
Econometrica, Vol. 70, No. 6 (November, 2002), 2107–2140

IDENTIFICATION OF STANDARD AUCTION MODELS

By Susan Athey and Philip A. Haile1

This paper presents new identification results for models of first-price, second-price,
ascending (English), and descending (Dutch) auctions. We consider a general specification
of the latent demand and information structure, nesting both private values and common
values models, and allowing correlated types as well as ex ante asymmetry. We address
identification of a series of nested models and derive testable restrictions enabling discrim-
ination between models on the basis of observed data. The simplest model—symmetric
independent private values—is nonparametrically identified even if only the transaction
price from each auction is observed. For richer models, identification and testable restric-
tions may be obtained when additional information of one or more of the following types
is available: (i) the identity of the winning bidder or other bidders; (ii) one or more bids
in addition to the transaction price; (iii) exogenous variation in the number of bidders;
(iv) bidder-specific covariates. While many private values (PV) models are nonparametri-
cally identified and testable with commonly available data, identification of common values
(CV) models requires stringent assumptions. Nonetheless, the PV model can be tested
against the CV alternative, even when neither model is identified.

Keywords: Auctions, nonparametric identification and testing, private values, com-
mon values, asymmetric bidders, unobserved bids, order statistics.

1� introduction

This paper derives new results regarding nonparametric identification and
testing of models of first-price sealed-bid, second-price sealed-bid, ascending
(English), and descending (Dutch) auctions. The theory literature has focused
on several different specifications of the economic primitives in these auctions.
In private values models, each bidder knows the value he places on winning the
object, but not the values of his opponents. In common values models, informa-
tion about the value of the object is spread among bidders. Within these classes
of models, bidders may be symmetric or asymmetric, and bidders’ information
may be independent or correlated. We consider a general specification of bidders’
preferences and information, nesting private values and common values models,
and allowing both correlated private information and ex ante bidder asymmetry.

1 For useful comments and discussions we thank Victor Aguirregabiria, Bruce Hansen, Jerry
Hausman, Jim Heckman, Ali Hortaçsu, Joe Hotz, Guido Imbens, Guido Kuersteiner, Eugenio
Miravete, Whitney Newey, Harry Paarsch, Rob Porter, Susanne Schennach, Gautam Tripathi, seminar
participants at Arizona, Boston University, Maryland, Stanford, University College London, SITE, the
Clarence Tow Conference on Auctions (Iowa), the 2000 Midwest Econometrics Group conference,
the 2001 Econometric Society NASM, three referees and the Co-editor. Astrid Dick, Kun Huang,
Grigory Kosenok, Paul Riskind, and Steve Schulenberg provided excellent research assistance. We
are grateful for financial support from the Sloan Foundation (Athey) and from NSF Grants SBR-
9631760, SES-9983820 (Athey), SBR-9809802 and SES-0112047 (Haile).
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We address identification of a series of these models and derive testable impli-
cations that enable discrimination between models.
Identification depends critically on what types of data are available—something

that varies by application. Prior research on nonparametric identification of auc-
tion models has focused on symmetric first-price auctions under the assumption
that all bids are observed (see, e.g., the recent survey by Perrigne and Vuong
(1999)). However, second-price and ascending auctions are the most common
in practice, particularly with the rising popularity of internet auctions (Lucking-
Reiley (2000)).2 Further, while all bids may be observable to the econometrician
in some applications, ascending auctions by design end when the next-to-last bid-
der drops out, leaving the planned exit price of the winner unobserved. Likewise,
a Dutch (descending) auction ends as soon as the first bid is made. Even in
sealed-bid auctions, researchers may have access only to a subset of the submit-
ted bids—e.g., the winning bid or the top two bids.
For the simplest independent private values (IPV) model, a model studied

extensively in the prior literature using parametric methods, we show that the
transaction price alone is sufficient for nonparametric identification. For richer
private and common values models, however, omitting even one order statis-
tic from the sample of bids can create challenges. We show that without addi-
tional structure neither an affiliated private values nor an affiliated common
values model is identified from bids at an ascending auction or any other stan-
dard auction in which one or more bids is unobserved. However, other types of
data commonly available in practice (such as bidder identities or bidder-specific
covariates) can enable identification of richer models even when one or more
bids is unobserved.
Work in the empirical literature on auctions has typically proceeded by first

assuming a model of bidder demand and information (such as IPV) based on
qualitative features of the application. However, because different assumptions
can lead to very different results and policy implications, a formal basis for evalu-
ating alternative models would be preferred and could lead to greater confidence
in empirical results. We show that the assumptions of standard models often can
be tested, using data available in many applications considered previously in the
literature. Furthermore, a failure of identification need not preclude testing. We
show, for example, that when there is exogenous variation in the number of bid-
ders, the private values model can be tested against the common values alterna-
tive, even when neither model is identified.
Several other factors provide additional motivation for our focus on nonpara-

metric identification and testing. First, given the effects that ad hoc parametric

2 The prevalence of ascending auctions is well known. Second-price auctions have been used to
allocate public resources such as radio spectrum (Crandall (1998)). In ascending auctions, the use
of agents (human or software) who bid according to pre-specified cutoff prices results in an auction
game equivalent to a second-price sealed bid auction. Bajari and Hortaçsu (2000) and Roth and
Ockenfels (2002) have argued that bids at certain internet auctions can be viewed as coming from
standard second-price sealed bid auctions.
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assumptions can have on empirical results, one is naturally interested in know-
ing what can be estimated without such assumptions. Determining the conditions
under which the distribution of observables uniquely determines the primitive
distributions of interest is a critical step toward answering this question and
developing nonparametric estimators. Indeed, in many cases our identification
arguments suggest estimation approaches. Of course, the question of identifiabil-
ity of a model is fundamentally distinct from the choice of approximation used
for estimation. When a model is nonparametrically identified, one can view a
parametric specification as a parsimonious approximation rather than a main-
tained hypothesis about the true structure (see, e.g., Roehrig (1988)). Conversely,
nonidentification results can both demonstrate why the data fail to enable infer-
ences of certain types and suggest the range of models that could generate the
same observables—something that may be valuable for policy-makers interpret-
ing results obtained with strong identifying assumptions. Finally, a variety of pos-
itive and normative issues, including market design, the optimal use of reserve
prices, the effects of mergers between bidders, and the effect of increased bidder
participation on revenues, depend critically on which model describes the envi-
ronment and on the specific distributions characterizing the demand and infor-
mation structure. Hence, our results address central challenges facing researchers
hoping to evaluate the structure of demand at auctions in order to guide policy.
Our work contributes to a growing applied and theoretical literature on struc-

tural econometrics of auctions.3 Several parametric estimation approaches have
been proposed within the IPV framework.4 Nonparametric methods have been
developed by Guerre, Perrigne, and Vuong (2000) for first-price auctions and by
Haile and Tamer (2002) for ascending auctions. While a few papers have con-
sidered structural estimation outside the IPV paradigm,5 each either relies on
parametric distributional assumptions or addresses only first-price auctions in
which all bids are observed. The same is true of the handful of papers propos-
ing tests to distinguish common and private values models.6 No prior work has
considered nonparametric identification and testing of the standard alternative
models of ascending and second-price sealed-bid auctions. To our knowledge,
the only prior work addressing nonparametric identification when some bids are
unobserved applies to symmetric IPV first-price auctions (Guerre, Perrigne, and
Vuong (1995)).
The remainder of the paper is organized as follows. We first describe our gen-

eral framework and review equilibrium predictions. In Section 3 we consider

3 Recent surveys include Hendricks and Paarsch (1995), Laffont (1997), Perrigne and Vuong (1999),
and Hendricks and Porter (2000).
4 See, e.g., Paarsch (1992b), Laffont and Vuong (1993), Laffont, Ossard, and Vuong (1995), Donald

and Paarsch (1996), Baldwin, Marshall, and Richard (1997), Deltas and Chakraborty (1997), Donald,
Paarsch, and Robert (1999), Bajari and Ye (2000), and Haile (2001).
5 See, e.g., Paarsch (1992a), Li, Perrigne, and Vuong (2000, 2002), Hong and Shum (2002), and

Bajari and Hortaçsu (2000).
6 See Paarsch (1992a), Hendricks, Pinkse, and Porter (2002), and Haile, Hong, and Shum (2000).
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identification and testing of private values models, beginning with second-price
sealed-bid and ascending auctions. At the end of this section we extend many of
these results to first-price auctions in which some bids are unobserved. Section 4
then takes up the case of common values, where a scarcity of positive identifica-
tion results motivates development of tests for distinguishing common and pri-
vate values models in Section 5. Section 6 discusses the robustness of our results
to bidder uncertainty regarding the number of opponents they face and to the
seller’s use of a reserve price. Section 7 concludes.

2� the model

2�1� Primitives and Equilibrium Strategies

Consider an auction of a single indivisible good with n≥ 2 risk-neutral bidders.
In our base model we assume that the number of bidders is common knowledge
and there is no reserve price (we relax these assumptions in Section 6). Each
bidder i = 1� � � � � n would receive utility Ui −p from winning the object at price
p. Following the literature, we use the terms “utility,” “valuation,” and “value”
interchangeably. Let FUi

	·
 and FU	·
 denote the distributions of Ui and U =
	U1� � � � �Un
, respectively.
Each bidder i’s private information consists of a signal Xi that is affiliated

with Ui. Let FX	·
 denote the joint distribution of X = 	X1� � � � �Xn
. When we
refer to models with symmetric bidders we assume the joint distribution of 	U�X

is exchangeable with respect to the bidder indices, so that FU	·
 and FX	·
 are
exchangeable; in this case, the marginal distributions FUi

	·
 and FXi
	·
 can be

written FU	·
 and FX	·
. When we treat models allowing asymmetric bidders we
drop the exchangeability assumption. For a sample of generic random variables
S= 	S1� � � � � Sn
 drawn from a distribution FS	·
, we denote by S	j�n
 the jth order
statistic, with, e.g., S	n�n
 denoting the maximum. Similarly, F 	j�n


S 	·
 denotes the
marginal distribution of S	j�n
.
Our framework nests a wide range of specifications of the underlying demand

and information structure, falling into two classes of models:

Private Values (PV): Ui =Xi ∀ i.

Common Values (CV): For all i and j , Ui and Xj are strictly affiliated con-
ditional on any � ⊂ �Xk�k �=j , but are not perfectly correlated.

In a private values model, no bidder has private information relevant to
another’s expected utility. In contrast, in a common values model bidder i would
update her beliefs about her utility, Ui, if she observed Xj in addition to her
own signal Xi. Thus, there is a “winner’s curse” in a common values model.
Roughly, winning the auction reveals (in equilibrium) to the winner that her sig-
nal was more optimistic than those of her opponents; rational bidders anticipate
this information when forming expectations of the utility they would receive by
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winning.7 Note that CV models allow utilities to differ across bidders; however,
in the special case of pure common values (discussed below), Ui = V for all i.8

The value and signal distributions are assumed to be common knowledge
among the bidders. In a first-price (second-price) sealed-bid auction bidders sub-
mit bids simultaneously, with the object going to the high bidder at a price equal
to his bid (to the second-highest bid). For ascending auctions9 we assume the
standard “button auction” model of Milgrom and Weber (1982), where bidders
exit observably and irreversibly as the price rises exogenously until only one bid-
der remains.10

Throughout the paper we restrict attention to (perfect) Bayesian Nash equi-
libria in weakly undominated strategies, denoted by �i	·
 for each i, and further
to symmetric equilibria when bidders are ex ante symmetric. In the second-price
auction, each bidder i’s equilibrium bid when Xi = xi solves

bi = �i	xi
= E
[
Ui �Xi = xi�max

j �=i
�j	Xj
= bi

]
�(1)

In a PV auction, this becomes bi = xi = ui. In a CV auction, strict affilia-
tion implies that �i	·
 is strictly increasing; hence, when bidders are symmetric,
�i	xi
= E�Ui �Xi =maxj �=i Xj = xi�.
Equilibrium strategies are similar for an ascending auction, where a “bid” is

a planned price at which to exit. However, two complications arise. First, as
the auction proceeds bidders condition on the signals of opponents who have
already dropped out, as inferred from their exit prices. Second, in the symmetric
model there are multiple symmetric equilibria in weakly undominated strategies
(Bikhchandani, Haile, and Riley (2002)). In any such equilibrium, however, if i
is one of the last two bidders to exit, his exit price bi solves

bi =�i	xi
=E�Ui �Xi = xi��j	Xj
= bi ∀ j 	 �i∪Li��Xk = xk ∀k ∈Li��(2)

7 The strict affiliation assumption in our definition of common values is a restriction ensuring that
the winner’s curse arises. Up to this simplifying assumption our PV and CV definitions define a
partition of Milgrom and Weber’s (1982) general affiliated values model, although they impose the
additional restrictions of symmetry and affiliation of 	U�X
.
8 Sometimes the class of models we refer to as CV are referred to as models with “interdependent

values,” with the term “common values” reserved for the pure common values model. While both
taxonomies are used in the literature, we follow that which emphasizes the distinction between sta-
tistical properties (independence, affiliation, etc.) of bidders’ private information and the economic
nature (private vs. common value) of this information.
9 We use the terms “English auction” and “ascending auction” interchangeably. For reviews of

standard auction models see, e.g., Milgrom and Weber (1982), McAfee and McMillan (1987a), or
Klemperer (1999).
10 This is a stylized model of an ascending auction that, for example, rules out jump bidding. This

model will match actual practice better in some applications than others. Some ascending auctions
are designed with “activity rules” specifically to replicate features of the button auction (e.g., the FCC
spectrum auctions discussed in McAfee and McMillan (1996)). For an empirical model of English
auctions avoiding the button auction structure, see Haile and Tamer (2001, 2002).
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where Li denotes the set of bidders who exit before i. With private values, all
bidders use this strategy, which reduces to bi = xi = ui. Note that the auction
ends at the price b	n−1�n
.
In the first-price auction or the (strategically equivalent) Dutch auction, after

observing Xi = xi, bidder i solves (letting Bj = �j	Xj
)

max
bi

(
E�Ui �Xi = xi�max

j �=i
Bj ≤ bi�−bi

)
Pr
(
max
j �=i

Bj ≤ bi�Xi = xi

)
�(3)

For first-price auctions (only) we make the additional assumptions that FX	·
 (i)
is affiliated (at least weakly) and (ii) has an associated positive joint density fX	·
.
For PV models of the first-price auction we also assume (iii) Xi has common
support for all i. For the first-price auction models we consider below,11 (i)–(iii)
ensure existence of an equilibrium in which (a) strategies are strictly increasing
and (b) the supports of Bi and maxj �=i Bj are identical;12 however, (i)–(iii) are
otherwise unrelated to our identification arguments.
When equilibrium bidding strategies are strictly increasing, the equilib-

rium bids 	B1� � � � �Bn
 have the same information content as the signals
	X1� � � � �Xn
. Define

�i	x�n
= E
[
Ui �Xi = x�max

j �=i
Bj = �i	x


]
�

If bidders are symmetric, �i	x�n
 = �	x�n
 = E�Ui � Xi = maxj �=i Xj = x�. For
almost every signal xi of bidder i, a necessary condition for bi to be an optimal
bid in a first-price auction is13

bi +
Pr	maxj �=i Bj ≤ bi�Bi = bi


 
 z
Pr	maxj �=i Bj ≤ z�Bi = bi
 �z=bi

= �i	xi�n
�(4)

11 Below, our results focus on symmetric bidders when considering the CV model of the first-price
auction.
12 For the symmetric PV and CV models, there exists a symmetric equilibrium in strictly increasing,

differentiable strategies (Milgrom and Weber (1982)). More generally, Athey (2001) shows that as
long as each bidder’s best response to nondecreasing opponent strategies is itself nondecreasing, a
pure strategy Nash equilibrium exists, where for almost all xi, the distribution over opponent bids is
continuous at �i	xi
. A sufficient condition for such monotonicity in a PV auction is affiliation. For
PV auctions, it can be shown that the common support restriction is sufficient (but not necessary) to
ensure that the equilibrium strategies satisfy (a) and (b) above. In CV models, the conditions required
for monotone best responses are more stringent when there are more than two asymmetric bidders,
but Athey (2001) shows that they are satisfied in the “mineral rights” model we discuss in Section 4.
13 Our assumptions guarantee that the derivative in (4) exists and is positive at bi = �i	xi
 for

almost all xi. Further, (a) and (b) above ensure that (4) must hold for almost every xi. A Bayesian
Nash equilibrium in a game with atomless type distributions only specifies behavior up to a set of
signals of measure zero. Likewise, since behavior on a set of measure zero does not affect any of the
analysis, we can ignore measure zero differences in bid functions.
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2�2� Observables

We consider situations in which the researcher has access to a sample of obser-
vations from independent auctions. The joint distribution of 	U�X
 (conditional
on auction-specific covariates, if any) is fixed across auctions, with each auction
representing an independent draw from this distribution.14 We let Bi denote the
bid made by player i�HBi

	·
 its distribution, and HB	·
 the joint distribution of
bids. The econometrician always observes the number of bidders and the transac-
tion price, which equals either B	n−1�n
 or B	n�n
, depending on the type of auction.
If bidders are asymmetric, we assume that the set of bidders who participate in
each auction is observed (this holds trivially if the same bidders participate in all
auctions). In addition, the following may or may not be observed: (i) other bids;
(ii) the bidder identities associated with one or more bids, with I	m�n
 giving the
identity of the bidder bidding B	m�n
; (iii) auction-specific covariates, such as the
ex ante appraised value of the object or the ex post realization of the value of
the object; or (iv) bidder-specific covariates.
Bids other than the transaction price are observed in some but not all appli-

cations.15 Bidder identities and bidder-specific covariates such as firm size, loca-
tion, or inventories are often observed, particularly for government auctions, as
are auction-specific covariates such as the appraised value or other characteris-
tics of the good for sale. Measures of the realized value of the good are observed
in government auctions of mineral leases and timber contracts.16 In other cases
resale prices can provide measures of realized values (e.g., McAfee, Takacs, and
Vincent (1999)).
Finally, we allow the possibility that the number of bidders varies exoge-

nously. To formalize this, let S = 	U�X
. For � ⊂ �1�2� � � � � let F �
S 	·
 denote

the joint distribution of �Si�i∈� when � is the set of bidders participating in
the auction. For � ′ ⊂�, let F � ′ ��

S 	·
 denote the marginal distribution of �Si�i∈� ′

when � is the set of participants. Typically the number of bidders, n = ���,
varies across auctions. We say that participation is exogenous if for all � and
� ′ ⊂�� F

� ′ ��
S 	·
= F � ′

S 	·
. This exogenous variation could arise if (outside the for-
mal model described above) there were a pool of potential bidders who received
random shocks to the cost of participating that were independent of Ui and Xi.
Bidders with favorable shocks would then participate and learn Xi. With no
reserve price, all bidders who learn Xi would place a bid in the auction, yielding

14 These assumptions are standard in the literature. Such data might arise as a result of nonco-
operative bidding in auctions for procurement contracts or natural resources, where the underlying
competitive environment is stationary over the sample period and contracts are small from the per-
spective of the bidders. In some applications, where the same bidders participate in multiple auctions
over time, we might expect dependence of bidders’ information and/or willingness to pay on outcomes
of prior auctions and expectations of future opportunities (e.g., Jofre-Bonet and Pesendorfer (2000)).
Examining the empirical implications of such models is a valuable direction for future research.
15 In oral “open outcry” auctions we may lack confidence in the interpretation of losing bids below

the transaction price even when they are observed.
16 See Hendricks and Porter (1988), Hendricks, Pinkse, and Porter (2002), and Athey and Levin

(2001).
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exogenous variation in n. Such variation can also arise from participation restric-
tions by the seller (e.g., in government auctions), by design in field experiments
(e.g., Engelbrecht-Wiggans, List, and Lucking-Reiley (1999)), or from variation
in the length of internet auctions, where more potential bidders may become
aware of longer auctions.

2�3� Identification

A model is identified if, given the implications of equilibrium behavior in a
particular auction game, the joint distribution of bidders’ utilities and signals
is uniquely determined by the joint distribution of observables. More formally,
define a model as a pair 	��% 
, where � is a set of joint distributions over the
vector of latent random variables, % is a collection of mappings & � �→�, and �
is the set of all joint distributions over the vector of observable random variables.
Implicit in the specification of a model is the assumption that it contains the true
	� �&
 generating the observables.17

Definition: A model 	��% 
 is identified iff for every 	F � F̂ 
 ∈ �2 and 	&� &̂
 ∈
% 2�&	F 
= &̂	F̂ 
 implies 	F �&
= 	F̂ � &̂
.

A model is testable if equilibrium behavior in that model implies refutable
restrictions on the distribution of observables.18

Definition: A model 	��% 
 is testable iff
⋃

&∈% ��∈� &	� 
 �= �.

We emphasize that throughout our analysis we maintain the assumption of
equilibrium bidding. Hence, failures of the predictions of a particular model are
interpreted as violations of assumptions regarding model primitives, not as a
failure of bidders to follow equilibrium strategies. Of course, failures of the latter
type are also of interest and could lead to rejections as well.

3� private values models

We first consider identification of a series of private values models, showing
how richer models require richer data sets for identification and testing. We focus
initially on ascending and second-price auctions, and these auction forms are
assumed unless otherwise stated. In these auctions, the equilibrium bid function is
just the identity function, so the identification question reduces to that of whether
the joint distribution of valuations can be determined when only certain order

17 For our purposes, we typically consider a single equilibrium so that % is a singleton. In such
cases we often refer explicitly to identification of � , showing that � is uniquely determined in �
by % and the observed � ∈ �. A few results address partial identifiability, referring explicitly to the
identified components of � .
18 Just as addressing identification precedes the development and evaluation of estimators, showing

that a model is testable leaves open important details regarding appropriate testing procedures.
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statistics are observed. At the end of this section we consider first-price sealed-
bid and Dutch auctions where, although bidding strategies are more complicated,
many of the same ideas can be applied.

3�1� Independent Private Values

One of the most widely studied auction models is the IPV model.

Independent Private Values (IPV): Xi = Ui ∀ i, with 	X1� � � � �Xn

mutually independent.

Much empirical work has focused on the symmetric IPV model. We begin
by showing that in this model, the underlying distribution of valuations is non-
parametrically identified even when only one bid per auction is observed. Fur-
thermore, the model can be tested if more than one bid is observed or there is
exogenous variation in the number of bidders.

Theorem 1: In the symmetric IPV model, (i) FU	·
 is identified from the trans-
action price. (ii) The model is testable if either (a) more than one bid per auction
is observed or (b) transaction prices are observed from auctions with exogenously
varying numbers of bidders.

Proof: (i) The ith order statistic from an i.i.d. sample of size n from an arbi-
trary distribution F 	·
 has distribution (see, for example, Arnold, Balakrishnan,
and Nagaraja (1992))

F 	i�n
	z
= n!
	n− i
! 	i−1
!

∫ F 	z


0
ti−1	1− t
n−i dt�(5)

Because the right-hand side of (5) is strictly increasing in F 	z
�F 	z
 is uniquely
determined by F 	i�n
	z
 for any 	i � n
. Hence, FU	·
 is identified whenever any
distribution F

	i�n

U 	·
 is. Since the observed transaction price is equal to the order

statistic U	n−1�n
 and the marginal distribution FU	·
 completely determines FU	·
,
the result follows.
(ii) Under the IPV assumption, values of FU	u
 implied by the distributions

of different order statistics (U	i�n
 and U	j�m
 with 1�i = j�n = m� = 0
 must be
identical for all u, a testable restriction. Q.E.D.

Although the identification result is an immediate implication of known prop-
erties of order statistics, nonparametric identification of even this simplest model
of second-price and English auctions has not been previously established. Indeed,
all prior structural econometric work on second-price and English auctions has
relied on parametric distributional assumptions even in the symmetric IPV model
(e.g., Donald and Paarsch (1996), Paarsch (1997)). Theorem 1 shows that para-
metric approaches will not always be necessary and that the assumptions of this
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model of bidder demand can be tested even if only the transaction price is
observed. Further, the result provides an approach to testing the symmetric IPV
assumption, based on detecting violations of (5). Since (5) holds only for i.i.d.
random variables, the parent distributions implied by different F 	j�n
	·
 need not
be the same if bidders’ signals are not independent or bidders are asymmetric.19�20

Theorem 1 relies on both the independence and exchangeability properties of
the symmetric IPV model. However, identification from a single bid (in particu-
lar, the transaction price) still holds when exchangeability is dropped as long as
the identity of the winning bidder is also observed. We establish this by applying
results from the literatures on competing risks (Berman (1963)) and reliability
theory (Meilijson (1981)).21

Theorem 2: In the asymmetric IPV model, assume that each FUi
	·
 is continu-

ous and that supp�FUi
	·
� is the same for all i. Each FUi

	·
 is identified if either:
(a) the transaction price 	B	n−1�n

 and identity of the winner are observed; or
(b) in a second-price auction, the highest bid 	B	n�n

 and identity of the winner

are observed.
Given (a) or (b), the model is testable if either:
(i) participation is exogenous and each bidder i participates in auctions with at

least two different sets of opponents; or
(ii) in a second-price auction, both (a) and (b) hold.

Proof: Identification given (a) follows from Meilijson (1981, Theorem 1 and
Section 4). Identification given (b) follows from Theorem 7.3.1 and Remark 7.3.1
in Prakasa-Rao (1992). Each of these arguments holds when the set of partic-
ipants is fixed. Hence, with exogenous variation in participation, each FUi

	·
 is
uniquely determined by data from each � � i, and equality of the distributions
FUi

	·
 obtained from each such � is a testable restriction. Similarly, if both (a)
and (b) hold, the two versions of the distribution FUi

	·
 implied by the distribu-
tions of 	B	n−1�n
� I 	n�n

 and 	B	n�n
� I 	n�n

 must be identical, providing a testable
restriction. Q.E.D.

19 Bidding in many ascending auctions is free-form. In such cases the IPV button-auction model
could be rejected even when the symmetric IPV assumptions hold because recorded bids understate
the true willingness-to-pay of the bidders. In that case, one could compare estimates obtained from
low-ranked bids to those obtained from high-ranked bids to assess the magnitude of the bias that
arises from bidders’ failing to bid at prices as high as their true valuations.
20 It may be surprising that independence is testable using only one bid per auction. However, (5)

specifies a particular way in which the distribution of B	n−1�n
 must vary with n. This restriction fails
in natural examples with asymmetric or strictly affiliated values.
21 In competing risks models, a system fails as soon as one of its components fails, enabling obser-

vation of the first failure time and the identity of the component that fails. Up to a trivial translation
between minimum and maximum, this is formally equivalent to observing the bid and identity of the
highest bidder in an auction. In a more general reliability model, a “coherent system” fails when
certain combinations of components fail. In such cases one might observe only “autopsy statistics,”
consisting of the time of system failure and the set of components that have failed by the time of
system failure. This is formally equivalent to observing the price at which the auction ends and the
set of bidders who made bids at or below this price.
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3�2� Auction-Specific Covariates

Several generalizations of the IPV model have been considered in the liter-
ature. For example, Li, Perrigne, and Vuong (2000) consider a model in which
Ui = V +Ai ∀ i, with 	V �A
 mutually independent.22�23 In this model, each Ai

is analogous to an i.i.d. measurement error on the variable V . If all bids are
observed in a second-price auction, identification is then immediate from exist-
ing results (Kotlarski (1966), Prakasa-Rao (1992), Li and Vuong (1998)).24 The
identification argument holds even if bidders are asymmetric as long as bidder
identities are observed, but fails when not all bids are observed. Observed bids
correspond to realizations of order statistics U	j�n
 = A	j�n
 +V . Because order
statistics are dependent even when the underlying random variables are indepen-
dent, the “measurement errors” �A	j�n
� underlying the observed bids are depen-
dent, precluding application of methods from the measurement error literature
that rely on independence.25

Identification holds, however, if the conditioning variable V is determined by
observable covariates; e.g., V = g0	W0
 for some (unknown) function g0. This
is a natural structure in many applications: while the idiosyncratic components
of bidders’ valuations are independent, correlation of valuations at each auction
arises through variation in the observable attributes of the objects sold.

Theorem 3: Let private values be given by Ui = gi	Ai�W0
 where each gi	·� ·

is an unknown function, FAi

	·
 is continuous and strictly increasing, and supp�FAi
�

is the same for all i. Assume W0 and the transaction price are observed. If bidders
are asymmetric, assume that the identity of the winner is also observed.
(i) If A1� � � � �An are independent conditional on W0, then each FU	·�w0
 is

identified.
(ii) Let gi	Ai�W0
 = Ai + g0	W0
 ∀ i, with g0	·
 an unknown function. If

A1� � � � �An are mutually independent and independent of W0, then FA	·
 and g0	·

are identified up to location.
(iii) The symmetric models in (i) and (ii) are testable if more than one bid is

observed in each auction or the transaction price is observed in auctions with exoge-
nously varying numbers of bidders.

22 A closely related model is one in which V is observed by bidders but not by the econometrician.
The two models are equivalent in the case of a second-price or ascending auction. In a first-price
auction, however, the distinction is important. Since the realization of V would affect a bidder’s
beliefs about opponents’ signals, bids generally will not satisfy (4) if V is observed by bidders.
23 In Athey and Haile (2000) we showed that this structure can match the first two moments of

any affiliated exchangeable distribution of values, but imposes restrictions on third moments.
24 Li, Perrigne, and Vuong (2000) applied this approach to the case of symmetric first-price auc-

tions.
25 When 	V �A
 are mutually independent, it seems plausible that, since each A	j�n
 is an order

statistic from an i.i.d. sample from a common parent distribution, there may be sufficient structure to
identify the model from only two order statistics U	j�n
�U 	k�n
. However, we have not obtained such
a result. It is interesting to note that the difference U	j�n
 −U	k�n
 = A	j�n
 −A	k�n
 does not identify
FA	·
 up to location (Arnold, Balakrishnan, and Nagaraja (1992, p. 143)).
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(iv) The asymmetric models in (i) and (ii) are testable in a second-price sealed-
bid auction if winner’s identity and bid are observed.

Proof: (i) For fixed w0�U1� � � � �Un are independent, so we can apply
Theorem 1 (in the symmetric case) or Theorem 2 (in the asymmetric case).
(ii) For each w0, in equilibrium

H
	n−1�n

B 	b � w0
= Pr

(
A	n−1�n
 ≤ b−g0	w0


)= F
	n−1�n

A 	b−g0	w0

�

Using standard arguments, variation in b and w0 identifies g0	·
 up to a location
normalization. Then, identification of FA	·
 follows from Theorem 1 under sym-
metry and from Theorem 2 when bidders are asymmetric. (iii) Suppose B	i�n
 and
B	j�m
 are observed and 1�i = j�n=m�= 0. Let FU	·�w0� i�n
 and FU	·�w0� j�m

�FA	·� i�n
 and FA	·� j�m
� denote the marginal distributions implied by the bid
distributions H	i�n


B 	·�w0
 and H
	j�m

B 	·�w0
, respectively, using part (i) [part (ii)].

A testable restriction of the model is FU	·�w0� i�n
= FU	·�w0� j�m
 �FA	·� i�n
=
FA	·� j�m
�. (iv) Follows from a similar argument. Q.E.D.

3�3� Unrestricted Private Values

For datasets with heterogeneous objects, the preceding model of conditionally
independent private values above is clearly more realistic than the IPV model.
The testing approaches proposed above can help ascertain whether the condi-
tional independence assumption is valid. When it is not (e.g., if there is unob-
served auction-specific heterogeneity), one must consider a richer class of models.
Here we consider PV models without restriction on the correlation structure of
bidders’ valuations.
For fixed n, any set of observed bids can be rationalized in the private val-

ues framework (Laffont and Vuong (1996)): simply let the distribution of values
equal the distribution of bids. Thus, the unrestricted PV model is identified from
observation of all bids in a sealed-bid auction, but untestable without further
information. Below we derive both positive and negative identification results
for the unrestricted private values model for cases in which some bids are unob-
served.

3�3�1� The PV Model Is Not Identified From Incomplete Sets of Bids

With data consisting only of bids, the unrestricted PV model is not identified in
an ascending auction, nor in a second-price auction unless all bids are observed.26

This is true even if bidders are symmetric.27

26 This generalizes classic results from the literature on competing risks; in particular, Cox (1959)
and Tsiatis (1975) show that a joint distribution of competing risks is not identified from that of the
first order statistic alone.
27 This result does not impose affiliation of U. If affiliation holds weakly, it is potentially disturbed

by small perturbations of the distribution. The result can be generalized to the case where we restrict
U to be strictly affiliated, as long as we take a “small enough” perturbation when constructing the
counterexample.



identification of auction models 2119

Theorem 4: In the symmetric PV model: (i) FU	·
 is not identified from the
vector of bids in an ascending auction. (ii) FU	·
 is not identified in a second-price
auction unless all bids are observed.

Proof: Suppose that �0�5�n is the interior of the support of U and that FU	·

has an associated density fU	·
 that is positive throughout this region. Suppose
that for some k ∈ �1� � � � � n� a subset of �U 	j�n
 � j �= k� is observed but U	k�n
 is
unobserved. Define a set of partitions of bidder indices

� k = {
	S1� Sk−1� Sn−k
 � S1∪Sk−1∪Sn−k

= �1� � � � � n�� �S1� = 1� �Sk−1� = k−1� �Sn−k� = n−k
}
�

Then, for S ∈� k and 0< , < 1/2, define

c	u�S�,


≡ 1�ui ∈ �3−,�3+,�� i ∈ S1� ·1�ui ∈ �1−,�1+,��∀ i ∈ Sk−1�

·1�ui ∈ �4−,�4+,��∀ i ∈ Sn−k�−1�ui ∈ �2−,�2+,�� i ∈ S1�

·1�ui ∈ �1−,�1+,��∀ i ∈ Sk−1� ·1�ui ∈ �4−,�4+,��∀ i ∈ Sn−k��

For sufficiently small & > 0, f̆U	·
 ≡ fU	·
+&
∑

S∈�k c	·�S�,
 is a PDF, with the
function c shifting probability weight from some regions to others. If k = n−1,
probability weight shifts from a neighborhood of 	1� � � � �1�2�4
 to a neighbor-
hood of 	1� � � � �1�3�4
, and similarly for all permutations of these vector pairs.
With k=n−1 this change in the underlying joint distribution preserves exchange-
ability and does not change the joint distribution of the observable order statis-
tics. Similar perturbations can be constructed for any k. Q.E.D.

3�3�2� Identification and Testing Using Bidder Covariates

Availability of bidder-specific covariates28 can yield identification even in the
unrestricted private values model. To show this, we begin with approaches from
the literatures on competing risks (e.g., Peterson (1976), Heckman and Honoré
(1989), Han and Hausman (1990)) and the Roy model (Heckman and Honoré
(1990), Heckman and Smith (1998)). In these models either a lowest or highest
order statistic is observed. Observing an extreme order statistic (minimum or
maximum) yields a relatively simple identification problem since its distribution
provides direct information about the underlying joint distribution. For example,
if Ui = gi	Wi
+Ai, then

Pr	B	n�n
 ≤ b�w
= FA	b−g1	w1
� � � � � b−gn	wn

�

28 Examples of such covariates include the distance from the firm to a construction site or tract of
timber, a contractor’s backlog of jobs won in previous auctions, or measures of demand in the home
markets of bidders at wholesale used car auctions.
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enabling one to “trace out” FA	·
 through variation in b and w. Thus, when we
observe either the highest bid in a second-price auction, or the lowest bid in an
ascending auction, existing results (Heckman and Honoré (1990)) can be applied
if, as in this prior literature, we also observe the identity of the auction win-
ner/loser.29 However, such results are of dubious value in the case of an ascending
auction (unless n= 2), as they require observation of the maximum or minimum
bid. Inference from nonextremal order statistics is more difficult, and has not
been considered in the prior literature. However, the following result shows that
even if only the transaction price is observed, we can uncover the underlying joint
distribution of values when bidder-specific covariates with sufficient variation are
available. Further, the model is testable if more than one bid is observed in each
auction.

Theorem 5: In the asymmetric PV model, assume (a) Ui = gi	Wi
+Ai ∀ i; (b)
FA	·
 has support equal to �n and a differentiable density; (c) 	Ai�Wj 
 are indepen-
dent for all i� j; (d) supp	g1	W1
� � � � � gn	Wn

=�n; (e) ∀ i� gi	·
 is differentiable,
and limwi→−� gi	wi
=−�. Then:
(i) FA	·
 and each gi	·
� i= 1� � � � � n, are identified up to a location normaliza-

tion from observation of the transaction price and W.
(ii) The model is testable if more than one bid per auction is observed.

Proof: (i) For simplicity, let each Wi be a scalar Wi. For T ⊂ �1�2� � � � � n�
define

�F T

A	a1� � � � � an
≡ Pr	Ai > ai ∀ i ∈ T �Aj ≤ aj ∀ j 	 T 
�

�F T

A�Ai
	a1� � � � � an
=

 

 ai

�F T

A	a1� � � � � an
� and

z= 	b−g1	w1
� � � � � b−gn	wn

�

Then for 0≤m≤ n−1

Pr	B	n−m�n
 ≤ b � w


= ∑
T⊆�1� � � � �n� s�t� �T �=m

∑
i	T

∫ b

−�
�F T
A�Ai

	b̃−g1	w1
� � � � � b̃−gn	wn

db̃

29 To see the relation between these models, recall that in the Roy model (auction model) a worker
(auctioneer) selects the sector (bidder) offering the highest wage (bid). We observe only the maximum
wage (bid) and the identity of the corresponding sector (bidder). Observation of the minimum, as in
the competing risks model, is isomorphic.
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where we sum over the possible identities of the top m+1 bidders. Differentiat-
ing yields

 

 b

 n

 w1 · · ·  wn

Pr	B	n−m�n
 ≤ b � w


= ∑
T⊆�1� � � � �n� s�t� �T �=m

∑
i	T

	−1
m
n∏

j=1
	−g′

j 	wj


 

 ai

fA	a


∣∣∣∣
a=z

=
(
n−1
m

)
	−1
m

n∏
j=1

	−g′
j 	wj



n∑
i=1

 

 ai

fA	a


∣∣∣∣
a=z

since there are
(
n−1
m

)
sets T of size m that exclude i. Using limb→−� FA	z
= 0 and

integrating,

 n

 w1 · · ·  wn

(
Pr	B	n−m�n
 ≤ b � w


)= 	−1
m
(
n−1
m

) n∏
j=1

	−g′
j 	wj

fA	z
�(6)

Observe further that

 n

 w1 · · ·  wn

FA	b−g1	w1
� � � � � b−gn	wn

=
n∏

j=1
	−g′

j 	wj

fA	z
�(7)

Noting that limw→	−�� � � � �−�
 FA	b− g1	w1
� � � � � b− gn	wn

 = 1, the fundamen-
tal theorem of calculus and equations (6) and (7) then imply that FA	b −
g1	w1
� � � � � b−gn	wn

 is identified from observation of B	n−m�n
, and is equal to

1+ 1

	−1
m(n−1
m

) ∫ wn

−�
· · ·

∫ w1

−�
 n

 w1 · · ·  wn

Pr
(
B	n−m�n
 ≤ b � w)dw1 · · ·dwn�

Note that limw−i→	−�� � � � �−�
 FA	b− g1	w1
� � � � � b− gn	wn

 = FAi
	b− gi	wi

.

For each i, then, variation in b and wi at this limit identifies gi	·
.30 With knowl-
edge of the gi	·
’s, we can then determine FA	·
 at any point 	a1� � � � � an
 through
appropriate choices of b and w. (ii) Since the argument in (i) applies for any
order statistic B	n−m�n
, observation of two order statistics leads to two expres-
sions for FA; their equality is a testable restriction. Q.E.D.

3�4� First-Price Auctions with Some Bids Unobserved

We now turn to first-price auctions. Nonparametric identification of first-
price auction models has been studied extensively for the case in which bidders

30 For an alternative argument that relies on observing the identities of the top two bidders, but
does not require holding w−i at 	−�� � � � �−�
 while varying wi, see Athey and Haile (2000). The
approach requires varying wi and wj in a way that holds the probability that I	n�n
 = i and I	n−1�n
 = j
fixed, and examining the effect of such variation on Pr	B	n−1�n
 ≤ b �w� I 	n�n
 = i� I 	n−1�n
 = j
= Pr	Aj +
gj	wj
≤ b � w� I 	n�n
 = i� I 	n−1�n
 = j
.
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are symmetric and all bids are observed. Hence we focus on the complemen-
tary cases. Equation (4), which expresses the latent expectation �i	xi�n
 in
terms of observable bids, has been widely exploited in the literature.31 Since
Pr	maxj �=i Bj ≤ z�Bi = b
 is observable when all bids are observed, (4) can be
used to identify FU	·
 (Laffont and Vuong (1993, 1996)). For the symmetric
IPV model of first-price auctions, Guerre, Perrigne, and Vuong (1995) show
that, using (4), FU	·
 is identified from the transaction price B	n�n
 alone, since
Pr	maxj �=i Bj ≤ b�Bi = b
=HB	b


n−1 and HB	b
= 	H
	n�n

B 	b

1/n. However, when

bidders are asymmetric, another approach is required. Our results below provide
a solution, establishing that many of the preceding results extend to first-price
auctions.

Theorem 6: In the PV model of the first-price auction, suppose that the trans-
action price is observed. If bidders are asymmetric, assume that the identity of the
winner is also observed. Then:
(i) In the IPV model, FU	·
 is identified.
(ii) If Ui = gi	Ai�W0
, where each gi	·� ·
 is an unknown function, W0 is

observed (by bidders as well as the econometrician), and A1� � � � �An are indepen-
dent conditional on W0, then each FU	· � w0
 is identified.
(iii) If Ui = g0	W0
+Ai�W0 is observed, and A1� � � � �An are mutually indepen-

dent and independent of W0, then each FAi
	·
 and g0	·
 are identified up to location.

(iv) If bidders are symmetric, then the models in (i)–(iii) are testable if more
than one bid from each auction is observed, or if there is exogenous variation in the
number of bidders.
(v) If bidders are asymmetric, then the models in (i)–(iii) are testable if B	n−1�n


is observed, or if there is exogenous variation in the number of bidders.

Proof: (i) For the symmetric case, identification follows from Guerre,
Perrigne, and Vuong (1995, Corollary 2). Under asymmetry, we observe the joint
distribution of 	B	n�n
� I 	n�n

. Since bids are independent, the proof of Theorem 2
(part b) implies that each HBi

	·
 is identified.32 These marginal distributions
uniquely determine, for each i and b, Pr	maxj �=i Bj ≤ b
 and, therefore, the
inverse bid function �−1

i 	·
 defined in (4). Since �i	Xi�n
=Xi = Ui, this identi-
fies each FUi

	·
. (ii) For fixed w0 the bids (and also the valuations) are indepen-
dent, so we can apply part (i). (iii) Following the argument in part (i), for any w0
both HBi

	b � w0
 and �−1
i 	b�w0
 are uniquely determined for all b. Since

HBi
	b � w0
= Pr	�i	Ai +g0	w0
�w0
≤ b � w0


= FAi
	�−1

i 	b−g0	w0
�w0

�

31 For private values, it has been used for the symmetric IPV model (Elyakime et al. (1994)),
the affiliated PV model (Li, Perrigne, and Vuong (2002)), and the asymmetric PV model (Campo,
Perrigne, and Vuong (2002)); for the pure CV model, it has been applied by Hendricks, Pinkse, and
Porter (2002) and Li, Perrigne, and Vuong (2000).
32 Our maintained assumptions about first-price auctions imply that the assumptions of Theorem 2

are satisfied.
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variation in b and w0 then determines FAi
	·
 and g0	·
 up to location by standard

arguments. (iv) Because valuations are i.i.d. conditional on w0 and each bidder
uses the same strictly increasing bid function, bids are also i.i.d. conditional on w0.
Hence (5) describes the relation between HB	b � w0
 and any H	j�n


B 	b � w0
. Since
H

	j�n

B 	b �w0
 is observed for at least two values of j (or n), this relation is testable.
(v) Following the logic above and Theorem 2, each FUi

	· � w0
 (or FAi
	· � w0
) is

identified when 	B	n−1�n
� I 	n�n

 are observed, in which case the overidentifying
restriction is testable. Exogenous variation in n is analogous. Q.E.D.

Despite the prior attention in the literature to symmetric IPV first-price auc-
tions with all bids observed, specification testing has been limited to verifying
monotonicity of the right-hand side of (4). Unfortunately, this restriction holds
under many natural alternatives to the IPV model. Theorem 6 provides testable
restrictions that typically fail under affiliated private or common values. Note
also that the assumptions required in the cases of asymmetric models contrast
with those for existing identification results for asymmetric PV models (Laffont
and Vuong (1996)), which rely on observation of all bids. As mentioned above,
Dutch auctions are strategically equivalent to first-price auctions but have the
feature that the transaction price is the observable bid; thus, these results apply
directly to Dutch auctions as well.33

Now consider the more general affiliated private values model. Although many
first-price auction data sets either contain only the transaction price or else all
bids, there are reasons for an auctioneer (or auction participants) to maintain
records of the top two bids. In procurement auctions, the top bidder may default
or be disqualified, in which case the second-highest bidder will often receive the
contract. Further, auction participants often refer to the difference between the
top two bids as “money left on the table,” a measure that has intuitive appeal
as information relevant to bidding strategies. The following result shows that
observation of the top two bids is sufficient for determination of the equilibrium
bid functions, using (4). This enables partial identification of the affiliated private
values model from limited data.

Lemma 1: Assume the affiliated PV model of the first-price auction, and assume
that the two highest bids are observed. If bidders are asymmetric, assume the identity
of the winner 	I	n�n

 is also observed. Then the equilibrium bid functions �i	·
� i =
1� � � � � n, are identified.

Proof: Consider the more general asymmetric case. Take i = 1 without loss
of generality and b1 ∈ supp�HB1

	·
�. For almost all such b1 (using Bayes’ rule, and

33 Prior studies of (symmetric) Dutch auctions include Laffont and Vuong (1993) and Elyakime
et al. (1994).
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canceling common terms)

Pr	maxj �=1Bj ≤ b1 � B1 = b1

 
 x
Pr	maxj �=1Bj ≤ x � B1 = b1
 �x=b1

=
 
 y
Pr	maxj �=1Bj ≤ b1�B1 ≤ y


∣∣
y=b1

 2

 x y
Pr	maxj �=1Bj ≤ x�B1 ≤ y


∣∣
x=y=b1

=
 
 y
HB	y�b1� � � � � b1


∣∣
y=b1∑

j �=1
 2

 y zj
HB	y� z2� � � � � zn


∣∣
y=z2=···=zn=b1

=
 
 x
Pr	B	n�n
 ≤ x� I	n�n
 = 1
�x=b1

 2

 x y
Pr	B	n−1�n
 ≤ x�B	n�n
 ≤ y� I	n�n
 = 1
∣∣

x=y=b1

�

Since the last expression is the ratio of two observable functions, the right-hand
side of (4) is identified almost everywhere, which gives bidder 1’s (inverse) equi-
librium bid function up to a set of measure zero. Q.E.D.

This immediately implies the following result.

Theorem 7: Assume the symmetric affiliated PV model of the first-price auc-
tion and that the two highest bids are observed. Then the joint distribution of
	U 	n�n
�U 	n−1�n

 is identified.

Theorem 7 establishes identification of the joint distribution of the top two bid-
der valuations in symmetric first-price auctions.34 Although FU	·
 is not uniquely
determined by the distribution of 	U 	n�n
�U 	n−1�n

, the latter distribution is suffi-
cient for some important policy simulations, including evaluation of reserve prices
or simulation of outcomes under many alternative selling mechanisms. Below,
we show that this also enables testing of private versus common values.
However, other policy questions (for example, the design of the optimal auc-

tion) require knowledge of the full joint distribution FU	·
. Thus, we next con-
sider whether this distribution is identified from incomplete sets of bids. One
might conjecture that knowledge (through Lemma 1) of the bid functions �i	·
,
which incorporate strategic responses to the distribution of opponents’ bids, could
enable us to “fill in” missing bids to obtain identification. However, as argued in
the proof of Lemma 1, bid functions depend only on the top two order statistics
of the bids and, therefore, provide no information about the distribution of lower
bids. Thus, the negative result of Theorem 4 extends to first-price auctions.35

34 The situation for asymmetric bidders is more complex because, with asymmetric bidding strate-
gies, the top two bids are not necessarily made by the bidders with the top two valuations.
35 To see how this follows from Theorem 4, fix FU	·
. Suppose that the jth bid is unobserved, and

that � is the equilibrium bidding function. These together imply a distribution of bids HB	·
. Now
(following Theorem 4), construct another value distribution, F̃U	·
, such that F̃U	·
 and FU	·
 induce



identification of auction models 2125

Corollary 1: In the symmetric affiliated PV model of the first-price auction,
assume the two highest bids are observed. FU	·
 is not identified if any other bid is
unobserved.

This negative result makes the identification of bid functions discussed above
even more valuable. Although parametric assumptions may be needed to identify
the affiliated private values model when lower-ranked bids are missing, it may still
be possible to estimate the bid functions nonparametrically (based on Lemma 1)
and compare these, as a specification test, to estimates obtained through para-
metric restrictions.

4� common values models

Identification of a common values model requires unique determination of
the joint distribution FX�U	·
 from the observables. The full joint distribution of
signals and values is required for policy questions such as determination of an
optimal reserve price. It is also of interest because it contains information about
the extent of bidders’ residual uncertainty about their values after observing their
signals, as well as the extent to which bidder i’s opponents have information
about his valuation Ui. Thus, for example, only with knowledge of FX�U	·
 can
the extent of the winner’s curse be quantified.
Because bidder behavior depends only on the information content of the sig-

nals, which is preserved by monotone transformations, the scaling of X is arbi-
trary. One natural normalization of signals satisfies

E
[
Ui�Xi =max

j �=i
Xj = x�n

]
= x�(8)

With this normalization, the equilibrium bidding strategy in a symmetric second-
price auction is b	xi
 = xi. Hence, in the symmetric CV model, the distribu-
tion FX	·
 is just identified (up to a normalization of signals) in a second-price
sealed-bid auction when all bids are observed.36 However, unobserved bids are
problematic: the nonidentification result of Theorem 4 carries over immediately
to identification of FX	·
 in the CV model. Furthermore, even if all bids are
observed in a second price auction, the bid distribution identifies only FX	·
,
providing no further information about FX�U	·
 (even in a pure CV model).
the same distributions of order statistics except for the jth. But then, since Pr	maxj �=i Uj ≤ x�Ui ≤
y
�x=y is the same under F̃U	·
 and FU	·
�� will still be a best response for bidder i to strategies of � by
all opponents, when values are drawn from F̃U	·
. Finally, � and the value distribution F̃U	·
 together
generate a distribution of bids, H̃B	·
, where H̃B	·
 and HB	·
 induce the same distributions of order
statistics except for the jth. Thus, H̃B	·
 and HB	·
 are observationally equivalent.
36 With pure common values and ex post observability of the value V of the good, observing all

bids enables both identification of the model and testing (Hendricks, Pinkse, and Porter (2002)).
One estimate of E�V �Bi =maxj �=i Bj = bi�n� can be constructed using equilibrium bidding strategies
together with observation of the bids. A second estimate of this quantity can be obtained directly from
the joint distribution of the ex post value V and the bids. The two estimates can then be compared.
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Hence, the data are insufficient to provide answers to most policy questions. We
summarize these results in the following corollary.

Corollary 2: In the CV model, (i) FX	·
 is not identified from bids in a
second-price sealed-bid auction unless all bids are observed; (ii) FX�U	·
 is not iden-
tified from observed bids in a second-price sealed-bid auction.

This result serves to qualify some prior studies in which some bids are unob-
served, as it implies that parametric assumptions play an essential role in deter-
mining the results.37

In order to identify FX�U	·
, additional structure and/or data are required. One
natural CV structure is Milgrom and Weber’s (1982) “mineral rights model”—
a symmetric pure CV model in which signals are independent conditional on
the common value. Li, Perrigne, and Vuong (2000) have studied such a model,
assuming, in addition, that signals have an additively separable structure and
providing a set of conditions under which this structure survives the rescal-
ing (8), although in general it does not. In particular, they assume that for
each n there exist two known constants 	C�D
 ∈ �×�+ and random vari-
ables 	A1� � � � �An
 with joint distribution FA	·
 such that, with the normaliza-
tion E�V �Xi =maxj �=i Xj = x�n�= x�Xi =C+D	V +Ai
∀ i. Further, 	V �A
 are
mutually independent. Li, Perrigne, and Vuong (2000) construct several exam-
ples satisfying these requirements and establish that this model is identified in
first-price auctions when all bids are observed. It follows immediately that the
model is also identified in second-price auctions when all bids are observed.
Even with these strong assumptions, identification is problematic when some

bids are unobserved. Letting C = 0 and D = 1 for simplicity, bids reveal order
statistics of the form X	i�n
 = V +A	i�n
. Since order statistics are correlated
even when the underlying random variables are independent, the identification
approach based on the measurement error literature followed by Li, Perrigne,
and Vuong (2000) fails (recall the related discussion in Section 3.2). In the case
of pure common values, a solution exists if we observe the ex post value V . Then,
if Ui = V +Ai and A are independent conditional on V , the model is identi-
fied from the transaction price in first- or second-price sealed-bid auctions, or in
ascending auctions with two bidders (for details see Athey and Haile (2000)). Of
course, the range of applications in which an accurate ex post measure is avail-
able may be limited.
Ascending auctions are even more difficult. While a normalization like (8) can

be applied to signals in the initial phase of an ascending auction (the period
before any bidders have dropped out), no single normalization can induce the
simple strategy b	x
= x throughout the auction, since bidders modify their strate-
gies each time an opponent exits. The exact forms of these modifications depend

37 Hong and Shum (2002) and Bajari and Hortaçsu (2000) use the normal distribution to estimate
common values models of, respectively, ascending auctions (for which we obtain an even stronger
nonidentification result below) and second-price auctions in which the top bid is unobserved.
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on the joint distribution of signals and values. While we might hope that this
dependence would enable observed bids to provide information about this joint
distribution, it also creates serious challenges. Further complications arise from
the fact that, when n> 2, there is a multiplicity of symmetric equilibria in weakly
undominated strategies, implying that there is no unique interpretation of bids
below the transaction price.
The following result establishes that the CV model is generally not identified

in ascending auctions. Here we ignore the multiplicity of equilibria and assume a
special case of a pure CV model in which signals are i.i.d. Even this very special
CV model is not identified.

Theorem 8: In an ascending auction, assume the pure CV model, i.i.d. signals
Xi, and select the equilibrium characterized by Milgrom and Weber (1982). The
model is not identified (even up to a normalization of signals) from the observable
bids.

Proof: Take n= 3 and consider two models. In both, signals are uniform on
�0�1�. In the first,

V = v	x1� x2� x3
=
∑

i xi

3
�

while in the second model

V = v̂	x1� x2� x3
=
x	1�3


3
+ x	2�3


6
+ x	3�3


2
�

Because in both models E�V � X1 = X2 = X3 = x� = x, equilibrium bidding in
the initial phase of the auction is identical in the two models; i.e., H	1�3


B 	b
 =
F

	1�3

X 	b
 = 1− 	1− b
3 in both cases. Similarly, since b	2�3
 = E�V � X	1�3
 =

b	1�3
�X	3�3
 = X	2�3
 = x	2�3
�, the fact that v̂	x� y� y
 = v	x�y� y
 for all x and y

implies that H	2�3

B 	· �B	1�3

 is identical under the two models. Since H	1�3


B 	·
 and
H

	2�3

B 	· �B	1�3

 completely determine the joint distribution of the observable bids,
the two models are observationally equivalent.38 Q.E.D.

This is a strong negative result for CV ascending auctions. Even ignoring the
equilibrium selection problem and possible doubts about the interpretation of
losing bids in an ascending auction, this most restrictive of CV models is not
identified.

5� tests of private versus common values

Our negative results for identification of CV models provide additional motiva-
tion for determining whether auction data enable testing between the PV and CV
paradigms. The distinction between private and common values is fundamental

38 Policy implications, such as the optimal reserve price, differ across the two models.
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in the theoretical literature on auctions and many other types of markets. This
distinction is also important for policy. The existing literature on structural anal-
ysis of auctions is fairly discouraging about the possibility of empirically discrim-
inating between these models. The problem was first studied by Paarsch (1992a),
who proposed an approach for testing between the symmetric IPV model and
the mineral rights model; however, the approach relied heavily on parametric
distributional assumptions. Laffont and Vuong (1996) have shown that when the
number of bidders is fixed in a sealed-bid auction, the PV and CV models cannot
be distinguished even when all bids are observed. One might expect the problem
to be even more difficult in ascending auctions, where we never observe all bids
and the CV model admits a continuum of equilibria.
A testing approach discussed in the prior literature is based on the fact that the

winner’s curse arises only in CV auctions. Since the severity of the winner’s curse
increases with the number of competitors a bidder faces, several empirical studies
have tested for common values by examining whether bids decrease with the
number of bidders (e.g., Paarsch (1992a; 1992b)). However, there are problems
with this approach. In a first-price auction, when strategic responses to changes
in the level of competition are accounted for, bids can increase or decrease in
the number of bidders under both the PV and CV paradigms (Pinkse and Tan
(2000)). This complication is avoided in second-price and ascending auctions,
although another problem arises in these and any other auctions in which not all
bids are observed: the distribution of an order statistic such as U	n−1�n
 varies with
n even when there is no winner’s curse, again confounding the effects of interest.
In spite of these difficulties, we show that it is possible to use exogenous

variation in the number of bidders to test for the winner’s curse. We first con-
sider the case of symmetric bidders, where the distribution FU	·
 is exchangeable.
Exchangeability implies the marginal distributions of the order statistics U	j�n


must satisfy (see, e.g., David (1981 p. 105))
n− r

n
F

	r�n


U 	u
+ r

n
F

	r+1�n

U 	u
= F

	r�n−1

U 	u
 ∀u� r ≤ n−1�(9)

To see the intuition for (9), observe that if one bidder is dropped at random from
a set of n bidders, there is probability r/n that the eliminated bidder has one of
the r lowest valuations, and probability 	n− r
/n that the bidder has one of the
n− r highest. Using these probabilities as weights, the distribution of U	r�n−1
 is
a weighted average of the distributions of U	r+1�n
 and U	r�n
.
Using (9), we are able to isolate the effect of an exogenous change in n. In

a PV model, the number of bidders n has no effect on valuations; hence, the
distributions of the order statistics of these valuations (obtained directly or indi-
rectly from the distributions of bids) must obey the recurrence relation (9). In
a CV second-price auction the distribution of transaction prices from auctions
with n−1 bidders stochastically dominates the appropriate convex combination
of bid distributions from n-bidder auctions, due to the effect of the winner’s
curse discussed above. The case of ascending auctions is more complicated, both
because bidders update their strategies in response to the realizations of oppo-
nents’ types inferred as the auction proceeds and because there are multiple
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equilibria. Nonetheless, the PV model is testable against the CV alternative in
both types of auctions.

Theorem 9: In a second price sealed-bid or ascending auction, the symmetric
PV model is testable against the symmetric CV alternative if we observe the transac-
tion price B	m−1�m
 from auction with m≥ 2 bidders and bids B	m−1�n
� � � � �B	n−1�n


from auctions with n > m bidders. In the case of a second-price auction, it is also
sufficient to observe B	m�m
 at auctions with m bidders and bids B	m�n
� � � � �B	n�n


from the n-bidder auctions.

Proof: First consider a second-price sealed-bid auction and consider the case
m = n− 1 (the argument is similar for other cases). Recall from (1) that each
player i bids

bi = E
[
Ui �Xi =max

j �=i
Xj = xi

]
≡ b	xi�n
�

In a PV model, b	·�n
 does not depend on n. Bids are then fixed monotonic
transformations of exchangeable signals, so bids are also exchangeable. By (9),
we must then have

2
n
Pr	B	n−2�n
 ≤ b
+ n−2

n
Pr	B	n−1�n
 ≤ b
= Pr	B	n−2�n−1
 ≤ b
�(10)

Under the CV alternative (taking i = 1 without loss of generality and exploiting
exchangeability)

b	x1�n
= E�U1 �X1 =X2 = x1�Xj ≤ x1� j = 3� � � � � n�(11)

<E�U1 �X1 =X2 = x1�Xj ≤ x1� j = 3� � � � � n−1�
= b	x1�n−1


with the strict inequality following from the fact that E�U1�X1� � � � �Xn� strictly
increases in each Xi, due to strict affiliation of 	U1�Xi
 conditional on any subset
of �Xj�j �=i. Hence, b	x1�n
 strictly decreases in n, implying

2
n
Pr	B	n−2�n
 ≤ b
+ n−2

n
Pr	B	n−1�n
 ≤ b
 > Pr	B	n−2�n−1
 ≤ b
�(12)

A test of the equality of distributions in (10) against the first-order stochastic
dominance relation in (12) then provides a test of the PV model against the CV
alternative.
Now consider an ascending auction, again taking the case m= n−1. In a PV

model, equilibrium bidding is exactly as in the second-price auction, implying
that (10) holds. This directly implies a recurrence relation between means:

E�B	n−2�n−1
�= 2
n
E�B	n−2�n
�+ n−2

n
E�B	n−1�n
��(13)
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Now assume a CV model. In an auction with n−1 bidders the transaction price is

B	n−2�n−1
 = B̃n−1
I	n−2�n−1
(14)

where B̃n
I	j�k

denotes the random variable equal to the equilibrium bid made in

an n-bidder auction by the bidder whose signal is jth lowest in a sample of k
bidders.39 Letting I = I	n−2�n−1
, we have

B̃n−1
I =EUI

�UI �XI��X
	n−1�n−1
=XI��X

	j�n−1
j=1�� � � �n−3�(15)

=EXn

[
EUI

�UI �XI�Xn��X
	n−1�n−1
=XI��X

	j�n−1
j=1�� � � �n−3�]
>Pr	Xn>XI
EXn>XI

[
EUI

�UI �XI��Xn=X	n−1�n−1
=XI��

X	j�n−1
j=1�� � � �n−3�]
+Pr	Xn≤XI
EXn≤XI

[
EUI

�UI �XI�Xn��X
	n−1�n−1
=XI��

X	j�n−1
j=1�� � � �n−3�]
≥EXn

�B̃n
I ��

The strict inequality above follows from affiliation. To understand the final weak
inequality, assume for the moment that bidders follow the equilibrium strategies
specified by Milgrom and Weber (1982), where a bidder i with type xi who has
seen k of his opponents exit bids

b	xi
= E�Ui�X	r�n
 =Xi = xi�∀ r > k�X	j�n
 = x	j�n
� ∀ j ≤ k��

Then if xn < xI , in an n-bidder auction bidder n will drop out before bidder I ,
revealing xn. If xn > xI , however, bidder I will drop out before bidder n, and
I ’s exit price will be based on an expectation that conditions on all remaining
bidders’, including n, having signal xI . Hence the final weak inequality above
holds with equality in the Milgrom-Weber equilibrium. Bikhchandani, Haile, and
Riley (2002) show that (a) B	n−2�n−1
 is the same in all symmetric separating
equilibria and (b) bids in the Milgrom-Weber equilibrium are maximal among
those in all such equilibria; thus, the final inequality holds in all such equilibria.
Taking expectations over X1� � � � �Xn−1 in (15) then gives

E
[
B̃n−1

I	n−2�n−1

]
>E

[
B̃n

I	n−2�n−1

]

(16)

i.e., the expected bid made by the top losing bidder in an 	n−1
-bidder auction
is larger than the expectation of the bid the same bidder would make in an
n-bidder auction.

39 Note that the bid made by a given bidder depends on his own signal, on the rank of this signal
among those of all n bidders (since this determines which signals he will infer from opponents’ exits
before he exits himself), and on the realizations of lower-ranked signals.
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Now note that exchangeability and the argument used to derive (9) imply

Pr
(
B̃n

I	n−2�n−1
 ≤ b
)= 2

n
Pr
(
B̃n

I	n−2�n
 ≤ b
)+ n−2

n
Pr
(
B̃n

I	n−1�n
 ≤ b
)

since when a bidder is dropped at random from a sample of n bidders, I	n−2�n−1
 =
I	n−2�n
 with probability 2/n and I	n−2�n−1
 = I	n−1�n
 with probability 	n− 2
/n.
This implies

E
[
B̃n

I	n−2�n−1

]= 2

n
E
[
B̃n

I	n−2�n

]+ n−2

n
E
[
B̃n

I	n−1�n

]
�

With (16), this gives

E
[
B̃n−1

I	n−2�n−1

]
>
2
n
E
[
B̃n

I	n−2�n

]+ n−2

n
E
[
B̃n

I	n−1�n

]
�

i.e.,

E
[
B	n−2�n−1
]> 2

n
E
[
B	n−2�n
]+ n−2

n
E
[
B	n−1�n
]�(17)

Hence a test of the null hypothesis of (13) against (17) provides a test of PV
against the CV alternative. Q.E.D.

This result implies, for example, that the PV model is testable against the CV
alternative whenever we observe the top two (or the second and third highest)
bids from auctions with n and n−1 bidders, holding all else fixed. Strikingly, this
result holds without restriction on which equilibrium (or equilibria) describe(s)
actual behavior in ascending auctions.40

While Theorem 9 requires symmetric bidders, we can extend the result to the
case in which the distributions are completely unrestricted. The following result
exploits the fact that by taking random draws from samples of arbitrary random
variables, one obtains a sample of exchangeable random variables, enabling use
of (9) (Balasubramanian and Balakrishnan (1994)).

Theorem 10: In a second-price auction, take any �n ⊂ � such that ��n� =
n≥ 3 and the probability that �n is the set of participating bidders is positive. If for
some m < n�m ≥ 2, there is positive probability of participation by every �m ⊂ �n

such that ��m� =m, then if we observe bids B	m−1�n
� � � � �B	n−1�n
 in auctions with
n bidders and the transaction price in auctions with m bidders, the (unrestricted,
asymmetric) private values model is testable against the CV alternative.41 Under the
same assumptions, the PV model is testable in an ascending auction.

40 However, we repeat the caveat that for many ascending auctions, a plausible alternative hypoth-
esis is that bids B	n−2�n
 and below do not always reflect the full willingness to pay of losing bidders,
although B	n−1�n
 does (since only two bidders are active when that bid is placed). In that case this
testing approach could suggest the CV model even in a PV setting. This problem does not arise in
second-price sealed-bid auctions or in first-price auctions, which we discuss below.
41 As with Theorem 9, it is also sufficient to observe B	m�m
 at auctions with m bidders and bids

B	m�n
� � � � �B	n�n
 from the n-bidder auctions.
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Proof: Let U1� � � � �Un be the random variables corresponding to the valua-
tions of the bidders in �n, and let Y1� � � � �Ym be a sample of size m < n drawn
without replacement from �U1� � � � �Un� using a discrete uniform distribution.42

Then Y1� � � � �Ym are exchangeable, implying that the distributions of the order
statistics from this sample must satisfy (9). Define

�F 	r�m

U 	u
= 1(

n
m

) ∑
�m⊂�n���m�=m

F
	r��m

U 	u


where F
	r��m

U 	·
 is the distribution of the rth order statistic from �Ui� i ∈ �m�.�F 	r�m


U 	·
 is the distribution of the rth order statistic of �Y1� � � � �Ym�. So for r < n
we must have

n− r

n
�F 	r�n

U 	y
+ r

n
�F 	r+1�n

U 	y
= �F 	r�n−1


U 	y
�(18)

Since �F 	l�n

U 	u
= F

	l�n

U 	u
 for l ≤ n, this simplifies to

n− r

n
F

	r�n

U 	u
+ r

n
F

	r+1�n

U 	u
= �F 	r�n−1


U 	u
�(19)

Following the argument in Theorem 9 one can confirm that the equalities (18)
and (19) are replaced by strict inequalities in a CV model of a second-price
sealed-bid auction. Hence, if m= n−1, (19) can be tested against the CV alter-
native. Similarly, for m < n− 1, repeated application of (19) enables testing of
(18). In an ascending auction, the same argument provides a testable implication
of the PV model.43 Q.E.D.

Theorems 9 and 10 imply that the observational equivalence between the
PV and CV models noted in Laffont and Vuong (1996) and Li, Perrigne, and
Vuong (2000, 2002) is eliminated when one observes exogenous variation in the
number of bidders.44 Similarly, the top two bids in a first-price auction give us
enough information to test the symmetric PV model against the symmetric CV
alternative.45

42 Recall that when bidders are asymmetric we assume that the identities of the participating
bidders are observable.
43 In a CV ascending auction with asymmetric bidders, a full characterization of the set of equilibria

has not been given in the literature. If bidding follows the (equilibrium) strategies in (2), the argument
in Theorem 9 can be extended to enable testing specifically against the CV alternative. Whether this
argument carries over regardless of the equilibrium selection, as in the symmetric case, is an open
question.
44 Other approaches for empirically distinguishing these models based on observation of all bids

at first-price auctions are given in Hendricks, Pinkse, and Porter (1999) and Haile, Hong, and Shum
(2000). The latter also exploits variation in the number of bidders to detect the winner’s curse and
develops formal statistical tests.
45 As with the preceding results, the testing approach can be extended to the case in which different

sets of bids are observed and/or data are available only from auctions with nonconsecutive numbers
of bidders.
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Theorem 11: In the first-price auction, if the top two bids are observed in auc-
tions with n and n− 1 bidders, where n ≥ 3, then the symmetric affiliated private
values model is testable against the symmetric CV alternative.

Proof: The proof of Lemma 1 and the fact that �	x�n
 strictly
increases in x imply that the observables uniquely determine the distributions
F

	n−1�n−1

��n−1 	·
�F 	n−1�n


��n 	·
, and F
	n�n


��n 	·
 of the random variables �	X	n−1�n−1
� n−1
,
�	X	n−1�n
� n
, and �	X	n�n
�n
. Under the PV hypothesis, �	xi�n
 = xi = ui, so
these distributions are F

	n−1�n−1

U 	·
�F 	n−1�n


U 	·
, and F
	n�n

U 	·
, which must satisfy

(9). Now consider the symmetric CV alternative. Let �	X	n−1�n−1
� n
 denote the
value of the random variable �	Xi�n
 when i has the highest signal among the
bidders who remain after one bidder in an n-bidder auction is removed exoge-
nously. Let F 	n−1�n−1


��n 	·
 denote the distribution of �	X	n−1�n−1
� n
. Since �	x�n

is strictly increasing in x, the random variables �	Xi�n
 are exchangeable, so (9)
and (11) imply that for all

n−1
n

F
	n�n


��n 	t
+ 1
n
F

	n−1�n

��n 	t
 > F

	n−1�n−1

��n 	t
� Q.E.D.

The proof of Theorem 11 has two steps. First, using Lemma 1, we identify the
equilibrium bid functions, which vary with n for strategic reasons even under the
PV null. Second, we use (9) to account for the way in which the distributions
of order statistics change with the number of bidders. This allows us to isolate
the effects of the winner’s curse, so that variation in the number of bidders has
unambiguous (and mutually exclusive) consequences under the null and alterna-
tive hypotheses.

6� extensions

6�1� Bidder Uncertainty Over the Number of Opponents

6�1�1� Second-Price Auctions

Our analysis of CV models required an assumption that bidders know the num-
ber of competitors they face. In an ascending auction, this assumption may be
natural. In a sealed-bid auction, bidders might not know the number of competi-
tors when submitting their bids.46 However, as long as bidders (but not necessar-
ily the econometrician) observe an informative signal of n, the testing approach
in Theorem 9 can still be applied.

Theorem 12: In the second-price sealed-bid auction, suppose bidders do not
know n but observe a public signal ; (unobserved to the econometrician) that is
strictly affiliated with n. Then the symmetric PV model is testable against the sym-
metric CV alternative if we observe the transaction price B	m−1�m
 in auctions with
m bidders and bids B	m−1�n
� � � � �B	n−1�n
 in auctions with n >m bidders.

46 Matthews (1987) and McAfee and McMillan (1987b) provide theoretical analyses of auctions
with a stochastic number of bidders.
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Proof: Since (10) is unaffected by imperfect observability of n in a PV model,
it is sufficient to show that (12) still holds in all CV models. Let <	;�n
 denote
the conditional distribution of the signal ;. Assume m= n−1 (the argument is
similar for other cases). Given ;, each player i views n as a random variable and
bids

bi = En

[
E
[
Ui�Xi =max

j �=i
Xj = xi

]∣∣∣;]≡ b̂	xi�;
�

Taking i= 1, in a CV model the inequality (11) and strict affiliation imply that for
any ;2 >;1, b̂	x1�;2
 < b̂	x1�;1
. Therefore, strict affiliation of n and ; implies:

Pr	B	n−2�n
 ≤ b
=
∫ �

−�
Pr	b̂	X	n−2�n
�;
≤ b
d<	;�n
(20)

>
∫ �

−�
Pr	b̂	X	n−2�n
�;
≤ b
d<	;�n−1


and, similarly,

Pr	B	n−1�n
 ≤ b
 >
∫ �

−�
Pr	b̂	X	n−1�n
�;
≤ b
d<	;�n−1
�(21)

Using (9) and strict monotonicity of b̂	·�;
, we obtain the testable stochastic
dominance relation

Pr	B	n−2�n−1
 ≤ b
=
∫ �

−�
Pr	b̂	X	n−2�n−1
�;
≤ b
d<	;�n−1


=
∫ �

−�

[
2
n
Pr	b̂	X	n−2�n
�;
≤ b


+ n−2
n
Pr	b̂	X	n−1�n
�;
≤ b


]
d<	;�n−1


<
2
n
Pr	B	n−2�n
 ≤ b
+ n−2

n
Pr	B	n−1�n
 ≤ b


where the inequality follows from (20) and (21). Q.E.D.

6�1�2� First-Price Auctions

Bidder uncertainty over the number of opponents is a more difficult problem
in a first-price auction. In the case of private values, each bidder i solves

max
b

	ui −b
Pr
(
max
j �=i

Bj ≤ b�Ui = ui�;
)

giving first-order condition

bi +
Pr	maxj �=i Bj ≤ bi�Bi = bi�;


 
 x
Pr	maxj �=i Bj ≤ x�Bi = bi�;
�x=bi

= ui�(22)
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If the econometrician observes a set of auctions in which ; is fixed, this relation
between bids and valuations can be used in essentially the same way that (4) was
used above. For example, in the symmetric IPV case, observation of the winning
bid in auctions with fixed ; is still sufficient to identify FU	·
. Let <̃	n�;
 denote
the probability that there are n bidders when signal ; is observed. Fixing ; and
letting Bwin denote the winning bid, we observe

Pr	Bwin ≤ b�;
=
�∑

n=2
<̃	n�;
Pr	B	n�n
 ≤ b�;
=

�∑
n=2

<̃	n�;
Pr	Bi ≤ b�;
n�(23)

Since the right-hand side of (23) strictly increases in Pr	Bi ≤ b�;
 and <̃	n�;
 is
observed directly, Pr	Bi ≤ b�;
 is identified. This determines Pr	maxj �=i Bj ≤ bi�;
,
identifying (through (22)) the distribution U	n�n
 for each n such that <̃	n�;
 > 0.
Equation (5) then determines FU	·
 and, therefore, FU	·
.
Our identification results for other private values models of first-price auctions

can be extended in similar fashion. Testing of the PV hypothesis can be achieved
by comparing distributions of U	j�n
 for different values of ;: under the PV
hypothesis, these distributions will be identical; with common values we recover
the distribution of E�Ui�X	j�n
 = maxk �=i Xk = xi�;� rather than that of U	j�n
.
This distribution in auctions in which signal ; = ;1 is observed will first-order
stochastically dominate that in auctions in which signal ; = ;2 > ;1 is observed.

6�2� Reserve Prices

In many auctions the seller announces a reserve price for the auction. When
the reserve price r0 is in the interior of the support of bidders’ valuations, with
positive probability some potential bidders will be unwilling to bid, creating a
discrepancy between the number of potential bidders, p, and the number of par-
ticipating bidders, n.47 For simplicity, consider a symmetric IPV auction. Clearly,
no auction can reveal information about FU	u
 for u < r0 without parametric
assumptions; however, our results extend to identify the truncated distribution

FU	·�r0
=
FU	·
−FU	r0


1−FU	r0

�

Corollary 3: In the symmetric IPV model, consider first-price, second-price,
or ascending auction with a reserve price, r0, such that FU	r0
 ∈ 	0�1
.
(i) If only one bid from each auction is observed, FU	·�r0
 is identified on

�r0���.

47 Bajari and Hortaçsu (2000) and Donald, Paarsch, and Robert (1999) use parametric models to
simultaneously estimate a model of entry and bidding. Guerre, Perrigne, and Vuong (2000) include
a discussion of binding reserve prices in the IPV model. See also the recent paper by Li (2000).
Hendricks, Pinkse, and Porter (2002) estimate a model of stochastic participation and reserve prices
in pure common value auctions.
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(ii) If either (a) two bids from each auction are observed or (b) a single bid is
observed in auctions with different numbers of participating bidders, the model is
testable.
(iii) If p is fixed and the number of participating bidders is observed, p and

FU	r0
 are identified.

Proof: Because each potential bidder i participates when xi > r0, participat-
ing bidders’ valuations are i.i.d. draws from FU	·�r0
. Parts (i) and (ii) then follow
from Theorems 1 and 6. Because the participation rule for each potential bidder
is binomial with parameter = = FU	r0
, both p and FU	r0
 are uniquely deter-
mined by the distribution of n (Guerre, Perrigne, and Vuong (2000)). Q.E.D.

Similar extensions can be made for identification of the other models consid-
ered above. The following result shows how our tests of the PV model extend to
auctions with reserve prices.48

Corollary 4: In first-price, second-price, or ascending auctions with reserve
price r0, the symmetric PV model is testable if we observe B	j�n
 and B	j+1�n
	2 ≤
j < n
 in all n-bidder auctions and B	j�n−1
 in all 	n−1
-bidder auctions.

Proof: Participants draw their valuations U1� � � � �Un from the distribution
FU	·
 truncated at 	r0� � � � � r0
. Because exchangeability is preserved by this trun-
cation, the recurrence relation (9) still holds under the PV hypothesis. Q.E.D.

7� conclusions

While much empirical work in the broad area of demand estimation relies
on parametric assumptions, recent work by Laffont and Vuong (1996), Guerre,
Perrigne, and Vuong (2000) (and others) has shown that nonparametric methods
can be used in some auction settings. Our results complement this work by con-
sidering standard auction forms beyond the first-price auction, environments in
which not all bids are observable, and data in addition to bids that are often
available in practice. In addition, while relatively little attention has been given to
nonparametric testing of the assumptions underlying standard models of bidder
demand and information, we have shown that data available in many applications
enable testing of these assumptions against interesting alternatives. Such testing
can be used to evaluate the suitability of models selected for particular appli-
cations and should raise the confidence one has in the results obtained through
structural analysis of auction data.

48 Here we do not specify outcomes under the CV alternative. With a binding reserve price, the
set of types willing to participate changes with n in a CV model. One can also test the PV hypothesis
�	x0�m
 = r0 against the alternative �	x0�m
 > r0 implied by the CV model (Milgrom and Weber
(1982)). This testing approach has been proposed for first-price auctions by Hendricks, Pinkse, and
Porter (2002).
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While some qualitative policy questions depend primarily on which model best
describes an economic environment (for example, the choice of auction format
depends crucially on the distinction between private and common values), oth-
ers require detailed knowledge of the distribution of bidder information. We
establish that one of the most commonly used models, independent (perhaps
conditional on covariates) private values, is identified from the transaction price
alone in standard auctions. Our results for more general private values models
are mixed. While the unrestricted private values model is not identified from
bids alone in ascending auctions (or any other auctions in which some bids are
unobserved), additional data beyond bids can enable identification of PV models
allowing correlated values and ex ante asymmetry.
Our identification results for common values models are generally negative.

We have shown that identification from observable bids fails for a large class of
demand structures in an ascending auction, and holds in a second-price sealed-
bid auction only under stringent conditions on the latent demand structure and
the types of data available. However, when there is exogenous variation in the
number of bidders, the private values model can be tested against the common
values alternative, even when neither model is identified, as long as two or more
bids are observed from each auction.
We have focused exclusively on identification and testable restrictions. In

general, identification is necessary but not sufficient for existence of a consis-
tent estimator. While many of our identification proofs suggest straightforward
estimation and testing strategies, we have left development and evaluation of
estimators and test statistics for future work, along with their application to bid-
ding data. Finally, identification is an open question for other auction models of
practical relevance, including models of sequential and simultaneous auctions of
multiple goods.49
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