM is shown in Fig. 1.

Furthermore, now, the total output current of the PV cell is

given in Eq. 4.

I = Ip − Isd

[

exp

(

q (V + IRs)

aKT

)

− 1

]

−
(V + IRs)

Rp
(4)

From Eq. 4, it is observed that the PV SDeM is defined by

five uncertain variables, which are presented in Eq. 5.

ξ =
{

Ip, Isd , a,Rs,Rp
}

(5)

Recombination is an important failure in an actual cell that

cannot be adequately modeled with one diode. As a result,

a second diode is connected to the SDeM to correct for the

impact of composite current failure. Fig. 2 displays the circuit

of the DDeM. As a consequence, the I-V characteristic is

given in Eq. 6.

I = Ip − Isd1

[

exp

(

q (V + IRs)

a1KT

)

− 1

]

− Isd2

[

exp

(

q (V + IRs)

a2KT

)

− 1

]

−
(V + IRs)

Rp
(6)

where Isd1 and Isd2 denote the saturation and diffusion cur-

rents, respectively, and a1 and a2 refer to the recombination

and diffusion diode-ideality factors, respectively.

From Eq. 6, it is observed that the PV DDeM is defined by

seven uncertain variables, which are presented in Eq. 7.

ξ =
{

Ip, Isd1, Isd2, a1, a2,Rs,Rp
}

(7)

FIGURE 2. DDeM of the PV cell.

FIGURE 3. Equivalent circuit of the PV module.

The mathematical equations of the SDeM and DDeM can

be interpreted as follows in the context of a PV module

composed of Np cells parallel-connected and Ns cells series-

connected. The equivalent circuit of the PV module is illus-

trated in Fig. 3.

I = NpIp − NpIsd



exp





q
(

V +

(

Ns

/

Np

)

IRs

)

aNsKT



− 1





−

(

V +

(

Ns

/

Np

)

IRs

)

(

NsNp
)

Rp
(8)

I = NpIp − NpI sd1



exp





q
(

V +

(

Ns

/

Np

)

IRs

)

a1NsKT



− 1





−Isd2



exp





q
(

V +

(

Ns

/

Np

)

IRs

)

a2NsKT



− 1





−

(

V +

(

Ns

/

Np

)

IRs

)

(

Ns

/

Np

)

Rp

(9)

Both SDeM and DDeM of the PV cell/module have unde-

fined variables that can be calculated numerically, analyti-

cally, or using optimization techniques.
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B. OBJECTIVE FUNCTION FORMULATION

The undefined SDeM and DDeM parameters of Eqs. 5 and

7 must be calculated for both cell and module. The uncertain

variables are being used as a decision variable in the optimiza-

tion procedure. The root mean square error (RMSE) between

the optimized and experimental samples is being used as

an objective function. Integral absolute error (IAE), relative

error (RE), and RMSE are determined using the following

expressions.

IAE i = |Iact − Iest | (10)

RE =
Iact − Iest

Iact
(11)

IAEP = |Pact − Pest | (12)

RMSE =

√

√

√

√

√

1

N

N
∑

j=1

(

Ii − I(Vi,ξ )
)2

(13)

where Iact defines the experimental current, Iest refers to the

optimized current, IAEi denotes integral absolute error based

on current, IAEp denotes integral absolute error based on

power, N refers to the number of experimental voltage and

current samples (Vi, Ii), and I(Vi,ξ ) refers to the optimized

value as a function of the undefined variables ξ, which are

defined by Eqs. 5 and 7.

The objective function or fitness function is a func-

tion that evaluates the degree of correlation between the

configuration of variables that characterize the model and

experimental results. The objective function in this analy-

sis observes the variation between experimental and pre-

dicted values. The parameter estimation aims to reduce the

error between the expected parameters and the experimental

parameter, which is represented as follows.

Min (RMSE) = Min







√

√

√

√

√

1

N

N
∑

j=1

(

Ii − I(Vi,ξ )
)2






(14)

When the precise model parameters are obtained,

the objective function could ideally be zero. Since the frame-

works are sowell-defined and no data on the exact predictions

of variables is available, the degree of coordination depends

mainly on the experimental sample. Consequently, every

reduction in the RMSE value is crucial, meaning that the

developer’s knowledge of the real parameter estimates has

increased.

III. PROPOSED CHAOTIC WITH GRADIENT-BASED

OPTIMIZER (CGBO) ALGORITHM

This section of the paper describes the basic variant of

the GBO algorithm. Then, the process of extending the

GBO to an improved CGBO is presented, and how CGBO

is applied to the parameter estimation problem is also

explained.

A. ORIGINAL GRADIENT-BASED OPTIMIZER (GBO)

ALGORITHM

Many circumstances, such as optimal power flow, economic

load dispatch, solar PV parameter estimation, controller tun-

ing, economic emission dispatch, could pose challenging

tasks, as well as various types of objectives, such as multi-

objective, many-objective, large-scale objectives, and fuzzy

optimization. Regardless of whether the problem is a chal-

lenge or not, the real-time application requires a timely

solution. In general, algorithms can be divided into the fol-

lowing categories based on behaviors: the algorithm that uses

exact information, gradient, and sub-gradient information

and slope, and the algorithm that use anticipated predicted

solutions. Most of these methodologies could have a suc-

cessful result, while others have unpredictable effectiveness.

The GBO algorithm is a new population and gradient-based

metaheuristic optimization algorithm [64]. To explore the

whole search space, it primarily employs a set of vectors and

two operators.

1) INITIALIZATION PHASE

In GBO, the variable α is considered to be a transformative

variable that transforms from the exploration phase to the

exploitation phase. The probability rate is the only control

variable in the GBO algorithm. The population size N and

the number of iterations are chosen based on the problem

complexity. The individual in the population is refereed as a

vector, and thus GBO comprises N vectors in D-dimensional

search space. The vector is expressed as follows.

Xd,x =
[

X1,x ,X2,x , . . . ,XD,x

]

x = 1, 2, . . . ,N

d = 1, 2, . . . ,D (15)

The initial position of the vector individuals is generated

randomly in D-dimensional search space. The same has been

expressed as follows.

Xx = Xl + rand (0, 1) × (Xu − Xl) (16)

where rand denotes random number between [0,1], and Xu
and Xl are the upper and lower boundaries of the decision

variables X .

2) GRADIENT SEARCH RULE (GSR)

The vector movements are controlled in the gradient search

rule (GSR), which obtains quality solutions by improving the

exploration in the promising area. The GSR helps GBO to

strengthen its exploration phase and the convergence rate.

The GSR permits the GBO to fine-tune for the random

movements to avoid premature convergence and improve the

exploration ability. The convergence rate is simplified by

means of the direction of movement (DM). So, the current

position of the population is updated using Eq. 14.

X1mx = xmx + DM − GSR(17) (17)

GSR = ρ1 × randn×
21x × xmx

(xw − xb + ε)
(18)
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DM = ρ2 × rand ×
(

xb − xmx
)

(19)

The vector updates its position by Eq. 17, and the updated

vector is referred to as X1mx . The termsm denotes the iteration

and ρ1 denotes important control variables to balance explo-

ration and exploitation. The variable ε is within the range of

[0, 0.1]. The best and the worst solutions are denoted as xb
and xw, respectively.

ρ1 = 2 × α × rand − α (20)

α =

∣

∣

∣

∣

β × sin

(

3π

2
+ sin

(

3π

2
× β

))
∣

∣

∣

∣

(21)

β = (βmax − βmin) ×

(

1 −

(

m

mmax

)3
)2

+ βmin (22)

where mmax denotes the maximum number of iterations,

randn denotes uniformly distributed random number, βmax =

1.2 and, βmin = 0.2. The parameter δ verifies that the 1x

is altered during every iteration or no, and 1x denotes the

difference between the current position and the randomly

chosen position.

1x = |step| × rand
(

1 : Np
)

(23)

step =
δ +

(

xb − xmr1
)

2
(24)

δ = rand × 2 ×

∣

∣

∣

∣

xmr1 + xmr2 + xmr3 + xmr4
4

− xmx

∣

∣

∣

∣

(25)

where r1, r2, r3, and r4(r1 6= r2 6= r3 6= r4 6= n) are integers,

and the values are chosen randomly between [1, D]. The step

size step is obteined by xb and xmr1. The additional random

variable which helps during the exploration stage is denoted

as ρ2 and it is expressed as follows.

ρ2 = 2 × α × rand − α (26)

And now, Eq. 17 can be rewritten as follows.

X1mx = xmx − ρ1 × randn×
21x×

x

m

x

(

ε + ypmx − yqmx
)

+ρ2 × rand ×
(

xb − xmx
)

(27)

A new population vector X2mx is expressed in Eq. 28.

X2mx = xb − ρ1 × randn×
21x × xmx

(

ε + ypmx − yqmx
)

+ρ2 × rand ×
(

xmr1 − xmr2
)

(28)

yqx = rand ×

(

[zx+1+xx]

2
− 1x × rand

)

(29)

ypx = rand ×

(

[zx+1+xx]

2
+ 1x × rand

)

(30)

The search direction technique improves the exploitation

stage. The searching process is initiated as per Eq. 28 for

the local search alone, and Eq. 27 is used for global search

alone. Thus, both search processes are required to improve the

exploration and exploitation phases. Based on the above-all

TABLE 1. Various chaotic maps.

discussions, the solution xm+1
x is updated during the next

iteration as follows.

X3mx = Xmx − ρ1 ×
(

X2mx − X1mx
)

(31)

xm+1
x = ra ×

(

rb × X1mx + (1 − rb) × X2mx
)

+ (1 − ra) ×X3mx (32)

where ra and rb denote random numbers between [0,1].

3) LOCAL ESCAPING OPERATOR (LEO)

The LEO is a very useful operator in GBO to solve com-

plex optimization problems. By utilizing several possible

solutions, The LEO generates a quality solution XmLEO using

solutions, such as X1mx , X2
m
x , x

m
r1, x

m
r2, xb, and x

m
k . Eq. 33 is

used to produce XmLEO.

if rand < Pr

if rand < 0.5

XmLEO = Xm+1
x + a×

(

a1 × xb − a2 × xmk
)

+b× ρ1 ×
(

a3 × (X2mx − X1mx
)

+ a2 × (xmr1 − xmr2))/2

Xm+1
x = XmLEO

else

XmLEO = xb + a×
(

a1 × xb − a2 × xmk
)

+ b× ρ1

×(a3 × (X2mx − X1mx ) + a2 × (xmr1 − xmr2))/2

end

end (33)
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FIGURE 4. Various chaos maps number distribution.

where b referred to as a normally distributed random number

with a mean of 0 and standard deviation of 1, a referred to as

a uniform random number between [−1, 1], and Pr denotes

the probability rate. The random numbers, such as a1, a2, and

a3 are expressed as follows.

a1 = Z1 × rand × 2 + (1 − Z1) (34)

a2 = a3 = Z1 × rand + (1 − Z1) (35)

The value of Z1 is 0 or 1. The solution x
m
k is calculated using

Eq. 33.

xmk =

{

xrand , if u2 < 0.5

xmp , otherwise
(36)

xrand = Xl + rand × (Xu − Xl) (37)

where xrand denotes the new solution, xmp denotes the solution

of random population, and u2 denotes a random number

between [0,1]. Thus, Eq. 36 is revised as follows.

xmk = Z2 × xmp + (1 − Z2) × xrand (38)

The value of Z1 is 0 or 1 based on the value of u2. The

pseudocode of the GBO is presented in Algorithm 1.

B. GRADIENT-BASED OPTIMIZER WITH CHAOTIC DRIFT

In the current decade, there has been a trend to use chaotic

behaviors to replace the heuristic algorithm’s randomness

in order to capture the strongest stochastic and statistical

properties of chaotic randomization. Various chaotic maps

are listed in Table 1, and the respective map distribution is

illustrated in Fig. 4.

All the chaos maps are started with an initial value of 0.7.

The update equation of GBO is shown in Eq. 32, in which ra
and rb are the random numbers between 0 and 1. The update

equation of the GBO is modified by replacing the random

numbers ra and rb with the chaos maps listed in Table 1 to

improve the solution accuracy and convergence speed of the

basic version of the GBO algorithm. The modified update

Algorithm 1 Pseudocode of the GBO Algorithm

Step 1: Initialization Phase

Assign values for Pr, mmax , and ε and

asses the fitness function value,

f (Xx) , x = 1, 2, . . . ,N .

Specify xmw and xmb .

Step 2: Main Loop

while (m < mmax)

for x = 1: N

Randomly choose r1 6= r2 6=

r3 6= r4 6= n in the range of

[1, nN ] Obtain the solution

xm+1
x

using Eq. 32

end for

Local Escaping Operator (LEO)

if rand < Pr
Obtain the solution

xmLEO using Eq. 33

Xm+1
x = xmLEO

end if

Update the solutions, xmw and xmb
end for

end while

Return the best solution

equation of the GBO algorithm is presented in Eq. 39,

in whichCa andCb are chaotic numbers generated by various

chaos maps. After many trials, it is found that the random

number generated by the tent map is superior to all other maps

listed in Table 1. Therefore, in this paper, it is decided to select

a tent map to generate Ca and Cb.

xm+1
x = Ca ×

(

rb × X1mx + (1 − Cb) × X2mx
)

+ (1 − Ca) ×X3mx (39)
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TABLE 2. Parameter settings of all selected algorithms.

The chaotic tent sequence is presented in Eq. 40.

Cm+1 =

{

Cm
0.7

, Cm < 0.7
10
3 (1 − Cm) , Cm ≥ 0.7

(40)

where Cm denotes the random number ofmth iteration and C1

is generated randomly between [0, 1], and its initial value is

selected as 0.6. Fig. 5 illustrates the overall flowchart of the

proposed CGBO algorithm.

IV. SIMULATION RESULTS AND DISCUSSIONS

This section of the paper discusses the experimental study of

the proposed CGBO algorithm. Therefore, the performance

of CGBO is validated on different PV models of various PV

cells and PV modules. The results obtained by the proposed

CGBO algorithm are compared with other state-of-the-art

algorithms, such as GBO, MPA, EO, IMO, WOA, PSO,

and IPSO. The simulation is carried out using MATLAB

simulation software through Laptop with an i5 4th generation

processor, 2.4 GHz clock frequency, and 8 GB memory.

For all selected algorithms, the population is 40, and the

maximum number of iterations is selected as 1000. For a fair

comparison, each algorithm is run 30 times. For the GBO

algorithm, the probability rate is selected as 0.5, as suggested

TABLE 3. Boundaries of different PV models.

TABLE 4. Decision variables of SDeM of the RTC France Si PV cell.

by the inventor of the GBO algorithm. The control parameters

of all other algorithms are selected based on literature and

several trials. The parameter settings are listed in Table 2.

The readers are encouraged to read the respective literature

for more information about the control parameters.

A total of five different case studies are considered to vali-

date the proposed CGBO algorithm. Case study 1 deals with

SDeM and DDeM of the RTC France Si solar cell, case study

2 deals with SDeM and DDeM of the PVM752 GaAs cell,

case study 3 deals with SDeM and DDeM of the Photowatt

PWP-201 PV module, case study 4 deals with SDeM of the

KC200GT PV module under different operating conditions,

and case study 5 deals with SDeM of the SM55 PV module

under various operating conditions. The lower and upper

limits of different decision variables of PV cells and PV

modules are listed in Table 3.

The performance of the algorithm is compared with other

selected algorithms in terms of the RMSE, IAE, RE, runtime

(RT), and convergence curve. A low value of RMSE indicates

that the optimized data is nearer to the experimental data,

i.e., the selected algorithm offers high efficiency in identi-

fying the cell or module variables. Therefore, the error must

be reduced as small as possible. RE and IAE are also used

to highlight the error between the optimized data and the

experimental sample at each voltage sample. The workflow
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FIGURE 5. Flowchart of the proposed CGBO algorithm.

FIGURE 6. Workflow of PV parameters identification using CGBO
algorithm.

of the CGBO application to identify the uncertain parameters

of various PV models is illustrated in Fig. 6.

A. CASE STUDY–1

In this case study, the performance of the proposed CGBO

algorithm is validated on SDeM and DDeM of the RTC

France Si solar PV cell. For the simulation, 26 experimental

samples are collected at 1000 W/m2 irradiance and 33 ◦C

temperature. As discussed earlier, each selected algorithm

is run 30 times to get fair results. Each algorithm tries

to minimize the RMSE value by optimizing five decision

variables for SDeM or seven decision variables for DDeM.

The decision variables optimized by all selected algorithms

are listed in Table 4 and Table 6. It is observed from

Table 4 that both GBO and the proposed CGBO produce

the same error for SDeM, i.e., 9.8602E-04; however, the

proposed CGBO is better than GBO in terms of reliability

and convergence speed. From Table 6, it is observed that

the proposed CGBO algorithm produces less RMSE value,

i.e., 9.8251E-04. In addition to RMSE, the proposed CGBO

algorithm also gives very less RE, IAEi, and IAEp, as listed

in Table 5 (for SDeM) and Table 7 (for DDeM). For SDeM of

the RTC France Si PV cell, the average values of RE, IAEi,

and IAEp are 4.74E-03, 8.28E-04, and 3.36 E-04, respec-

tively, and for DDeM of the RTC France Si PV cell, the aver-

age values of RE, IAEi, and IAEp are 4.47E-03, 8.18E-04,

and 8.78 E-04, respectively. In order to visualize the I-V

characteristics of both SDeM and DDeM of the PV cell,

the characteristic curves are illustrated in Fig. 7. From Fig. 7,
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TABLE 5. RE and IAE of SDeM of the RTC france Si PV cell.

TABLE 6. Decision variables of DDeM of the RTC france Si PV cell.

FIGURE 7. I-V characteristic curves of the RTC France Si cell; (a) SDeM, (b) DDeM.

it is observed that the experimental sample and estimated

data are matching accurately. Therefore, from the above-all

discussions, it is proved that the proposed CGBO algorithm

is superior to all selected algorithms. Next to the CGBO

algorithm, the performance of GBO is better than all other

algorithms.
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TABLE 7. RE and IAE of DDeM of the RTC france Si PV cell.

TABLE 8. Decision variables of SDeM of the PVM752 GaAs solar cell.

B. CASE STUDY–2

In this case study, the performance of the proposed

CGBO algorithm is validated on SDeM and DDeM of the

PVM752GaAs solar cell. For the simulation, 44 experimental

samples are collected at 1000 W/m2 irradiance and 25 ◦C

temperature. Each algorithm tries to minimize the RMSE

value by optimizing five decision variables for SDeM or

seven decision variables for DDeM. The decision variables

optimized by all selected algorithms are listed in Table 8 and

Table 10. It is observed from Table 8 that the proposed

CGBO algorithm can obtain minimum RMSE for SDeM,

i.e., 2.52E-04, and from Table 10, it is observed that the

proposed CGBO algorithm can obtain less RMSE value, i.e.,

2.22E-04. It is also observed from Table 8 and Table 10 that

the PSO algorithms search the optimal solution outside the

search space, which is not suitable for parameter estimation
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TABLE 9. RE and IAE of SDeM of the PVM752 GaAs solar cell.

problems. Therefore, the PSO algorithm requires an effective

constraint handling mechanism to bring the particles inside

the search space. In addition, the improved PSO algorithm

fails to optimize the parameter estimation problem. It is

wholly stuck at local optima, and it could not find the optimal

global solution. As similar to PSO, an improved PSO is also

not suitable for parameter estimation problems. In addition

to RMSE, the proposed CGBO algorithm also gives very less

RE, IAEi, and IAEp, as listed in Table 9 (for SDeM) and

Table 11 (for DDeM). For SDeM of the PVM752 GaAs solar

cell, the average values of RE, IAEi, and IAEp are 6.96E-

03, 1.83E-04, and 1.41E-04, respectively, and for DDeM of

the PVM752 GaAs solar cell, the average values of RE, IAEi,

and IAEp are 6.94E-03, 1.82E-04, and 5.81E-03, respectively.

In order to visualize the I-V characteristics of both SDeM

and DDeM of the PVM752 GaAs solar cell, the characteristic
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TABLE 10. Decision variables of DDeM of the PVM752 GaAs solar cell.

FIGURE 8. I-V characteristic curves of the PVM752 GaAs solar cell; (a) SDeM, (b) DdeM.

FIGURE 9. I-V characteristic curves of the Photowatt-PWP-201 PV module; (a) SDeM, (b) DdeM.

curves are illustrated in Fig. 8. From Fig. 8, it is observed

that the experimental sample and estimated data are match-

ing accurately. Therefore, from the above-all discussions,

it is proved that the proposed CGBO algorithm is superior

to all selected algorithms for the estimation of uncertain

variables of PVM752 GaAs solar cell. Next to the CGBO

algorithm, the performance of GBO is better than all other

algorithms.
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TABLE 11. RE and IAE of DDeM of the PVM752 GaAs solar cell.

C. CASE STUDY–3

In this case study, the performance of the proposed

CGBO algorithm is validated on SDeM and DDeM of

the Photowatt-PWP-201 PV module. For the simulation,

25 experimental samples are collected at 1000 W/m2 irradi-

ance and 45 ◦C temperature. The decision variables optimized
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TABLE 12. Decision variables of SDeM of the Photowatt-PWP-201 PV module.

TABLE 13. RE and IAE of SDeM of the Photowatt-PWP-201 PV module.

TABLE 14. Decision variables of DDeM of the Photowatt-PWP-201 PV module.

by all selected algorithms are listed in Table 12 and Table 14.

It is observed from Table 12 that both GBO and the proposed

CGBO produce the same error for SDeM, i.e., 2.4251E-04,

and from Table 14, it is observed that both GBO and the

proposed CGBO produce the same error for DDeM, i.e.,

2.4251E-04, however, the proposed CGBO is better than

GBO in terms of reliability and convergence speed. In addi-

tion to RMSE, the proposed CGBO algorithm also gives very
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TABLE 15. RE and IAE of SDeM of the Photowatt-PWP-201 PV module.

TABLE 16. Decision variables of the KC200GT PV module obtained by all algorithms under different temperature conditions.

less RE, IAEi, and IAEp, as listed in Table 13 (for SDeM)

and Table 15 (for DDeM). For SDeM of the Photowatt-

PWP-201 PV module, the average values of RE, IAEi, and

IAEp are 3.25E-04, 1.96E-03, and 2.07E-02, respectively, and

for DDeM of the Photowatt-PWP-201 PV module, the aver-

age values of RE, IAEi, and IAEp are 3.26E-04, 1.96E-03,

and 2.07E-03, respectively. In order to visualize the I-V

characteristics of both SDeM and DDeM of the Photowatt-

PWP-201 PV module, the characteristic curves are illus-

trated in Fig. 9. From Fig. 9, it is observed that the exper-

imental sample and estimated data are matching accurately.

Therefore, from the above-all discussions, it is proved that
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TABLE 17. Decision variables of the KC200GT PV module obtained by all algorithms under different irradiance conditions.

FIGURE 10. I-V curves of the KC200GT PV module under different temperature
conditions.
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FIGURE 11. I-V curves of the KC200GT PV module under different irradiance
conditions.

FIGURE 12. I-V curves of the SM55 PV module under different temperature conditions.

FIGURE 13. I-V curves of the SM55 PV module under different irradiance conditions.
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TABLE 18. Decision variables of the SM55 PV module obtained by all algorithms under different temperature conditions.

FIGURE 14. Convergence curve of all algorithms for case study – 1; (a) SDeM, (b) DDeM.

the proposed CGBO algorithm is superior to all selected

algorithms for the estimation of uncertain variables of the

Photowatt-PWP-201 PV module. As similar to previous case

studies, next to the CGBO algorithm, the performance of

GBO is better than all other algorithms.

D. RESULTS BASED ON DATASHEET INFORMATION

The proposed CGBO algorithm is further examined for its

feasibility study in solving the parameter estimation problem

of large photovoltaic modules. Therefore, two commercial

photovoltaic modules, namely KC200GT and SM55, are
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TABLE 19. Decision variables of the SM55 PV module obtained by all algorithms under different irradiance conditions.

considered for further investigations. A total of 333 sam-

ples were collected from the datasheet at different irradi-

ance and temperature levels. The KC200GT PV module is

a multi-crystalline panel, and the SM55 PV module is a

monocrystalline panel for industrial applications, which has

36 PV series-connected cells. The value of the Isc finds the

initial range of the Ip. The temperature coefficient of the

short-circuit current α has been taken from the datasheet (for

SM55, α = 1.2mA/
◦
C and for KC200GT, α = 3.18mA/

◦
C).

The Isc is obtained using the datasheet information at standard

test condition (STC), and it can be expressed in Eq. 41.

Isc (T ,G) =
G

GSTC
×I sc−STC + (T − TSTC ) α (41)

where Isc−STC denotes the Isc at STC, GSTC and TSTC rep-

resent the irradiance and temperature at STC, and G and T

denote the actual irradiance and temperature.
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TABLE 20. Statistical results of all algorithms for case study-1.

TABLE 21. Statistical results of all algorithms for case study-2.

1) CASE STUDY–4

At different temperatures and irradiance, the parameter of

the KC200GT PV module is obtained using all selected

algorithms. The proposed CGBO and all other selected

algorithms obtain the best parameters at different irradi-

ance (200 W/m2, 400 W/m2, 600 W/m2, 800 W/m2, and

1000 W/m2) with 25 ◦C constant temperature. Similarly,

the parameters are obtained at different temperatures (25 ◦C,

50 ◦C, and 75 ◦C) with 1000 W/m2 constant irradiance.

Table 16 lists the optimized parameters of the KC200GT PV
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FIGURE 15. Convergence curve of all algorithms for case study – 2; (a) SDeM, (b) DDeM.

TABLE 22. Statistical results of all algorithms for case study-3.

module under different temperature conditions by all selected

algorithms. For all temperature conditions, the proposed

CGBO algorithm obtains less RMSE value, i.e., 6.4518E-

03 (for 25◦C), 2.7581E-03 (for 50◦C), and 4.4558E-03 (for

75◦C) than all other algorithms. Similarly, Table 17 lists

the optimized parameters under different irradiance condi-

tions by all selected algorithms. For all irradiance condi-

tions, the proposed CGBO algorithm obtains less RMSE

value, i.e., 1.5445E-03 (for 1000W/m2), 5.5503E-03 (for

800W/m2), 5.0603E-03 (for 600W/m2), 3.8315E-03 (for

400W/m2), and 1.1614E-03 (for 200W/m2) than all other

algorithms. Further, it is also observed that the PSO algorithm
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FIGURE 16. Convergence curve of all algorithms for case study – 3; (a) SDeM, (b) DDeM.

FIGURE 17. Convergence curve of all algorithms for case study–4.

is searching for the solution outside the boundary, and there-

fore, an effective constraint handling mechanism is required

to bring the particles inside the boundary. Also, the IPSO

algorithm is stuck at local optima, and therefore, the solution

accuracy is very poor. Therefore, it is decided not to select the

PSO and IPSO algorithm for parameter estimation problems.

Figs. 10-11 demonstrates the accuracy of fitting the estimated

parameters with the experimental parameters under different

temperatures (with constant irradiance) and different irradi-

ance (with constant temperature), which proves further the

effectiveness of the proposed CGBO algorithm. Therefore,

based on RMSE values and the I-V curve fitness, it is proved

that the proposed CGBO algorithm is superior to all selected

algorithms. Next to the CGBO algorithm, the basic variant

of the GBO algorithm is performing better than all other

algorithms.

2) CASE STUDY–5

As similar to case study–4, at different temperatures and

irradiance, the parameter of the SM55 PVmodule is obtained

using all selected algorithms. The proposed CGBO and all

other selected algorithms obtain the best parameters at differ-

ent irradiance (200 W/m2, 400 W/m2, 600 W/m2, 800 W/m2,

and 1000 W/m2) with 25 ◦C constant temperature. Similarly,

the parameters are obtained at different temperatures (25 ◦C,

40 ◦C, and 60 ◦C) with 1000 W/m2 constant irradiance. The

experimental samples are listed in the Appendix (refer to
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TABLE 23. Statistical results of all algorithms for case study-4.
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TABLE 23. (Continued.) Statistical results of all algorithms for case study-4.

FIGURE 18. Convergence curve of all algorithms for case study–5.

Table 26 and Table 27). Table 18 lists the optimized parame-

ters of the KC200GT PV module under different temperature

conditions by all selected algorithms. For all temperature con-

ditions, the GBO and the proposed CGBO algorithm obtains

less RMSE values, i.e., 1.1511E-03 (for 25◦C), 3.7888E-

03 (for 40◦C), and 3.7804E-03 (for 60◦C) than all other

algorithms. Similarly, Table 19 lists the optimized parameters

under different irradiance conditions by all selected algo-

rithms. For all irradiance conditions, the proposed CGBO

algorithm obtains less RMSE value, i.e., 1.1455E-03 (for

1000W/m2), 6.2858E-03 (for 800W/m2), 8.1329E-03 (for

600W/m2), 7.0761E-03 (for 400W/m2), and 5.2054E-03 (for

200W/m2) than all other algorithms. Like previous case stud-

ies, the PSO algorithm is searching for the solution outside the

boundary. Therefore, it is decided not to select the PSO algo-

rithm without a constraint handling mechanism for parameter

estimation problems. Figs. 12-13 demonstrates the accuracy

of fitting the estimated parameters with the experimental
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TABLE 24. Statistical results of all algorithms for case study-5.
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TABLE 24. (Continued.) Statistical results of all algorithms for case study-5.

TABLE 25. A brief comparison of various algorithms using specific parameters.

parameters under different temperatures (with constant irra-

diance) and different irradiance (with constant temperature),

which proves further the effectiveness of the proposed CGBO

algorithm. Therefore, based on RMSE values and the I-V

curve fitness, it is proved that the proposed CGBO algorithm

is superior to all selected algorithms. Next to the CGBO algo-

rithm, the basic variant of the GBO algorithm is performing

better than all other algorithms.

E. PERFORMANCE ANALYSIS

The performance of the proposed CGBO algorithm is fur-

ther verified by analyzing the statistical data for the first

three case studies. The statistical data, such as Min, Max,

Mean, Median, STD, and RT, are obtained for all selected

algorithms. The statistical data based on mean RMSE values

are compared with other selected algorithms, and the rank is

provided based on minimum RMSE values.
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TABLE 26. SM55 - experimental data - different irradiance at constant temperature.

For case study–1, all the statistical data are listed

in Table 20. From Table 20, it is observed that both GBO and

CGBO algorithms produce the same RMSE values; however,

the rank is provided based on the STD and RT values. Out of

eight algorithms, the IMO algorithm holds the first position

in terms of RT, followed by IPSO, PSO, CGBO, GBO,WOA,

MPA, and EO. However, based on reliability (minimumSTD)

and Min values, the proposed CGBO holds the first position,

followed by GBO, EO, IMO, MPA, IPSO, PSO. To visualize

the convergence behavior of all algorithms, the convergence

curves for SDeM and DDeM are illustrated in Fig. 14. From

Fig. 14, it is observed that the convergence speed of the

proposed CGBO algorithm is high compared to all other

algorithms.

For case study–2, all the statistical data are listed

in Table 21. Out of eight algorithms, the IPSO algorithm holds

the first position in terms of RT, followed by PSO, IMO,

CGBO, GBO, MPA, WOA, and EO. However, based on reli-

ability (minimum STD) andMin values, the proposed CGBO

holds the first position, followed by GBO, MPA, WOA, EO,

IMO, PSO, and IPSO. Both PSO and IPSO fail to find the

global optima as per the earlier discussions. To visualize

the convergence behavior of all algorithms for case study-2,

the convergence curves for SDeM and DDeM are illustrated

in Fig. 15. From Fig. 15, it is observed that the convergence

speed of the proposed CGBO algorithm is high compared to

all other algorithms.

For case study-3, all the statistical data are listed in Table

22. Out of eight algorithms, the IMO algorithm holds the

first position in terms of RT, followed by IPSO, PSO,

CGBO, GBO, WOA, MPA, and EO. However, based on

reliability (minimum STD) and Min values, the proposed

CGBO holds the first position, followed by GBO, EO, MPA,

WOA, IMO, IPSO, and PSO. To visualize the convergence
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TABLE 27. SM55 - experimental data - different temperature at constant irradiance.

behavior of all algorithms for case study - 3, the convergence

curves for SDeM and DDeM are illustrated in Fig. 16. From

Fig. 16, it is observed that the convergence speed of the

proposed CGBO algorithm is high compared to all other

algorithms.

For case study–4, all the statistical data are listed

in Table 23. Out of eight algorithms, the IMO algorithm holds

the first position in terms of RT, followed by PSO, IPSO,

CGBO, GBO, WOA, MPA, and EO. However, based on reli-

ability (minimum STD) andMin values, the proposed CGBO

holds the first position, followed by GBO, EO, IMO, WOA,

MPA, IPSO, and PSO. To visualize the convergence behavior

of all algorithms for case study - 4, the convergence curves for

testing conditions are illustrated in Fig. 17. From Fig. 17, it is

observed that the convergence speed of the proposed CGBO

algorithm is high compared to all other algorithms.

For case study–5, all the statistical data are listed in Table

24. Out of eight algorithms, the IMO algorithm holds the first

position in terms of RT, followed by PSO, IPSO, CGBO,

GBO, WOA, MPA, and EO. However, based on reliability

(minimum STD) and Min values, the proposed CGBO holds

the first position, followed by GBO, EO, MPA, IMO, WOA,

IPSO, and PSO. To visualize the convergence behavior of

all algorithms for case study-5, the convergence curves for

testing conditions are illustrated in Fig. 18. From Fig. 18, it is

observed that the convergence speed of the proposed CGBO

algorithm is high compared to all other algorithms.

As per the discussions, the proposed CGBO is superior to

all other algorithms in identifying the best unknown param-

eters of the SDeM, DDeM, and PV module models. From

the experimental findings, statistical analysis, and the per-

formance comparison with other selected algorithms, it is

concluded that the proposed CGBO algorithm can obtain

the parameters of various PV models, including commer-

cial modules. Based on the performance measures, including

Min, Mean, Max, Mean, STD, RT, and rank, the effective-

ness of the proposed CGBO algorithm is proved. Utiliz-

ing the chaotic map with the GBO algorithm benefits the

CGBO algorithm to obtain excellent results due to the robust

exploitation and exploration capabilities.

V. CONCLUSION

This paper proposes a tent chaotic map-based GBO to

improve the solution accuracy and speed up the convergence
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rate of GBO while analyzing the photovoltaic model parame-

ter identification optimization problem. CGBO, an improved

variant of GBO, has a simple structure and is straightfor-

ward to execute. The efficiency of CGBO is thoroughly

assessed by comparing it to the original GBO as well as the

other six state-of-the-art algorithms. Experiments on various

photovoltaic models under different environmental condi-

tions show that the proposed CGBO can produce noticeably

excellent performance than all other selected algorithms in

terms of solution accuracy and convergence speed. More pre-

cisely, the proposed CGBO can achieve lower RMSE values,

lower STD values, and quick convergence, thereby placing

first among all other selected algorithms. In addition, the I-V

characteristics generated by the proposed CGBO algorithm

are very similar to the experimental samples. To summarize,

the proposed CGBO algorithm extracts more precise and

stable parameters with a quicker convergence speed, making

it a promising solution to parameter estimation problems.

This study also introduces several opportunities for many

other similar problems that require a highly competitive opti-

mization technique. The suggested CGBO algorithm is not

just an effective method for identifying the parameters of

photovoltaic models, but it is also being developed for use and

evaluation in identifying an effective solution to other engi-

neering problems, such as information fusion, deep learning,

machine learning, multipath routing, feature selection, image

processing, image retrieval algorithm, social evolution mod-

eling, wireless sensor networks, water pollution prediction,

and disease diagnosis. In the future, the proposed CGBO

algorithm is expected to apply in discrete optimization, indus-

trial optimization problems, and it can also be applied to

parameter optimization in renewable energy systems.
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