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Abstract. The inverse problem for time-harmonic acoustic wave scattering
to recover a sound-soft obstacle from a given incident field and the far field
pattern of the scattered field is considered. We split this problem into two
subproblems; first to reconstruct the shape from the modulus of the data and
this is followed by employing the full far field pattern in a few measurement
points to find the location of the obstacle. We extend a nonlinear integral
equation approach for shape reconstruction from the modulus of the far field
data [6] to the three-dimensional case. It is known, see [13], that the location
of the obstacle cannot be reconstructed from only the modulus of the far field
pattern since it is invariant under translations. However, employing the un-
derlying invariance relation and using only few far field measurements in the
backscattering direction we propose a novel approach for the localization of
the obstacle. The efficient implementation of the method is described and the
feasibility of the approach is illustrated by numerical examples.

1. Introduction. In practical applications such as nondestructive testing, radar,
sonar or medical imaging, the inverse obstacle scattering problem for acoustic waves
occurs for frequencies in the resonance region, that is, for scatterers and wave num-
bers k such that the wavelength 2π/k is of a comparable size to the diameter of
the scatterer. This paper is devoted to a method for shape reconstruction of three-
dimensional obstacles from phaseless data. Although the problem of phase retrieval
is extensively studied for high frequencies only a few results are available for inter-
mediate frequencies in the resonance region. The idea of the method originates from
the combination of two papers by Kress and Rundell [13, 14] and it was applied
already for the inverse scattering problem in two dimensions, see [6].

We proceed by formulating the inverse problem in its mathematical context.
Given an obstacle D, i.e., a bounded domain D ⊂ IR3 with C2 boundary Γ such
that Γ can be bijectively mapped onto a sphere, consider the scattering of a plane

wave ui(x) = eikx·d̂ with wave number k > 0 and a unit vector d̂ describing the
direction of propagation. The direct obstacle scattering problem consists of finding
the total field u = ui + us as a solution to the Helmholtz equation

(1) ∆u+ k2u = 0 in IR3 \ D̄
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satisfying the Dirichlet boundary condition (sound-soft)

(2) u = 0 on Γ

such that the scattered wave us fulfills the Sommerfeld radiation condition

(3) lim
r→∞

r

(
∂us

∂r
− ikus

)
= 0, r = |x|,

uniformly with respect to all directions. This condition ensures uniqueness of the
solution to the direct scattering problem and guarantees that the scattered wave
is outgoing. Furthermore, the radiation condition is equivalent to an asymptotic
behavior of the form

us(x) =
eik|x|

|x|

{
u∞

(
x

|x|

)
+O

(
1

|x|

)}
, |x| → ∞,

uniformly in all directions, with the far field pattern u∞ defined on the unit sphere
Ω in IR3.

In this paper we investigate the following three inverse problems:
Inverse Problem (IP1): Given the far field pattern u∞ on Ω for one incident wave
ui, determine the shape and the location of the boundary surface Γ of the scatterer
D.
Inverse Problem (IP2): Given the modulus of far field pattern |u∞| on Ω for one
incident plane wave ui, determine the shape of the boundary surface Γ of the scat-
terer D.
Inverse Problem (IP3): Given the far field pattern u∞ in a few measurement points
on Ω for one incident plane wave ui and knowing the shape of the surface Γ, deter-
mine the location of the scatterer D.

The inverse problem (IP1) is well studied, in particular due to Colton and Slee-
man [2] and Gintides [4] it is known that a sound-soft obstacle contained in a ball
of radius R can be uniquely identified from the knowledge of the far field pattern
for one incident plane wave provided kR ≤ 4.49.

The solution to (IP2) is not unique since the modulus of u∞ is invariant under
translations [13], that is, for the shifted domain Dℓ := {x+ ℓ : x ∈ D} with ℓ ∈ IR3

a fixed vector, the far field pattern uℓ,∞ satisfies the relation

(4) uℓ,∞(x̂) = eik ℓ·(d̂−x̂)u∞(x̂), x̂ ∈ Ω.

This ambiguity cannot be remedied by using finitely many incident waves with
different wave numbers or different incident directions [13]. The relation (4) also
holds in the case of the Neumann and impedance boundary conditions, see [15].
Unfortunately, even for an obstacle with a fixed location currently there are no
uniqueness results available for reconstructing its shape from the modulus of far
field data, except for the uniqueness result by Liu and Zhang, see [16], for a sound-
soft ball centered at the origin.

The plan of the paper is as follows. In the next section a system of nonlinear
integral equations equivalent to (IP2) is derived and an iterative scheme is suggested.
In Section 3 we discuss the injectivity of the linearized operator in the proposed
method. Section 4 is devoted to presenting the numerical solution of the integral
equations and in Section 5 implementation details are described. A novel approach
for recovering the location of the obstacle, that is solving (IP3), is introduced in
Section 6. Finally, in Section 7 we present numerical examples and conclude by
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discussing some closely related methods for obstacle reconstruction from full far
field data.

2. Iterative scheme based on nonlinear integral equations. For the scatter-
ing of an entire field ui from a sound-soft obstacle D by Huygens’ principle, see
Theorem 3.12 in [1], we have

(5) u(x) = ui(x) −
∫

Γ

∂u

∂ν
(y) Φ(x, y) ds(y), x ∈ IR3 \ D̄,

and the far field pattern of the scattered field us is given by

(6) u∞(x̂) = − 1

4π

∫

Γ

∂u

∂ν
(y) e−ikx̂·y ds(y), x̂ ∈ Ω,

where ν is the outward unit normal vector to Γ and

Φ(x, y) =
1

4π

eik|x−y|

|x− y| , x 6= y,

is the fundamental solution to the Helmholtz equation in IR3.
We introduce the single-layer operator SΓ : L2(Γ) → L2(Γ) and the far field

operator SΓ,∞ : L2(Γ) → L2(Ω) defined by

(SΓh)(x) :=

∫

Γ

Φ(x, y) h(y) ds(y), x ∈ Γ,

and

(SΓ,∞h)(x̂) :=
1

4π

∫

Γ

e−ikx̂·y h(y) ds(y), x̂ ∈ Ω.

The sound-soft boundary condition (2), (5) and (6) imply the equivalence of the
inverse obstacle scattering problem (IP2) and the two-by-two system of integral
equations

(7) SΓh = ui|Γ
and

(8) |SΓ,∞h|2 = |u∞|2,
where h = ∂u

∂ν

∣∣
Γ
, in the sense that a solution to (IP2) satisfies the system and vice

versa, see [6].
For the numerical solution of the integral equations (7)–(8) we assume that the

surface Γ is C2-smooth, homeomorphic to the unit sphere Ω and has a star-shaped
representation

Γ := Γr = {r(x̂)x̂ : x̂ ∈ Ω}
with r(x̂) > 0 for x̂ ∈ Ω. With the aid of the substitution

(9) υ(x̂) = h(r(x̂)x̂)Jr(x̂),

where Jr = r
√
r2 + |∇sr|2 is the Jacobian of the transformation r and ∇s denotes

the surface gradient, we replace the integral operators and the right-hand sides of
the system (7)–(8) by their parameterized form

(10) (Srυ)(x̂) =
1

4π

∫

Ω

eik|r(x̂)x̂−r(ŷ)ŷ)|

|r(x̂)x̂− r(ŷ)ŷ)| υ(ŷ) ds(ŷ), wr(x̂) = ui(r(x̂)x̂), x̂ ∈ Ω,

and

(11) (Sr,∞υ)(x̂) =
1

4π

∫

Ω

e−ikx̂·r(ŷ)ŷ υ(ŷ) ds(ŷ), w∞(x̂) = u∞(x̂), x̂ ∈ Ω.
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Hence, the parametrized form of the nonlinear system (7)–(8) reads

(12) Srυ = wr,

and

(13) Sr,∞υ Sr,∞υ = |w∞|2.
Three closely related approaches for solving the latter system for the unknown

r, that is, for the reconstruction of the unknown scatterer have been presented
in the literature, see the survey [10] and the references therein. A first method
was suggested by Sleeman [19, 11] for sound-soft obstacle reconstruction from the
full far field in two dimensions. It consists in solving the mildly ill-posed linear
equation (12) for υ and then linearizing (13) to find r.

Reversing the roles of (12) and (13) a second approach is obtained. In a slight
modification, termed a hybrid method, it was investigated in a series of papers by
Kress and Serranho, among those also the three-dimensional problem was considered
in [18].

In this paper we concentrate on a third approach that was suggested by Kress
and Rundell [14] for the Laplace equation and then extended to different scattering
problems including, in particular, the shape reconstruction from only the modulus
of the far field pattern [6]. This method is based on a simultaneous linearization
of both equations with respect to both unknowns. In the first step of the iterative
procedure we make an initial guess for the surface Γ parametrized by r and find the
density υ from (12). Then given a current approximation for r and υ we look for
density and surface updates ϑ and q that satisfy the linearized system

(14) Srυ + Srϑ+ S
′
r[υ]q = wr + w′

rq

and

(15) Sr,∞υ Sr,∞υ + 2 Re(Sr,∞υ Sr,∞ϑ) + 2 Re(Sr,∞υ S
′
r,∞[υ]q) = |w∞|2.

With these, the approximations for the density and the surface are updated via
υ = υ + ϑ and r = r + q, respectively. As a stopping criterion for the iterative
procedure we choose

(16) ǫr :=
‖|w∞|2 − |Sr,∞υ|2‖L2

‖|w∞|2‖L2

≤ τ, or ǫr < ǫr+q

for some sufficiently small parameter τ > 0 depending on the noise level.
In the iterative scheme (14)–(15) the Fréchet derivatives of the operators Sr and

Sr,∞ and the right-hand side wr are required. They can be obtained via differen-
tiating their kernels with respect to the radial function r, see [17], and have the
form

(17)

(S′
r[υ]q)(x̂) =

1

4π

∫

Ω

υ(ŷ)

(
ik − 1

|r(x̂)x̂− r(ŷ)ŷ|

)
eik|r(x̂)x̂−r(ŷ)ŷ|

×< r(x̂)x̂− r(ŷ)ŷ, q(x̂)x̂ − q(ŷ)ŷ >

|r(x̂)x̂− r(ŷ)ŷ|2 ds(ŷ),

(18) (S′
r,∞[υ]q)(x̂) =

1

4π

∫

Ω

υ(ŷ) e−ik x̂·ŷ r(ŷ)(−ik)x̂ · ŷ q(ŷ) ds(ŷ),

and

(w′
rq)(x̂) = ik x̂ · d̂ eik r(x̂)x̂·d̂q(x̂).
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To solve the linear integral equations (14)–(15) numerically we introduce spher-
ical coordinates on Ω, i.e.

(19) p(θ, φ) := (sin θ cosφ, sin θ sinφ, cos θ), θ ∈ [0, π], φ ∈ [0, 2π],

and choose appropriate approximation spaces for the density υ and the radial func-
tion r. Since the spherical harmonics

Yl,j(θ, φ) = cjl P
|j|
l (cos θ) eij φ, j = −l, . . . , l, l = 0, 1, 2, . . . ,

with coefficients

cjl = (−1)
|j|−j

2

√
2l+ 1

4π

(l − |j|)!
(l + |j|)!

form a complete orthonormal system in L2(Ω) they provide a natural choice for

the approximation spaces for the unknown density. Here P
|j|
l are the associated

Legendre functions of degree l and order |j|. Since the radial function r is real
valued we modify the basis functions into

(20) Y IR
l,j =

{
ImYl,|j|, 0 < j ≤ l,

ReYl,|j|, −l ≤ j ≤ 0.

Thus, the density approximation reads

(21) υ̃(θ, φ) =

n∑

l=0

l∑

j=−l

υlj Yl,j(θ, φ), υlj ∈ C
(n+1)2 ,

and for the surface approximation we employ

(22) r̃(θ, φ) =

N∑

l=0

l∑

j=−l

rlj Y
IR
l,j (θ, φ), rlj ∈ IR(N+1)2 .

3. On noninjectivity of the linearized operator. Due to [6, Theorem 3.1] the
first iteration of our procedure is equivalent to one step of the method suggested
in [13], therefore we can reduce the analysis for the injectivity of the operator in
the linearized equations (14) and (15) at the exact solution to the latter case. The
inverse obstacle scattering problem (IP2) can be formulated in terms of the operator
F : r 7→ u∞ that maps the radial function r onto the far field pattern and is defined
via the solution to the direct problem (1)–(3) with a fixed incident wave. (IP2) can
be solved via Newton’s method, i.e. by solving the linearized equation

(23) |Fr|2 + 2 Re(Fr F ′[r]q) = |u∞|2.

It has been proved [12, 17] that the operator F is Fréchet differentiable with the
derivative given by

F ′[r]q = v∞,

where v∞ is the far field pattern of the solution to the Helmholtz equation in
the exterior of Γ satisfying the Sommerfeld radiation condition and the Dirichlet
boundary condition

(24) v = −ν · xq
∂u

∂ν
on Γ,
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with xq(x) = q(x̂) x̂ and x̂ is defined through the relation r(x̂) x̂ = x for x ∈ Γ.
We also recall [13, Lemma 1] which states that the solution w to the Helmholtz
equation given by

(25) w = ℓ · (ikus d̂−∇us) in IR3 \ D̄
satisfies the boundary condition

(26) w = −ℓ · ν ∂
∂ν

(ui + us) on Γ

and has far field pattern

(27) w∞(x̂) = ik ℓ · (d̂− x̂)u∞(x̂), x̂ ∈ Ω,

where ℓ ∈ IR3 is a fixed vector. Let us consider the special case when D is the
unit ball. Choosing ℓ = (1, 0, 0) in (26) we obtain ℓ · ν = sin θ cosφ and hence
ν · xq = ℓ · ν for q(θ, φ) = sin θ cosφ. Then from (24), (26) via uniqueness for the
direct Dirichlet problem we have that

(28) (F ′[r]q)(θ, φ) = ik (ℓ · d̂− q(θ, φ))(Fr)(θ, φ).

Repeating the same considerations for ℓ = (0, 1, 0) and ℓ = (0, 0, 1) we observe
that the relation (28) also holds for q(θ, φ) = sin θ sinφ and q(θ, φ) = cos θ, respec-
tively.

Summarizing the facts listed above, since according to (28) the expression
Fr F ′[r]q is purely imaginary we have established the following lemma.

Lemma 3.1. The columns in the matrix of the discretized version of (14)–(15)
corresponding to the coefficients of Y IR

1,j with j = −1, 0, 1 for the radial function q̃
vanish.

The vanishing columns in the matrix correspond to the fact that the location of
the obstacle cannot be recovered from the modulus and the algorithm is modified
to find only (N + 1)2 − 3 coefficients in (22), that is, to reconstruct the shape. The
three coefficients of Y IR

1,j for j = −1, 0, 1 are kept fixed.
We also want to emphasize on the fact that the method suggested in this paper

for (IP2) as opposed to (23) does not require the solution of the forward problem in
each iteration step. Furthermore, the Fréchet derivatives with respect to Γ of the
boundary integral operators involved in our method can be explicitly characterized
as integral operators, see (17) and (18), which reduces the computational costs.

4. Numerical solution of the integral equations. For the numerical solution
of the surface integral equations (14)–(15) we use Wienert’s method [20] which is
based on spherical harmonics and on the transformation of the boundary surface
to a sphere. For the numerical integration of a continuous function over the unit
sphere we apply the so called Gauss trapezoidal product rule

(29)

∫

Ω

f(ŷ) ds(ŷ) ≈ π

n′ + 1

2n′+1∑

ρ′=0

n′+1∑

s′=1

as′f(p(θs′ , φρ′ )),

where p is the parameterization of the unit sphere Ω given by (19). The quadrature
points are given by

(30) φρ′ =
rπ

n′ + 1
and θs′ = arccos zs′
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with the zeros zs′ of the Legendre polynomials Pn′+1 of degree n′ + 1 and the
corresponding weights are

as′ =
2(1 − z2

s′)

((n′ + 1)Pn′(zs′))2
.

This quadrature rule is derived by introducing a suitable projection operator Ln′

onto the space of spherical harmonics of order less than or equal to n′ + 1 and
integrating the projected function Ln′f exactly observing the characteristics of the
trapezoidal and the Gauss-Legendre rules, see [1]. This way the quadrature rule (29)
inherits its name and by construction it is exact for spherical harmonics of order
less than or equal to n′ + 1.

Some of the integral operators which we need to treat have weakly singular
kernels, e.g. Sr and S

′
r. To cope with this difficulty we will introduce a coordinate

system change in Ω and transfer the singularity to the north pole n̂ = (0, 0, 1). The
quadrature rule for such an integrand has the form

(31)

∫

Ω

f(ŷ)

|n̂− ŷ| ds(ŷ) ≈
π

n′ + 1

2n′+1∑

ρ′=0

n′+1∑

s′=1

bs′f(p(θs′ , φρ′)),

where

bs′ =
πas′

(n′ + 1)

n′∑

l=0

Pl(zs′).

This rule is based on the orthonormality of spherical harmonics and the relation
∫

Ω

1

|x̂− ŷ|Yl,j(ŷ) ds(ŷ) =
4π

2l+ 1
Yl,j(x̂), x̂ ∈ Ω.

In the rest of this section we will show that the quadrature rules stated above can
be applied for the integral operators involved in the solution of the inverse problem.
It is easy to see that the kernels of Sr,∞ and S

′
r,∞ are smooth. The kernel of the

integral operator Sr we split into a weakly singular and a continuous part, i.e.

(Srυ)(x̂) =

∫

Ω

1

|r(x̂)x̂− r(ŷ)ŷ|H1(x̂, ŷ; r)υ(ŷ) ds(ŷ) +

∫

Ω

H2(x̂, ŷ; r)υ(ŷ) ds(ŷ),

with

H1(x̂, ŷ; r) =
1

4π
cos k|r(x̂)x̂− r(ŷ)ŷ|,

and

H2(x̂, ŷ; r) =
1

4π






i sink|r(x̂)x̂− r(ŷ)ŷ|
|r(x̂)x̂− r(ŷ)ŷ| , x̂ 6= ŷ,

ik, x̂ = ŷ.

Here, by the parameter r in the definition of the functions we indicate the depen-
dence of the kernels on the unknown surface.

In order to move the singularity in the first integral to the north pole we consider
an orthogonal linear transformation Tx̂ such that Tx̂ x̂ = n̂, see [20, 1, 3]. We also
introduce an induced transformation Tx̂ as

Tx̂f(ŷ) = f(T−1
x̂ ŷ), f ∈ C(Ω),

and its bivariate analogue

Tx̂f(ŷ1, ŷ2) = f(T−1
x̂ ŷ1, T

−1
x̂ ŷ2), f ∈ C(Ω × Ω).
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The orthogonality of T−1
x̂ yields the identity

|x̂− ŷ| = |T−1
x̂ (n̂− η̂)| = |n̂− η̂| for η̂ = Tx̂ ŷ.

In addition to this, we introduce a function R by

R(x̂, ŷ) =
|x̂− ŷ|

|r(x̂)x̂− r(ŷ)ŷ| , x̂ 6= ŷ,

which is smooth as a function with the first component kept fixed at the north pole,
i.e. R(n̂, ·) : η̂ 7→ R(n̂, η̂) for η̂ ∈ Ω, [1, 5]. Finally, the integral operator Sr given
by (10) can be represented in the form

(32) (Srυ)(x̂) =

∫

Ω

1

|n̂− η̂|Tx̂H1(n̂, η̂; r)Tx̂υ(η̂) ds(η̂) +

∫

Ω

H2(x̂, ŷ; r)υ(ŷ) ds(ŷ)

with the kernel H1(x̂, ŷ; r) = R(x̂, ŷ)H1(x̂, ŷ; r) that is smooth in the sense of the
mapping η̂ 7→ Tx̂H1(n̂, η̂; r), see [5, Lemma 4.6]. Moreover, the singularity

1

|n̂− η̂| =
1

2 sin θ/2

is canceled out by ds(η̂) = sin θ dθ dφ. Hence the quadrature rules (31) and (29)
can be applied to the first and the second integrals in (32), respectively.

Here, we note that in the numerical evaluation of the integral operator (32) it is
sufficient to only apply the rotation Tx̂ to the singular part since the object function
υ in both integrals is approximated by (21) and, hence, the discretized version of
the operator acts on the vector of its coefficients.

Mimicking the transformation steps of the single-layer operator Sr to the form (32)
we can represent the Fréchet derivative of this operator, i.e. S′

r[υ] in a similar way
by

(33)

(S′
r [υ]q)(x̂) =

∫

Ω

1

|n̂− η̂|Tx̂M1(n̂, η̂; r, υ) ·
(
q(n̂)n̂− Tx̂q(η̂)η̂

)
ds(η̂)

+

∫

Ω

M2(x̂, ŷ; r, υ) ·
(
q(x̂)x̂ − q(ŷ)ŷ

)
ds(ŷ).

Here

M1(x̂, ŷ; r, υ) =
1

4π
R(x̂, ŷ) cos k|r(x̂)x̂− r(ŷ)ŷ| r(x̂)x̂− r(ŷ)ŷ

|r(x̂)x̂ − r(ŷ)ŷ|2 υ(ŷ)

and

M2(x̂, ŷ; r, υ)

=
1

4π

(
ik eik|r(x̂)x̂−r(ŷ)ŷ| − i sink|r(x̂)x̂− r(ŷ)ŷ|

|r(x̂)x̂− r(ŷ)ŷ|

)
r(x̂)x̂− r(ŷ)ŷ

|r(x̂)x̂− r(ŷ)ŷ|2 υ(ŷ).

Analogous to [5, Lemma 4.6] it can be shown that the mapping

η 7→ Tx̂

(
M1(n̂, η̂; r, υ) · (q(n̂)n̂− Tx̂q(η̂)η̂)

)

is smooth. The functionM2(x̂, ŷ; r, υ)·
(
q(x̂)x̂−q(ŷ)ŷ

)
is continuous for (x̂, ŷ) ∈ Ω×Ω

with limiting values

lim
ŷ→x̂

M2(x̂, ŷ; r, υ) ·
(
q(x̂)x̂− q(ŷ)ŷ

)
= 0.
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5. Implementation. With the intention to obtain a fully discrete linear system
we apply the quadrature rules (29) and (31) to the integral operators and evaluate
them in the same points as that used for the quadrature rules. For the sake of
brevity we introduce the following notations

x̂ρs = p(θs, φρ), ŷρ′s′ = p(θs′ , φρ′ ) and ŷρ′s′

ρs = T−1
p(θs,φρ)p(θs′ , φρ′ )

with the quadrature points θs, θs′ , φρ, φρ′ defined in (30) and the spherical
parametrization function p given by (19). The linear transformation operator is
defined via Tp(θ,φ) = P (φ)Q(−θ)P (−φ) with 3 × 3 matrices P (ψ) and Q(ψ) corre-
sponding to positive rotations by ψ around the x3- and x2-axis, i.e.

P (ψ) =




cosψ − sinψ 0
sinψ cosψ 0

0 0 1


 , Q(ψ) =




cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ


 .

For the efficient implementation of the algorithm we use the representation of
the rotated spherical harmonics derived in [3]

(34) Yl,j(ŷ
ρ′s′

ρs ) =
∑

|j̃|≤l

Fslj̃je
i(j−j̃)φρYl,j̃(ŷρ′s′)

with

Fslj̃j = ei(j−j̃)π/2
∑

|m|≤l

d
(l)

j̃m
(π/2)d

(l)
jm(π/2) eimθs

and

d
(l)
jm(π/2) = 2j

√
(l + j)!(l − j)!

(l +m)!(l −m)!
P(m−j,−m−j)

l+j (0),

where P(α,β)
n is the normalized Jacobi polynomial, with

P(α,β)
n (0) = 2−n

n∑

t=0

(−1)t

(
n+ α
n− t

) (
n+ β
t

)
, α ≥ 0, β ≥ 0.

In the case when m− j or −m− j is negative one can compute d
(l)
jm(π/2) by using

the symmetry relation

d
(l)
jm(ϕ) = (−1)j−md

(l)
mj(ϕ) = d

(l)
−m−j(ϕ) = d

(l)
mj(−ϕ).

From (34) for the rotated real valued spherical harmonics (20) via representing
the imaginary and real parts by subtracting or adding the complex conjugate we
obtain
(35)

Y IR
l,j (ŷρ′s′

ρs ) =
∑

|j̃|≤l

Yl,j̃(ŷρ′s′)e−ij̃φρ






1
2i

(
Fslj̃|j|e

i|j|φρ − (−1)|j|Fslj̃−|j|e
−i|j|φρ

)
,j > 0,

1
2

(
Fslj̃|j|e

i|j|φρ + (−1)|j|Fslj̃−|j|e
−i|j|φρ

)
, j ≤ 0,

for 0 ≤ l ≤ N and |j| ≤ l.
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We start with discussing the implementation of the discrete version of the oper-
ator S′

r[υ] defined in (33) since it has the largest computational costs. The approx-
imation is given by
(36)

S̃
′
r̃[υ̃] q̃ =

π

(n′ + 1)

N∑

l=0,l 6=1

∑

|j|≤l

qlj

2n′+1∑

ρ′=0

n′+1∑

s′=1

(
as′bs′ M1(x̂ρs, ŷ

ρ′s′

ρs ; r̃, υ̃) · Y IR
l,j (x̂ρs) x̂ρs

−as′bs′ M1(x̂ρs, ŷ
ρ′s′

ρs ; r̃, υ̃) · Y IR
l,j (ŷρ′s′

ρs ) ŷρ′s′

ρs

+as′ M2(x̂ρs, ŷρ′s′ ; r̃, υ̃) · Y IR
l,j (x̂ρs) x̂ρs

−as′ M2(x̂ρs, ŷρ′s′ ; r̃, υ̃) · Y IR
l,j (ŷρ′s′) ŷρ′s′

)
.

As can be seen from the latter representation, in a naive implementation, one needs
at least O((n′ +1)6× (N+1)2) operations with N ≤ n ≤ n′. In the implementation
scheme which we will suggest further below the computational cost can be reduced
to O((n′ + 1)6 × (N + 1)).

For each of the four terms in the summation of the expression (36) we will set
up the matrix separately, denoting them Dsρlj , Asρlj , F

1
sρlj and F 2

sρlj , respectively.

Then the elements of the matrix S̃′
r̃[υ̃] are given by

(S̃′
r̃ [υ̃])sρlj =

π

n′ + 1
(Dsρlj +Asρlj + F 1

sρlj + F 2
sρlj).

Recalling the definition of M1 and keeping in mind that υ and r are given
by (21) and (22) in each iteration step one can easily see that precomputing the

values Ylj ρsρ′s′ = Yl,j(ŷ
ρ′s′

ρs ) and YIR
lj ρsρ′s′ = Y IR

l,j (ŷρ′s′

ρs ) before the first iteration

significantly speeds up the algorithm. We also precompute Ylj ρs = Yl,j(x̂ρs) and
YIR

lj ρs = Y IR
l,j (x̂ρs) for the evaluation of the kernel M2.

The coefficients of the 2(n′ + 1)2 × ((N + 1)2 − 3) matrix S̃′
r[υ] can be evaluated

recursively through the scheme

r̃ρs =
N∑

l=0

l∑

j=−l

rlj YIR
lj ρs, r̃ρ′s′

ρs =
N∑

l=0

l∑

j=−l

rlj YIR
lj ρsρ′s′ ,

υ̃ρs =

n∑

l=0

l∑

j=−l

υlj Ylj ρs, υ̃ρ′s′

ρs =

n∑

l=0

l∑

j=−l

υlj Ylj ρsρ′s′ .

The matrix corresponding to the first line of (36) is built up by two steps

Esρs′j = (eijφρ )IR
2n′+1∑

ρ′=0

x̂ρs · M1(x̂ρs, ŷ
ρ′s′

ρs ; r̃, υ̃),

where IR indicates that the function is real valued and it is defined analogously
to (20) and

Dsρlj = c
|j|
l P

|j|
l (cos θs)

n′+1∑

s′=1

as′bs′Esρs′j .

The computationally most involved of all matrices is the one arising from the
singular kernel, in particular, from the product of the function M1 and the rotated
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spherical harmonics. To fill in the matrix Asρlj we perform the following three
recursive steps

Csρs′ j̃ = −
2n′+1∑

ρ′=0

ŷρ′s′

ρs ·M1(x̂ρs, ŷ
ρ′s′

ρs ; r̃, υ̃) eij̃φρ′ ,

Bsρlj̃ = e−ij̃φρ

n′+1∑

s′=1

as′bs′Csρs′ j̃ c
j̃
lP

|j̃|
l (cos θs′),

Asρlj =





∑

|j̃|≤l

Bsρlj̃

1

2i

(
Fslj̃|j|e

i|j|φρ − (−1)|j|Fslj̃−|j|e
−i|j|φρ

)
, 0 < j ≤ l,

∑

|j̃|≤l

Bsρlj̃

1

2

(
Fslj̃|j|e

i|j|φρ + (−1)|j|Fslj̃−|j|e
−i|j|φρ

)
, −l ≤ j ≤ 0.

To evaluate the matrices F 1
sρlj and F 2

sρlj which correspond to the continuous part
of the kernel in the integral operator we proceed via

G1
sρs′j = (eijφρ )IR

2n′+1∑

ρ′=0

x̂ρs ·M2(x̂ρs, ŷρ′s′ ; r̃, υ̃),

G2
sρs′j = −

2n′+1∑

ρ′=0

ŷρ′s′ ·M2(x̂ρs, ŷρ′s′ ; r̃, υ̃)(eijφρ′ )IR,

F 1
sρlj = c

|j|
l P

|j|
l (cos θs)

n′+1∑

s′=1

as′G1
sρs′j , F 2

sρlj =

n′+1∑

s′=1

as′G2
sρs′j c

|j|
l P

|j|
l (cos θs′).

The matrix for the discretized operator S′
r,∞[υ] is set up in the same way as F 2

sρlj .
Let us consider the discrete single-layer operator

S̃r̃υ̃ =

n∑

l=0

∑

|j|≤l

υlj

2n′+1∑

ρ′=0

n′+1∑

s′=1

(
as′bs′Yl,j(ŷ

ρ′s′

ρs )H1(x̂ρs, ŷ
ρ′s′

ρs ; r̃)

+as′Yl,j(x̂ρs)H2(x̂ρs, ŷρ′s′ ; r̃)
)
.

The recursive scheme for its coefficients is given by

Csρs′ j̃ =

2n′+1∑

ρ′=0

H1(x̂ρs, ŷ
ρ′s′

ρs ; r̃) eij̃φρ′ , Esρs′j =

2n′+1∑

ρ′=0

H2(x̂ρs, ŷρ′s′ ; r̃) eijφρ′ ,

Bsρlj̃ =
n′+1∑

s′=1

as′bs′Csρs′ j̃ c
j̃
lP

|j̃|
l (cos θs′), Dsρlj =

n′+1∑

s′=1

as′Esρs′j c
j
lP

|j|
l (cos θs′),

Asρlj =
∑

|j̃|≤l

Bsρlj̃ e
i(j−j̃)φρFslj̃j , (S̃r̃)sρlj =

π

n′ + 1
(Asρlj +Dsρlj).

The elements of (S̃r̃,∞)sρlj are found by the same procedure as the elements of the
latter matrix Dsρlj .
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The fully discrete system for (14)–(15) with the unknown complex valued coef-
ficients ϑlj and the real valued coefficients qlj can be written in a brief form as

(37) A

(
ϑlj

qlj

)
= b.

Here A is a 2(n′+1)2×
(
(n+1)2+(N+1)2−3

)
matrix. Since the system inherits the

ill-posedness of the problem we incorporate for its numerical solution a Tikhonov
regularization, i.e. instead of (37) we solve

(38)

[
AT A +

(
αitI1 0
0 βitI1

)] (
ϑlj

qlj

)
= AT b,

where αit, βit are regularizations parameters, and the matrix I1 corresponds to
the Sobolev H1(Ω) penalty term. Since the associated Legendre functions are the
canonical solutions of the Legendre equation we obtain a simple representation for
its elements by

(I1)l′j′,lj :=

∫

Ω

Yl′,j′(θ, φ)(I − ∆s)Yl,j(θ, φ) ds(p(θ, φ)) = (1 + l(l + 1)) δj,j′

l,l′ .

6. Recovering the location of the scatterer. In this section we introduce an
algorithm for the numerical solution of the problem (IP3). Assume that we have
already reconstructed the shape of the unknown obstacle from the modulus of the
far field pattern by the method described in Section 2 and denote by Γ0 = {r(x̂)x̂ :
x̂ ∈ Ω} the surface of the scatterer centered at the origin and by Γℓ = {r(x̂)x̂+ ℓ :
x̂ ∈ Ω} the surface of the scatterer shifted to the point ℓ. Recalling the relation (4)
between the far fields produced by these scatterers

(39) eik (d̂−x̂)·ℓu0,∞(x̂) = uℓ,∞(x̂),

we obtain a system of equations for recovering the unknown location ℓ. We note
that the value u0,∞ is available as a byproduct of the algorithm for the shape re-
construction and this spares us from solving an additional forward problem. Taking
the logarithm on both sides of equation (39) we have

(d̂− x̂) · ℓ = (ln uℓ,∞/u0,∞)/ik.

With the aid of |uℓ,∞| = |u0,∞| we rewrite the last equation as

(40) (d̂− x̂) · ℓ =
1

k
Im

(
ln
uℓ,∞

u0,∞

)
.

However, the logarithm ln is a multi-valued function and we have to choose one
branch of it, for example, the principal branch. This induces a limitation on the
length of the vector ℓ which can be reconstructed. The right-hand side of (40) takes

its values from the interval
1

k
[−π, π] and, hence, the maximum of the absolute value

of inner product (d̂ − x̂) · ℓ should be less than or equal to
π

k
. Let us consider a

parametric representation of the vectors d̂ and x̂ in the form

d̂ =




sin θ cosφ
sin θ sinφ

cos θ



 and x̂ =




sin(θ + α) cos(φ+ β)
sin(θ + α) sin(φ+ β)

cos(θ + α)



 .
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Then d̂− x̂ can be represented as

d̂− x̂ = − sin
α+ β

2
ê1 + sin

α− β

2
ê2 + 2 sin

α

2
ê3

with

ê1 =




cos
(
θ + φ+ α+β

2

)

sin
(
θ + φ+ α+β

2

)

0


 , ê2 =



− cos

(
θ − φ+ α−β

2

)

sin
(
θ − φ+ α−β

2

)

0


 , ê3 =




0
0

sin(θ + α
2 )


 .

For an arbitrary vector ℓ we can estimate the inner product (d̂− x̂) · ℓ by

|(d̂− x̂) · ℓ| ≤
√

3 |l| max

{
| sin α+ β

2
|, | sin α− β

2
|, 2| sin α

2
| | sin(θ +

α

2
)|
}
.

Finally, we obtain the condition

(41) |ℓ| ≤ π
√

3k max
{
| sin α+β

2 |, | sin α−β
2 |, 2| sin α

2 | | sin(θ + α
2 )|

}

on the length of the vector ℓ that is controlling the unknown location. From this
estimate we observe that for small values of α and β one can find the location of
obstacles with larger distance from the origin. Hence, for the numerical solution
of (40) we take the far field patterns u0,∞ and uℓ,∞ in several points in the vicinity
of the backscattering direction. For the two dimensional case the estimate (41) is
simplified to

(42) |ℓ| ≤ π

2k| sin α
2 |
.

Concluding this section we would like to remark that although for the location
reconstruction some a priori information is necessary it is not very restrictive as
compared with the a priori information required by the Newton method for the
inverse scattering problem with the full far field data. Furthermore, since the trans-
lation invariance (4) also holds in the case of sound-hard and impedance obstacles
this algorithm for recovering the location carries over without any changes.

7. Numerical examples. In this section we illustrate the robustness of the pro-
posed methods for the shape and the location reconstruction. To avoid committing
an inverse crime we generate a far field pattern by solving the direct problem via a
Galerkin method for the coupled single- and double-layer potential approach, see [3].

The synthetic data consists of 128 values of the modulus of the far field data for
the unknown scatterer and 10 values of the full (amplitude and phase) far field data
measured in the backscattering direction. Noise was then added pointwise, i.e. 1%
of noise level means that for each data point with value u a value δu = 0.01ηu was
added where η is a random number from the interval [−1, 1]. In the case of the
complex valued data, noise was added separately to the real and imaginary part.

For all examples the same parameters were set up. The number of discretization
and quadratures points is equal to 128, i.e. n′ = 7; the dimension of the approx-
imation spaces for the density and the surface is n = 7 and N = 6, respectively.
The wave number was chosen k = 1 and the incident direction d = (0, 1, 0)T , which
is indicated by the arrow on the figures. As an initial guess we take a ball of radius
3Y0,0 ≈ 0.85 centered at the origin, i.e. r1j = 0 for j = −1, 0, 1. We note here that
the coefficients r1j for j = −1, 0, 1 will be kept fixed during the iterations due to
Lemma 3.1. As long as βγit ≤ 0.0001 we update the regularization parameters in
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each iteration step of (38) by αit = αγit and βit = βγit with α = 0.01, β = 0.5,
γ = 2/3. The parameter τ for the stopping criterion (16) is chosen as τ = 0.01.

In the figures below the reconstructions of the shape and location of the surfaces
are presented from data with a 2% noise level. In the captions of the figures we
point out the number of iterations and the obtained relative error (16).

In the upper part of Figure 1 we present the reconstruction of the shape of a
pinched ball parameterized by

z(θ, φ) =
√

1.44 + 0.5 cos 2φ(cos 2θ − 1) p(θ, φ), θ ∈ [0, π], φ ∈ [0, 2π],

from the modulus of the far field pattern, which is centered at the origin in the
figure. The far field data are given for the obstacle which was shifted to the point
ℓ† = (0.3,−0.5, 4)T .

Using the full far field data in 10 points in the backscattering direction via (40)
we find the location ℓ of the obstacle and place the exact object to the point ℓ†− ℓ.
To illustrate the difference between the reconstructed and the exact surfaces we
added to the plot their projections onto the x1x2, x2x3 and x1x3 planes, which are
indicated as meshed and solid regions, respectively.

As one can see from Figure 1, recovering of the location is very accurate as well
as the reconstruction of the surface in the illuminated part. In the shadow region
of the surface the quality of the reconstructions deteriorates.

In the second example, Figure 2, we consider the reconstruction of a cushion-
shaped surface with the parametrization

z(θ, φ) =
√

0.8 + 0.5(cos 2φ− 1)(cos 4θ − 1)p(θ, φ), θ ∈ [0, π], φ ∈ [0, 2π],

which was shifted to ℓ† = (−2, 0.3, 3)T . The notations are kept the same as for the
first example.

For the third example we consider a surface which does not belong to the class
of obstacles that are star-shaped with respect to the origin. The parametrization
of this bean-like surface reads

z(θ, φ) =




0.8
√

(1 − 0.1 cos(π cos θ)) sin θ cosφ

0.8
√

(1 − 0.4 cos(π cos θ)) sin θ sinφ+ 0.3 cos(π cos θ)

cos θ




and it is located at the point ℓ† = (1, 1,−1)T .
In Figure 3 we observe that the approximate location is still very close to the

exact location although the reconstruction of the surface is not as good as in the
previous two examples. This was expected to happen since the surface is not star-
shaped with respect to the origin and has a large concave part and the data is not
exact.

Summarizing, we conclude that the method for reconstructing the shape from
only the modulus of the far field data provides very satisfactory results. Moreover
the simple method for recovering the location turned out to be feasible, stable
against noise in the data and to require only a few input data.

8. Iterative approaches to the numerical solution of (IP1). The final sec-
tion we devote to some closely related methods for solving the inverse problem
(IP1), that is, to reconstruct the obstacle from the full far field data. Via marginal
modifications, analogous to two dimensions [9], the method suggested in Section 2
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can be adapted to the full data case. The injectivity of the operator proved in [7]
carries over without changes to the three dimensional case.

However, a second method as introduced by Sleeman [19, 11] cannot be extended
directly to three dimensions and requires more modifications. Let us consider the
operator (11) but without the substitution (9), i.e. we introduce the modified
operator as

(Sr,∞ϕ)(x̂) =
1

4π

∫

Ω

e−ikx̂·r(ŷ)ŷ ϕ(ŷ)Jr(ŷ) ds(ŷ),

where ϕ(x̂) = h(r(x̂)x̂) and Jr is the Jacobian of the transformation r. Analogously
we modify the operator Sr given by (10).

The Fréchet derivative of the operator Sr,∞ is given by

(S′
r,∞[ϕ]q)(x̂) =

−ik
4π

∫

Ω

e−ik x̂·ŷ r(ŷ)x̂ · ŷ q(ŷ)ϕ(ŷ)Jr(ŷ) ds(ŷ)

+
1

4π

∫

Ω

e−ik x̂·ŷ r(ŷ)ϕ(ŷ) J̃r(ŷ)q(ŷ) ds(ŷ)

with

J̃r =
√
r2 + |∇sr|2 −

r2√
r2 + |∇sr|2

.

The iterative scheme consists in two steps; for the current approximation r find the
density ϕ from the mildly ill-posed equation

Srϕ = wr ,

then solve the linearized equation

(43) Sr,∞ϕ+ S′
r,∞[ϕ]q = w∞

for the update q and calculate new radial surface approximation as r = r + q.
This procedure is repeated until a suitable stopping criterion is satisfied. Due
to ill-posedness of (43) one has to apply a regularization method, e.g. Tikhonov
regularization.

The shape reconstructions from the full far field pattern via the method with
simultaneous linearization and the method (43) are of the comparable quality with
those presented in Section 7 and the reconstruction from [18]. Naturally, the method
based on (43) can be extended to the inverse scattering problem with the modulus
of the far field pattern as data, the detailed comparison of the approaches is deferred
to a future research.

In the paper [8] the methods were investigated for general parameterizations. It
was found out that the largest distance between the location of the exact obstacle
and the initial guess is restricted by the condition that both objects should be
contained in the disc of radius 2.4048/k. Furthermore, the reconstruction strongly
depends on whether the initial guess is placed in the illuminated or the shadow
region of the scatterer and uses the full far field pattern. The approach suggested
in Section 6 allows to recover the obstacles with much weaker a priori information
on the location (42) and requires only a few measurements of the full far field data.
For the exact data it is enough to know the far field pattern in 2 or 3 appropriate
measurement points under the condition (42) and (41) for two or three dimensions,
correspondingly.

The methods discussed in this paper can be adopted to the inverse scattering
problem for a three dimensional sound-hard obstacle by using the indirect potential
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approach, i.e. by representing the scattered field via a single-layer potential. In this
case the kernels of the integral operators will contain at most a weak singularity as
opposed to the direct approach which involves a hypersingular integral operator.

For phaseless near field data the approach suggested in Section 2 can be applied
with minor changes and it does not suffer from the translation invariance.
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Figure 1. Reconstruction of a pinched ball after 6 iterations with
ǫr = 0.0098 and the exact surface
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Figure 2. Reconstruction of a cushion after 16 iterations with
ǫr = 0.0099 and the exact surface
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Figure 3. Reconstruction of a bean after 26 iterations with ǫr =
0.0156 and the exact surface
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