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Abstract

�e central aim of psychophysics is to understand the functional relationship between
the physical and the psychological world. Striving for that goal, modern research focuses
on quantitatively measuring and explaining observer behavior in speci�c psychophysical
paradigms. In this context, a principal question arises: Which particular stimulus features
govern individual decisions in a behavioral task? As regards this problem, the classical
psychophysical paradigm of narrow-band Tone-in-Noise (TiN) detection has been under
investigation for more than 70 years. �is particular experiment stands at the heart of a
central notion in auditory perception: the “critical band”. Yet no conclusive answer has
been given as to which auditory features listeners employ in this task.

�e present study describes how a modern statistical analysis procedure can be used
to tackle this problem when modeling psychophysical data. �e proposed technique
combines the concept of relative linear combination weights with an L1-regularized
logistic regression—a procedure developed in machine learning. �is method enforces
“sparse” solutions, a computational approximation to the postulate that a good model
should contain the minimal set of predictors necessary to explain the data. �is property
is essential when extracting the critical perceptual features from observer models a�er
they were �t to behavioral data.

Using data generated from a simulated TiN detection paradigm, the method is
shown to precisely identify observer cues from a large set of covarying, interdependent
stimulus descriptors—a setting where standard correlation and regression methods fail.
Furthermore, the detailed decision rules of the simulated observers were reconstructed,
allowing predictions of responses on the basis of individual stimuli.

�e practical part of this study aimed at using the sparse analysis procedure to in-
vestigate the perceptual mechanisms underlying the detection performance of human
observers in a TiN detection paradigm. �erefore, a large trial-by-trial data set was
collected with multiple listeners. Relative perceptual weights were then estimated for a
diverse set of auditory features encompassing sound energy, �ne structure and envelope.
By expanding the common linear observer model to allow for behavioral predictors,
sequential dependencies in observer responses were also taken into account. �ese depen-
dencies generally impair detection performance and even arise when study participants
are made aware of the purely random stimulus sequence. �e �tted models captured
the behavior of all listeners on a single-trial level. �e estimated perceptual weights
were stable across signal levels. �ey suggest that all observers depend on stimulus
energy, and “critical band”-like detectors in the �ne structure domain while a subset of
the listeners exhibited an additional dependence on stimulus envelope. In addition to
stimulus characteristics, earlier responses appeared to substantially in�uence the current
decision of some observers.

In conclusion, by approaching a classical problem in auditory psychophysics with an
advanced statistical analysis procedure, an already large pool of empirical knowledge was
expanded in several important aspects. In that process, the power and e�ciency of the
proposedmethodwas demonstrated. Based on very general concepts, it is �exible enough
to be applicable in a wide variety of studies that investigate perceptual mechanisms.
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Zusammenfassung

Das zentrale Ziel der Psychophysik ist dasVerständnis der funktionellen Zusammenhänge zwischen
der physischen und psychischen Welt. Aktuelle Forschung strebt nach diesem Ziel, indem sie
sich darauf konzentriert menschliches Verhalten in bestimmten psychophysischen Paradigmen
quantitativ zu messen und zu erklären. In diesem Umfeld ergibt sich eine prinzipielle Frage:
Welche Reizeigenscha�en bestimmen individuelle Entscheidungen in Verhaltensexperimenten?
In Bezug auf dieses Problem wurde das klassische psychophysische Paradigma der Entdeckung
von durch Rauschen maskierten Tonsignalen (“tone-in-noise detection”, TiN) in den vergangenen
70 Jahren gründlich untersucht. Dieses Experiment bildet das Fundament für einen zentralen
Begri� der auditorischen Wahrnehmung: das “kritische Band”. Gleichwohl wurde bislang keine
abschließende Antwort auf die Frage gefunden, welche auditorischen Reizeigenscha�en die Hörer
in dieser Aufgabe verwenden.

Die vorliegende Studie beschreibt, wie eine moderne statistische Analysemethode angewendet
werden kann, um dieses Problem im Rahmen der Modellierung psychophysischer Daten zu
lösen. Diese Prozedur vereint das Konzept der relativen linearen Kombinationsgewichte (“relative
linear combination weights”) mit einer L1-regularisierten logistischen Regression–einer Methode
die im Bereich des maschinellen Lernens entwickelt wurde. Die Methode erzwingt “spärliche”
(“sparse”) Lösungen, eine algorithmische Annäherung an das Postulat, dass ein gutes Modell nur
diejenigen Prediktoren enthalten solle, die nötig sind um die beobachteten Daten zu erklären.
Diese Eigenscha� ist entscheidend, um kritische Reizeigenscha�en aus Beobachtermodellen zu
extrahieren, nachdem diese an Verhaltensdaten angepasst wurden.

Mit Hilfe von Daten aus simulierten TiN-Experimenten wird gezeigt, dass die Methode die
für die Beobachter entscheidenden Reizeigenscha�en identi�zieren kann–sogar dann, wenn eine
Vielzahl von kovariierende, untereinander abhängigen Eigenscha�en zur Wahl steht. In dieser
Situation versagen bislang verwendete Methoden der Korrelations- oder Regressionsanalyse. Des
Weiteren konnte die hier vorgestellte Analysemethode die detaillierten Entscheidungsregeln der
simulierten Beobachter rekonstruieren und so Antworten auf der Basis individueller Stimuli
vorhersagen.

Im praktischen Teil der vorliegenden Studie wird die “spärliche” Analysemethode angewendet,
um die Wahrnehmungsmechanismen zu untersuchen, die der Entdeckungsleistung von Proban-
den in einem TiN-Entdeckungs-Paradigma zu Grunde liegen. Zu diesem Zweck wurden mit
mehreren Beobachtern umfangreiche Daten mit Verhaltensinformationen auf der Ebene einzelner
Stimulus-Antwort-Paare gesammelt. Anschließend wurden relative perzeptuelle Gewichte für
einen Satz von vielfältigen auditorischen Reizeigenscha�en geschätzt, bestehend aus Schallenergie,
Ton-Feinstruktur und -Umhüllender. Das klassische lineare Beobachtermodell wurde außerdem
durch behaviorale Prediktoren erweitert, um auch sequentielle Abhängigkeiten im Antwortver-
halten der Beobachter zu berücksichtigen. Diese Abhängigkeiten verschlechtern generell die
Entdeckungsleistung und treten auch dann auf, wenn die Probanden auf die Zufälligkeit der
Reizreihenfolge hingewiesen werden. Die an die Daten angepassten Beobachtermodelle erklärten
das Verhalten aller Probanden auf der Ebene von einzelnen Hörversuchen. Die geschätzten
perzeptuellen Gewichte blieben über verschiedene Signalstärken hin konstant. Sie legen nahe, dass
das Verhalten aller Beobachter von der Schallenergie abhing, sowie von Feinstruktur-Detektoren
die den “kritischen Filtern” ähneln. Ein Teil der Beobachter zeigte eine zusätzliche Abhängigkeit
von der Ton-Umhüllenden. Zusätzlich zu diesen Reizeigenscha�en hatten bei einigen Probanden
auch vorherige Entscheidungen einen wesentlichen Ein�uss auf die aktuelle Antwort.

In dieser Arbeit wurde ein klassisches Problem in der auditorischen Psychophysik mit einer

fortgeschrittenen statistischen Analysemethode untersucht. Dadurch konnte ein bereits großer

empirischer Wissensschatz um einige wichtige Aspekte erweitert werden. Gleichzeitig wurde

die Leistungsfähigkeit und E�zienz der vorgeschlagenen Methode demonstriert. Da sie auf sehr

allgemeinen Konzepten beruht, ist sie zugleich so �exibel, dass sie in verschiedensten Studien über

Wahrnehmungsmechanismen angewendet werden kann.
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Pluralitas non est ponenda sine necessitate.

Frustra �t per plura, quod potest �eri per pauciora.

William of Ockham [c.1280-c.1349]

Ne pourroit on pas conjecturer que le Bruit n’est point d’une autre nature que le Son;
qu’il n’est lui même que la somme d’une multitude confuse de Sons divers qui se font
entendre à la fois & contrarient, en quelque sorte, mutuellement leurs ondulations?

Jean-Jacques Rousseau [1712-1778], Dictionaire de Musique (1768)

In telephone engineering circles it has been considered a real achievement to have
developed a design which permits 30,000 wire terminals to be within the reach
of a single operator.�e area of such a switchboard panel is about 10,000 square
centimeters. Nature has accomplished a similar thing in the hearing mechanizm

occupying an area of only 1/10 of a square centimeter.

Harvey Fletcher [1884-1981], Auditory patterns (1940)
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Chapter 1

Introduction

According to Gustav Fechner, the principal founder of the psychophysical research
program, the central aim of this scienti�c discipline is to understand the functional

relationship between the physical and psychological world (Fechner, 1860, chap. II).
In experimental practice, this goal translates to explaining the connection between the
stimulus and the percept. However, the percept—as a subjective entity—can not be
objectively evaluated. Instead, modern psychophysical research measures behavior in
speci�c psychophysical paradigms, such as perceptual detection or discrimination tasks,
and attempts to describe the underlying mechanisms on a functional level. As natural
scientists, psychophysicists work towards explaining perceptual processing not merely on
a qualitative but also on a detailed quantitative level. In that process, a principal question
arises: To what extent and in which way does observer behavior depend on speci�c
stimulus features? �e present doctoral dissertation describes a technique that o�ers
answers to that question based on the analysis of psychophysical data. Concurrently, it
allows the construction of detailed quantitative behavioral models. Although it is applied
here in the context of audition, it is universally applicable in many kinds of perceptual
studies. In the following, I discuss the general conceptual background related to the
quantitative description of observer behavior and introduce the basic ideas behind the
proposed data analysis procedure. �e �nal paragraphs of this introduction provide a
short summary of the following chapters.

Ever since Galileo Galilei began to capture natural phenomena in mathematical
formulas, science has more and more re�ned the following general approach to provide
quantitative explanations of scienti�c observations: constructing a simpli�ed mathemati-
cal model that captures the essential causal components of the underlying mechanisms.
Such a model is considered to provide a general account of the phenomenon and can
usually be used to make independent predictions.

In a psychophysical setting the chemical, biological and neural processes that deter-
mine an observer’s behavior might be manifold and extremely complex. Nevertheless,
comparatively simple mathematical models provided an appropriate description of the
observed behavior—at least in well-controlled experimental settings. Ideally, suchmodels
should describe human behavior not only in the broad terms of psychometric functions,
which merely summarize the observer’s behavior over a large number of trials, but on a
�ne-grained trial-by-trial level, the ultimate goal of “molecular psychophysics” (Green,
1964). In my thesis I work toward a precise quantitative description of the listener’s
decision mechanism in a basic hearing task. �e models that are established for that
purpose provide detailed insights into the stimulus processing that underlies individual
behavior.

Generally, two techniques were employed for establishing models of psychophysical
processes. On the one hand, beginning with Fechner, experimenters relied on their

1
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intuition while establishing a model that may explain their observations (Fechner, 1860).
Depending on the outcome of further experiments, details of these models were then
adapted and re�ned. Fletcher and later researchers followed this classical approach while
establishing the concept of the auditory critical band (Fletcher, 1938, 1940; Hartmann,
1998). Starting from the observation that the masking of a pure tone with a surrounding
band of noise depended on the bandwidth of the noise only up to a certain critical value,
they tried to explain this phenomenon with a model of an auditory band-pass �lter. �ey
further re�ned this model by allowing for non-rectangular shapes and asymmetries and
determined the exact shape of the auditory �lter in subsequent experiments (e.g., using
notched noise).

While preparing his doctoral dissertation in the mid-1960s, Ahumada (1967) used
an inverse approach following the advice of E. C. Carterette and M. P. Friedman: He
tape-recorded a large number of stimuli as they were presented to the observers and then
explored this data for correlates between stimulus properties and observer responses.
�is procedure, later termed “correlation analysis” and published in Ahumada and Lovell
(1971), proved to be seminal for model construction in general and in�uential in a wide
array of applications from auditory psychophysics to visual neurophysiology (Ahumada,
1996; Neri and Levi, 2006).

In contrast to the classical approach detailed above, this second method is essentially
based on statistical data analysis that dispenses with a concrete a-priori hypothesis of
how the investigated system behaves. It can be understood as a system identi�cation
or reverse engineering approach: �e system under investigation is conceptualized as a
“black box”. Instead of attempting without avail to take it apart, the researcher probes its
properties by recording the reactions to external stimulation. Essentially, he constructs a
model of the system by posing questions and analyzing the corresponding answers.

�is method is particularly suitable to the analysis of psychophysical observations.
Because human sensory systems are such complex mechanisms, there is little hope
that—by taking it apart—we can explain or even predict what happens during a per-
ceptual experiment. �us, one has to accept that it will remain a “black box” for the
foreseeable future. On the other hand, the power of the researcher’s intuition clearly has
limits when it comes to explaining intricate phenomena whose structures do not allow a
simple “intuitive” explanation. �ese factors—together with the newly available compu-
tational power—certainly represent some of the reasons why the indirect, data-driven
approach has become such a wide-spread tool in the past decade, in particular in visual
psychophysics (Murray, 2011; Kienzle et al., 2009; Macke and Wichmann, 2010).

�e “correlation analysis” method that is commonly used in auditory psychophysics
for analyzing linear dependencies between stimulus and observed behavior is based
on correlation coe�cients. Strictly, such an analysis only applies when the stimulus
components under investigation are statistically independent (Ahumada, 1996; Richards
and Zhu, 1994). As a consequence, it can only be used in experiments where the investi-
gated stimulus properties ful�l this condition, e.g., when the stimuli consist of randomly
distributed multi-tone complexes (Richards and Tang, 2006) or follow random level vari-
ations over time (Pedersen and Ellermeier, 2008). Otherwise, some of the predictors may
receive a signi�cant weight even though observers completely ignore the corresponding
stimulus features.

O�en however, a researcher may be interested in investigating stimulus properties
that are not under direct control and exhibit interdependencies that can not be avoided.
�is situation is particularly prominent in research on audition, where the stimulus is
represented as a highly constrained 1D-time series o�en with strict conditions on spectral
properties.1 In these circumstances, observer models that are based on correlation1

�e problem also arises in the �eld
of vision research: As soon as images
with “natural structures” are used,
interdependencies are hard to avoid.

coe�cientsmay provide amisleading account of themechanisms underlying the listener’s
behavior. In particular, a “correlation analysis” may suggest that the observer depends
on a particular auditory feature, even though he exclusively relies on a very di�erent
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property that is merely correlated.
In theory, when applying a more sophisticatedmultiple logistic regression, a method

that is more and more widely used for analyzing auditory psychophysical data, these
interdependencies should be accounted for (Alexander and Lut�, 2004; Dye et al., 2005;
Richards and Tang, 2006; Pedersen and Ellermeier, 2008). However, high levels of noise
such as usually present in psychophysical data limit the ability of this method to correct
for strong interdependencies.

�e present dissertation attempts to overcome this obstacle by imposing an additional
constraint during data �tting. In the following, I propose that logistic regression be
combined with L1-regularization, a method that was developed in machine learning and
recently gained more and more theoretical and practical interest. Although extended
with modern components, the entire analysis procedure that I suggest is �rmly based
on proven concepts of “linear weight estimates” that are built on the assumption that the
decisionmechanism depends on a weighted sum of a �xed set of predictors that represent
di�erent stimulus features (Ahumada and Lovell, 1971; Gilkey and Robinson, 1986; Berg,
1989; Richards and Zhu, 1994). In this respect, this study directly follows the tradition of
earlier methods for estimating the relative importance of stimulus features which have
long been used for successfully modeling observer behavior in auditory experiments.

Models comprising a large set of predictors and corresponding parameters are prone
to “over-�tting”, a situation where the model parameters are to a large degree determined
by the noise in a particular data set, instead of the universal structure of the generating
process (Bishop, 2006, chap. 1.1). In machine learning, a powerful method termed
“regularization” is commonly applied to prevent an over-�tting situation. In this study, I
propose to employ an L1-regularizer during data �tting which has a critical advantage
compared to other regularization techniques—the resulting models obtain a property
called “sparseness”. With such a constraint, weights are suppressed when the associated
predictors are not critical for explaining the data. �is is in perfect correspondence
with the conditions and objectives of the present study: O�en, even for the simplest
auditory tasks, the number of features that is potentially available is much larger than
the actual features an observer uses. Using a sparseness constraint, I aim at identifying
these observer-speci�c “cues”. While all potential features are taken into account as
predictors during �tting, the �nal models should be as simple as possible retaining only
those components that are absolutely necessary to explain the data. �ese components
are then considered the critical “cues” of the observers, as they are both necessary and
su�cient to predict the behavioral decision.

�e general procedure is as follows: A�er collecting individual behavioral data, a
linear observer model is �t to stimuli and corresponding listener’s responses using an
L1-regularized logistic regression. During that process, the strength of regularization
is adjusted in order to strike a balance between model simplicity and quality of �t.
When the model—as a result of the �tting procedure—correctly predicts previously
unseen data, observer and �tted model are considered functionally equivalent, not just in
regard to the psychometric function but on the basis of individual trials. �e established
models allow on the one hand to predict a listener’s response to a particular stimulus on
single-trial basis. On the other hand, by interpreting the �tted model parameters, they
enable the extraction of the critical auditory features that determine individual behavior,
notably even from interdependent predictors and under noisy conditions. Additionally,
with a simple extension of the stimulus-dependent linear observer model, sequential
dependencies in response behavior are taken into account. Even though undeniably
present, they are o�en neglected during psychophysical data analysis—and certainly up
till now in all types of “correlational analyses”.

In the following, the content of each of the following sections of the dissertation
is summarized. Chapter 2 provides information on the theoretical background of the
investigation at hand, including the concepts of linear observermodels, perceptual weight
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estimation and cue identi�cation as well as an introduction to machine learning proce-
dures such as regularization and cross-validation followed by a discussion of “molecular”
psychophysics and sequential dependencies. In chapter 3, the auditory task—Tone-in-
Noise detection—is explained that served both as the initial motivation for the present
study and as a vehicle for developing and testing the proposed data analysis method. In
a historical overview, the results of previous scienti�c investigations of this task are dis-
cussed. Chapter 4 details the psychophysical task employed in my experiments including
the properties of the stimuli used. In chapter 5, arti�cially generated “psychophysical
data” from the auditory detection task is used to demonstrate the e�ciency and reliabil-
ity of the proposed analysis procedure. Chapter 6 presents the experimental methods
and discusses the empirical results of psychophysical experiments with human listeners
that were performed for the present study. As a conclusion, chapter 7 provides a broad
discussion of the overall results of this dissertation as well as a general summary and
outlook, how this method could be further developed and applied in di�erent settings.
Several Appendices A–F o�er further details on the experimental setup and procedure
as well as a number of mathematical derivations.

Chapters 5 and 6 represent expanded versions of two manuscripts submitted to the
Journal of the Acoustical Society of America. �e �rst of the two manuscripts has been
published as Schönfelder andWichmann (2012) while the other is currently under review.
Several of the concerned sections provide both a broader and deeper account of the
research described in the respective chapter as compared to the original manuscripts.
�e reader may notice that there exists partial overlap of the content in some respects.
�is is due to the fact that the text is based on two independent and self-contained papers
that present di�erent aspects of the same topic. I believe that these overlaps serve as
reminders and improve comprehensibility of the present work.



Chapter 2

�eoretical Background:

Modeling Observer Behavior

In this thesis a method is presented that addresses a central question in experimental
psychology: What are the stimulus cues that observers rely on in making perceptual

decisions? �e present chapter �rsts presents a number of classically employed tech-
niques for cue identi�cation based on linear observer models. Next, the �eld of machine
learning, including the phenomenon of over-�tting and the concepts of regularization
and sparseness is introduced. Finally, the concept of molecular and quasi-molecular
psychophysics are discussed along with the phenomenon of sequential dependencies in
response behavior.

2.1 Linear Weighting Models

Historically, the analysis of trial-by-trial dependencies between particular stimulus prop-
erties and measured behavior has proven to be a powerful method for identifying the
stimulus features that govern observer behavior (Sherwin et al., 1956; Ahumada and
Lovell, 1971; Ahumada, 1996; Abbey and Eckstein, 2002; Murray, 2011). Aiming for a
simple and robust, yet �exible foundation for a quantitative analysis, a majority of studies “�e simplest transducers are linear, so

let’s consider them �rst.” (Ringach and
Shapley, 2004)

assumed that observer decisions depend on a linear combination of a set of stimulus
descriptors on each trial (Ahumada, 1967; Berg, 1989; Lut�, 1995; Ahumada, 1996; Alexan-
der and Lut�, 2004; Richards and Tang, 2006; Abbey and Eckstein, 2006; Pedersen and
Ellermeier, 2008; Macke and Wichmann, 2010). A quantitative model of the decision
mechanism can then be expressed as a weighted sum of predictors p i (a set of values
characterizing the stimulus) followed by a static nonlinearity S:

P = S [∑
i

w i p i + b] (2.1)

with the model weightsw i , a bias term b and the model output P. Depending on whether
S is a sign- or a sigmoid-function, P represents binary responses or response probabilities.
For example, in a YES/NO-procedure, P may represent the response—“signal” or “no-
signal”—or the probability for a “signal”-response. �e model output is fully determined
by the characteristics of the current stimulus, the model weights and the bias variable.
�ose predictors for which w i = 0 are entirely ignored, e�ectively reducing model
complexity. �e model represents the basis for both the evaluation of stimulus cues and
the prediction of responses.

In general, the predictors p i may be linear or nonlinear transformations of certain
stimulus features. �us, the model is linear only with respect to the predictors, but not

5
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necessarily with respect to simple stimulus descriptors—a predictor may represent any
nonlinear transformation of the physical stimulus. �erefore, the overall decision func-
tion mapping the raw stimulus to the response may be highly nonlinear, depending on
the employed stimulus preprocessing. While nonlinear decision models may ultimately
be required to describe observers in full detail, linear models represent an important �rst
step and the basis for more complex models.11 One of the currently most powerful

model �tting algorithm, the so-called
support vector machine (SVM), is
“only” such a linear combination of
nonlinearly transformed stimulus
features (Noble, 2006).

2.2 Weight Estimation with Regression and Correlation

Analyses

Assuming a linear observer model, the problem of �nding the mapping between stimulus
input and observer responses simpli�es into �nding an estimate of the relativeweights that
best explains the empirical data. Ahumada (1967) and Ahumada and Lovell (1971) were“A multiple regression analysis found for

each observer the linear combination of
the energies in narrow bands around
the tone frequency that best predicts his
total ratings.” (Ahumada and Lovell,
1971)

the �rst to estimate relative weights in an auditory detection experiment using multiple
linear regression (Ahumada (2002) o�ers a short personal history). In a wide-band
Tone-in-Noise detection task, they estimated spectral weights by regressing sound energy
in di�erent frequency components with observer ratings. In a similar vein, Berg (1989)
relied on pairwise regressions of response probabilities against the values of individual
stimulus components to investigate “relative temporal weights” in a multiple tone task.

Richards and Zhu (1994) and Lut� (1995) demonstrated that—given independent and
normally distributed predictors—relative weights can be estimated more easily from cor-
relation coe�cients between predictor values and binary observer responses. Similarly,“[T]he algorithm employed to estimate

the weights is computationally trivial—
the correlation between the observers’
responses and the stimulus magnitude.”
(Richards and Zhu, 1994)

Ahumada (1996) determined visual “classi�cation images” by correlating the local ampli-
tude of noisy image presentations with observer decisions. In an analogous approach, the
so-called “white noise analysis” (or “triggered correlation” in De Boer and Kuyper (1968),
“reverse correlation” in Ringach and Shapley (2004)) has been extensively used in physiol-
ogy to determine the visual response characteristics of single neurons, the “receptive �eld”.
�ese correlational procedures, usually termed “correlation analysis”, “reverse correlation”“Reverse correlation is a technique for

studying how sensory neurons add up
signals from di�erent locations in their
receptive �elds, and also how they sum
up stimuli that they receive at di�erent
times, to generate a response.” (Ringach
and Shapley, 2004)

or “classi�cation image procedure”, are based on the point-biserial correlation that is
determined pairwise between the values of individual stimulus components and the
observer’s responses. �erefore, they do not allow for interactions between predictors.
Correlation-based procedures can o�en be simpli�ed to computing the di�erence of
response-conditioned averages (Lut�, 1995; Ahumada, 2002).

Estimates of relative combination weights using pairwise regression (Berg, 1989) or
correlation (Richards and Zhu, 1994) are based on the assumption that the stimulus com-
ponents are independently distributed. �e predictors in the model usually correspond“[I]t is important that the experimenter

is able to manipulate the magnitude
of the independent random variables
assumed to be combined to form the
decision variables.” (Richards and Zhu,
1994)

to those stimulus features that were independently manipulated during the experimental
procedure. However, many features in auditory tasks are not independent, e.g., sound
spectrum and envelope structure of sound stimuli are interrelated. In this case, pairwise
weight estimation techniques may result in misleading conclusions about the weight
distribution.

In correlation analysis, covarying predictors represent a principal problem that may
result in unstable or misleadingly large weights, misguiding experimenters when rating
the relative importance of di�erent cues. For example, let us assume an observer relies
only on a predictor A.�ere is another predictor B, that is correlated with A, but that
the observer does not have access to. Across many trials then, both predictors A and B
correlatewith the responses and a pairwise correlation analysis indeed assigns a signi�cant
weight to both.

For a perfectly deterministic observer, however, only predictor A explains the re-
sponse on each and every trial. For a probabilistic observer, A is a better predictor of
trial-by-trial responses than B.�is critical di�erence between true and ostensible pre-
dictors can be taken advantage of to apply a perceptual weighting analysis even under
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conditions where the stimulus features of interest can not be independently manipulated
and statistical dependencies between stimulus features can not be entirely avoided, e.g.,
in speech perception.

Generally, multiple regression procedures, such as used by Ahumada and Lovell
(1971), are able to discern critical and ostensible cues by taking interactions between
di�erent predictors into account.2 In contrast to methods based on the pairwise analysis 2 Lut� (1995) suggests to account for

statistical dependencies between
predictors in correlation analysis by it-
eratively computing partial correlation
coe�cients. However, depending on
the number of predictors and the corre-
lational structure, this process quickly
becomes impractical. It provides no
advantage over multiple regression
techniques.

of predictors and responses (Richards and Zhu, 1994; Berg, 1989), the model weights
are jointly adjusted to optimize the model �t. �e study by Ahumada and Lovell (1971)
mentioned above represents one of the �rst occasions where multiple regression was
applied to analyze auditory psychophysical data.

In another early attempt at modeling single-trial behavior in an auditory task, Gilkey
and Robinson (1986) used multiple logistic regression to estimate the relative weights at-
tributed to auditory features. In contrast to linear procedures, logistic regression provides
estimates for response probabilities, which is particularly appropriate in psychological
studies where observer behavior is generally better described in a probabilistic fashion.
Logistic regression in general has a long history rooted in population growth statistics
(Cramer, 2003; Verhulst, 1838), the description of binary sequences (Cox, 1958) and was “We believe that the generalized linear

models here developed could form a
useful basis for courses in statistics.
�ey give a consistent way of linking
together the systematic elements in
a model with the random elements.”
(Nelder and Wedderburn, 1972)

later incorporated in the theory of Generalized Linear Models (Nelder and Wedderburn,
1972; Dobson and Barnett, 2008). More recently, a number of auditory studies relied on
multiple logistic regression to derive relative spectral weights (Alexander and Lut�, 2004;
Dye et al., 2005; Richards and Tang, 2006) or temporal weights (Pedersen and Ellermeier,
2008). However, weight estimates from multiple regression procedures become less
reliable with increasing covariance and, in particular with large numbers of predictors,
results become sensitive to noise. In addition, when predictors are linear combinations
of each other, the solution of a multiple regression becomes ill-de�ned.

Recent methods from machine learning allow a dissociation of critical cues even
in the presence of strong covariances, including linear dependencies, and noise. By
adding constraints on the observer models during �tting that impose the assumption of
“parsimony”, they prevent over-�tting and avoid instabilities of earlier weight estimation
procedures as explained in detail in the following section.

2.3 Machine Learning, Over-Fitting and Regularization

During recent years, powerful statistical analysis tools have been developed to form the
�eld of machine learning:

“Building on thirty years of analysis of learning processes, in the 1990s the synthesis of
novel learning machines controlling generalization ability began.” (Vapnik, 2000, p. 8)

Since then, techniques such as support vector machines (SVM) and regularized “SVM analysis can be applied to a wide
variety of biological data. As we have
seen, the SVM boasts a strong theo-
retical underpinning, coupled with
remarkable empirical results across
a growing spectrum of applications.”
(Noble, 2006)

multiple logistic regression have been successfully applied in a number of scienti�c �elds
(Noble, 2006; Schölkopf and Smola, 2001). Generally, machine learning algorithms can
be characterized as methods for identifying complex multidimensional input-output
mappings from diverse kinds of data, similar in principle to �tting the linear observer
model in Eq. 2.1 to stimulus-response data:

“�e result of running the machine learning algorithm can be expressed as a function
y(x) which takes [...] x as input and that generates an output vector y, encoded in the
same way as the target vectors.” (Bishop, 2006, chap. 1)

In general, these methods aim at identifying hidden structure in complex data sets. “We used Support Vector Machines, a
well-known classi�cation algorithm in
the �eld of machine learning, to classify
the calls of the di�erent bats.” (Yovel
et al., 2009)

Typically, machine learning algorithms are simultaneously trained on sample data and the
corresponding correct “classes”, the so-called “ground truth”, e.g., pictures of hand-written
digits (“data”) and their true identity (“class”). In behavioral data analyses, a di�erent
approach is taken. �e goal is to obtain an algorithm that implements the observer’s
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Figure 2.1: Illustration of over-�tting. Plots of polynomials having various orders M,
shown as dark curves, �tted to the black data points that were probabilistically generated
from the light gray curve. For constant and linear �ts, the model under-�ts the data, for
the 9th order polynomial, the model over-�ts and is mostly determined through noise in
the data. �e cubic �t best follows the original sine function from which the data was
generated. �is plot was inspired by Fig. 1.4 in Bishop (2006).

decision mechanism instead of one that responds “correctly”. �us, the “machine” is
trained to predict the observer’s answer, even though it might o�entimes be wrong. In
the context of behavioral studies of perception, this technique has been employed for
system identi�cation in visual psychophysics in humans (Wichmann et al., 2005; Kienzle
et al., 2009; Macke and Wichmann, 2010) and auditory processing in bats (Yovel et al.,
2008, 2009).

In machine learning, a major concern when adjusting complex models to limited
amounts of data is over-�tting. �is term describes a situation where the parameters of an
overly complex model are to a large degree determined by the noise in a particular data
set, instead of the universal structure of the generating process. Such a model reproduces
the current data, seemingly being “correct”. But as a consequence of over-�tting, it is
in reality a poor descriptor of the process underlying the data, and the model is unable
to predict future data originating from the same process. �is directly con�icts with
a central aim when �tting a model: to be able to accurately predict new data.3 A plot3 An extensive discussion of the phe-

nomenon and consequences of over-
�tting can be found in the introduc-
tory chapter 1.1 (“Example: Polynomial
Curve Fitting”) of Bishop’s Pattern
Recognition” (Bishop, 2006).

from the book illustrating the phenomenon is shown as Fig. 2.1. In addition, when the
model �t depends on noise �uctuations, the estimated parameters become fundamentally
unstable. In particular for models with a large number of parameters, it is important to
rule out the possibility of over-�tting. �erefore, the quality of �t of a model should not
be tested on the same data that was used for �tting—as it is usually done in the behavioral
sciences.

As a common practice in machine learning, a model is �rst “trained” to a subset
(“training set”) of the data, i.e., model parameters are �t to match the data:

“�e precise form of the function y(x) is determined during the training phase, also
known as the learning phase, on the basis of the training data.” (Bishop, 2006, chap. 1)

�is step is equivalent tomodel �tting in classical correlation or regression techniques.
To con�rm that the model indeed captures the general structure underlying the data
instead of over-�tting, it is necessary to measure how accurately the model predicts new
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data. �erefore, in a second step, the quality of the �t is evaluated, or “tested”, on the
remaining chunk of data (“test set”) that was not touched during training:

“Once the model is trained it can then determine the identity of new [input samples],
which are said to comprise a test set.�e ability to categorize correctly new examples that
di�er from those used for training is known as generalization.” (Bishop, 2006, chap. 1)

During both processes, the data on which the model parameters are estimated (train-
ing set) must be treated strictly independently from the data on which the agreement
between model and data is determined (test set), including any kind of data transforma-
tions.

While splitting the data helps to identify whether over-�tting has occurred, a second “Regularization theory was one of the
�rst signs of the existence of intelligent
inference.” (Vapnik, 2000, p. 9)

method called “regularization” is required to prevent over-�tting. �e initial motivation
for introducing regularization was to transform ill-conditioned optimization procedures
into well-posed problems (Tikhonov, 1963; Vapnik, 2000, p. 9).

“In the second half of the century a number of very important real-life problems were
found to be ill-posed. In the middle of the 1960s it was discovered that if [...] one minimized
[a] so-called regularized functional [...], then one obtains a sequence of solutions that
converges to the desired one. [...] �e in�uence of the philosophy created by the theory
of solving ill-posed problems is very deep. Both the regularization philosophy and the
regularization technique became widely disseminated in many areas of science, including
statistics.” (Vapnik, 2000, p. 9-10)

Regularization prevents over-�tting by introducing a penalty on overly complex
models. It is adjusted by training the model using di�erent regularization strengths
resulting in models of varying complexity. �e optimal strength is chosen as to maximize
model agreement during testing. In this way, a model is identi�ed that is complex
enough to explain the data and simple enough to not over-�t (Duda et al., 2001, chap.
6.11). �e intrinsic complexity of the data, generally unknown a-priori, determines the
necessary complexity of the model. While optimizing regularization as described above,
the complexity is adjusted to be appropriate for the data set.4 4 For an extensive discussion of the

theory and practice of model selection,
refer to the “Model selection”-special
issue of the Journal of Mathematical
Psychology, e.g., Forster (2000) or
Zucchini (2000).

Commonly, a regularized �tting procedure is based on a two-part error function that
is minimized by adapting the model parameters (i.e., the weights w):

E∗ = E(P, p,w) + λ∑
j

∣w j ∣n (2.2)

�e �rst term expresses howmuch themodel diverges from the data (consisting of the
stimulus-dependent predictors p and observer responses P). �e second “regularization”
term constrains (or “shrinks”) the values of themodel weightsw j , reducing the complexity
of the model. �e regularization parameter λ controls the trade-o� between quality of �t
and compliance to the regularization constraint. �e norm-parameter n usually takes
the values 1 or 2, and controls in which way model complexity is reduced. Up until “Despite the additional computational

challenge posed by L1-regularized
logistic regression, compared to L2-
regularized logistic regression, interest
in its use has been growing.” (Koh et al.,
2007)

recently, machine learning focused almost entirely on L2-regularization (n = 2), due
to its ease of implementation—optimizing a square-law function is much easier than a
non-di�erentiable absolute-value function.

An L2-regularization (n = 2, termed “ridge regression”) generally results in weights
that are more uniformly distributed minimizing their squared norm. Such a model
generally exhibits a smooth input-output function. In contrast, L1-regularization (n = “We propose a new technique, called the

‘lasso’ [...]. It shrinks some coe�cients
and sets others to zero, and hence tries
to retain the good features of both
subset selection and ridge regression.”
(Tibshirani, 1996)

1, termed “lasso”) promotes zero-valued weights, e�ectively reducing the number of
predictors and resulting in “sparse” models (Tibshirani, 1996; Koh et al., 2007).

“Sparseness” is a meaningful and rational constraint in the context of modeling. As
already stated by William of Ockham (c.1280-c.1349): “Pluralitas non est ponenda sine
necessitate” (Plurality is never to be proposed without necessity) and “Frustra �t per
plura, quod potest �eri per pauciora” (It is in vain to do with more what can be done
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with fewer) (�orburn, 1918). �ese statements are known as the postulate of “Ockham’s
Razor” or the “law of parsimony” (Forster, 2000). Whether in machine learning, physics
or psychology, it is now generally assumed that a model that uses fewer parameters to
explain a phenomenon is to be preferred against more complex ones. In the present case,
this corresponds to a model that relies on fewer stimulus descriptors to predict observer
decisions.

2.3.1 L1-Regularization, Sparseness and Feature Selection

�e central purpose of �tting a model to behavioral data was to identify stimulus features
that determine an observer’s response. Striving a�ermodel “sparseness”, the present study
relies on L1-regularization as a method for feature selection. Essentially, it suppresses
those weights that do not contribute to improving model predictions while the remaining
weights and associated predictors are identi�ed as critical for explaining the data (Donoho,
2004; Hastie et al., 2009, chap. 4.4.4).

In general, �nding the smallest subset of features that optimally predicts observer“�e objective of this paper is to show
how many kinds of geophysical data
�tting can be made to be robust. In
particular, all the calculations we now
do in solving overdetermined linear
simultaneous equations [...] can be
made robust, instead, by minimizing
summed absolute values of errors. [...]
With robust modeling methods [...],
[t]he earthquake may be properly
located even if it knocks down some of
the telephone lines.” (Claerbout and
Muir, 1973)

decisions amounts to a combinatorial problem that grows exponentially with the number
of candidate features and thus quickly becomes intractable. Fortunately, sparse regular-
ization o�ers a reliable and e�cient approximation to solve this problem. �e general
idea of using L1-normminimization for feature selection and robust data analysis is quite
old, e.g., it has already been applied in seismics in the 1970s by Claerbout andMuir (1973)
(for a short history see Tropp (2006) and Koh et al. (2007)).

In the context of regularization, the L1-normwas later valued for providing results that
were sparser than those from L2-based ridge regression and that could be used for subset
selection (Tibshirani, 1996). Meanwhile, Donoho (2004) has mathematically proven
that the unique sparsest solution can indeed be found via convex optimization of the
L1-regularized problem, a �nding that also holds in the presence of noise (Donoho et al.,
2006). Convexity of an optimization problem implies that the surface of the objective
function, which measures the agreement between data and model depending on the
model parameters, has a unique extremum, which can be found through gradient descent
or related methods. Non-convex optimization problems always run the risk that the
optimization algorithm gets stuck in non-optimal local extrema.

In fact, a regularizer with L1-norm represents the closest convex approximation to an
L0-regularizer. An L0-regularizer simply counts the number of nonzero weights, or equiv-
alently the number of predictors used to model the data. However, the corresponding“In general, solving (P0) [the sparsest

possible representation] requires combi-
natorial optimization and is impractical.
�e L1-norm is in some sense the convex
relaxation of the L0-norm.” (Donoho,
2004)

optimization task amounts to a non-convex problem, for which no e�cient optimization
algorithms exist and which is as di�cult as testing all combinations (Donoho, 2004).

By contrast, L1-regularization can even be applied in challenging settings, e.g., with
large numbers of predictors, where other heuristic attempts to enforce sparsity perform
poorly (Donoho, 2004). In addition, L1-regularization is highly insensitive to correla-
tions between predictors, e.g., correlation coe�cients up to 0.9 did not e�ect the weight
estimates in a two-predictor case (Tibshirani, 1996). L1-regularization still poses a com-
putational challenge, as the objective function, containing an “absolute value” function,
is non-di�erentiable. Consequently, gradient-descent methods commonly used in model
�tting can not be applied. In recent years, however, e�cient algorithms for L1-regularized
optimization have been developed (Koh et al., 2007; Park and Hastie, 2007; Hastie et al.,“Sparse approximation problems arise

throughout electrical engineering, statis-
tics, and applied mathematics. One of
the most common applications is to com-
press audio, images, and video. Sparsity
criteria also arise in linear regression,
deconvolution, signal modeling, precon-
ditioning, machine learning, denoising,
and regularization.” (Tropp, 2006)

2009, chap. 18.4).
L1-algorithms have received increasing attention in a wide array of applications

(Tropp, 2006), in particular inmachine learning in the context of support vectormachines
(Matthew et al., 2005) and logistic regression (Ryali et al., 2010). �e L1-regularizer is
particularly well suited to the analysis of behavioral data, where a large number of
potential features might be studied while o�en only few are critical to the observer. An
L1-regularized procedure is able to identify this small subset because it favors the model
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with the “simplest explanation” of the data, i.e., the one that relies on the smallest set of
predictors as the explanatory variables.

Additionally, L1-regularization provides a critical advantage regarding the central
purpose of this study as it o�ers a natural solution to a problem that was discussed in
section 2.2: the problem of correlated predictors that may arise during the analysis of psy-
chophysical data, in particular in the context of auditory perception. An L1-regularized
regression allows a dissociation of critical auditory cues among a set of correlated predic-
tors, because it identi�es exactly those that are both necessary and su�cient to predict the
data. As discussed earlier, this would have been much more di�cult or even impossible
with standard non-regularized regression procedures. As discussed in the following
section, these critical predictors are then considered to correspond to the observer cues.
During prediction, only these cues are used while ignoring all non-critical features.

2.3.2 Extracting Observer Cues from Sparse Models

�is section presents the principal ideas behind using sparse linear-weighting models
to identify a listener’s perceptual processing from his responses in a psychophysical
experiment.

Using a regression procedure, an observer model is �t to auditory stimuli and corre-
sponding observer responses. If the �tting is successful, the model should then be able
to capture the perceptual decisions of the listener on a trial-by-trial level. In terms of
behavior, it can thus be considered at least as functionally equivalent. �e proposed cue
extraction procedure goes one step further by making the central assumption that the
mechanisms the model employs to predict the observer’s decisions are similar to the
actual perceptual processes of the listener. Essentially, it assumes that the equivalence
between model and observer may not only be functional, but that there may be a stronger
mechanistic equivalence, too. �e decision mechanism of the model is entirely de�ned
by the model weights (and the bias parameter). �e weight values determine to which
extent and—depending on the sign—in which direction a certain predictor in�uences
the decision. �us, by analyzing the model weights, one can infer whether and to what
extent a particular stimulus property, which is represented by a predictor, determines
the listener’s behavior.

Using a sparse �tting technique, the present study identi�es the unique necessary
and su�cient predictors that explain the behavioral data. To my knowledge, this is
the �rst time that a sparse L1-regularization technique is applied to identify perceptual
cues from psychophysical data. Of course, as any other cue extraction technique based
on linear-weighting models, the proposed method can only identify stimulus cues that
are made available as predictors. �e extracted cues must always be interpreted in the
light of the present model predictors. However, weak predictive power of a �tted model
is a strong indicator that essential observer cues are not represented by the predictors.
Generally, there is no unique correct answer to the questionwhich stimulus cues observers
use. O�en, there are multiple ways to project particular stimulus properties on model
predictors. As demonstrated in chapter 6, the weight distribution itself may provide hints
as to how to adjust the stimulus preprocessing to obtain more meaningful and simpler
representations of observer cues.

2.3.3 Discussion of Alternative System Identi�cation Techniques

Restricting the analysis to the set of linear models may appear as a strong limitation.
Powerful nonlinear techniques for data analysis and model �tting have been developed
in recent years (Schölkopf and Smola, 2001), methods based on multi-layered neural
networks have been available even earlier (Rumelhart et al., 1986; le Cun, 1988). However,
there are serious di�culties when applying these techniques in the current setting, due
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to which I conclude that a linear logistic regression provides an excellent choice for the
present kind of analysis.

First of all, techniques based on �tting multi-layered neural networks have the main
disadvantage that they can not guarantee that the optimal model given the data and
model constraints can be found (Rumelhart et al., 1986; Vapnik, 2000) . Depending on
the starting conditions of the �tting procedure, the optimization may get stuck in local
extrema that do not correspond to the globally optimal model estimate. Further, there is a
large number of a priori unrestricted model parameters which have to be optimized, such
as the number of hidden layers, the number of neurons in each layer and the structure
of connections within and across layers. Given the high amount of noise in observer
data and the resulting uncertainty when estimating the model likelihood, it may be very
di�cult or even impossible to distinguish the optimal model structure in such a high
dimensional space. By contrast, a sparse linear logistic regression represents a convex
optimization problem that always converges to the global optimum while only one hyper-
parameter—controlling the regularization strength—has to be optimized (Candes and
Tao, 2005). In addition, it is very hard to analyze the decision mechanism underlying a
trained multi-layer neural network.55 One way is to “project-out” a

polynomial-function of very high
degree, that one has to "prune" a�er-
wards (Gary Green, pers. communica-
tion).

Generally, linear support vector machines are the binary analogue to a regularized

loss function

 

 

SVM
LogReg

While the support vector machine
(SVM) relies on a hinge-loss function,
the loss curve for logistic regression
(LogReg) is smooth. Both have the
same asymptotes.

logistic regression with only a small di�erence regarding the loss function, which de-
termines how strongly incorrectly classi�ed data samples are weighted (Schölkopf and
Smola, 2001). In practice, this di�erence is minor—the weights estimated with a linear
SVM or a logistic regression hardly di�er. Both SVMs and logistic regression o�er the
same advantages regardingmodel �tting (convexity and few hyper-parameters). However,
SVMs have one signi�cant disadvantage regarding model predictions: Generally, they
only provide a binary prediction instead of a graded probability estimate. �ey are thus
not able to accurately capture the probabilistic nature of behavioral data.

Nonlinear support vector machines, based on polynomial or radial-type basis func-
tions have proven to be a very successful extension to linear SVMs and are able to capture
hidden structure in a wide range of data types (Noble, 2006). However, the focus in such
studies commonly lies on successful prediction while the mechanisms underlying the
decision process remain hidden. In fact, the optimization of the model weights takes
place in a so-called “dual space” or “kernel-induced feature space”, while the transfor-
mation of the raw data from the primal space is only de�ned implicitly and not directly
accessible (Schölkopf and Smola, 2001). As a result, the precise decision mechanism of
a �tted nonlinear SVM can in general only be obtained through sophisticated indirect
methods, e.g., Wiener and Volterra-series for polynomial SVMs (Franz and Schölkopf,
2006). More easily tractable approximate solutions have been suggested (e.g., see Kwok
and Tsang (2004)) and some authors successfully applied that approach—mostly thanks
to an unexpectedly simple data �tting result (Kienzle et al., 2009). Still, the interpretabil-
ity of such an analysis is highly constricted by the amount of noise in the data and the
complexity of the resulting solution.

In conclusion, for the present purposes, a sparse logistic regression provides the best
trade-o� in terms of its capabilities and limitations: Models can be �t very reliably to
data even in the presence of a strong noise component, as should be expected for data
from naïve observers in psychophysical experiments. Second, once the model is �t, it
provides probability estimates for the predicted responses that can be directly compared
with the response probability of the observers. And �nally, and most importantly, the
mechanism by which the model makes predictions—which is used to make inferences
on the perceptual processing of the observers—can be directly obtained from the model
weights. If necessary, nonlinear aspects of the perceptual processingmay be introduced by
using nonlinear stimulus preprocessing steps before the data are �t with the linear model.
Such a preprocessing also allows the incorporation of domain knowledge collected from
anatomy, physiology or psychophysics. Only if such an approach—the combination of
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nonlinear preprocessing and a linear decision stage—should fail, would it be necessary
to turn to nonlinear model-�tting techniques.

2.4 Cue Identi�cation through Stimulus Manipulation

In principle it is possible to control some stimulus properties separately from others
through careful signal manipulations, the realm of classical psychophysics. For the “One approach that has been success-

fully used to evaluate the role of en-
velope and �ne-structure cues [...]
involves the use of chimeras. Chimeras
are stimuli formed by combining the
envelope from one stimulus with the
�ne structure from another.” (Davidson
et al., 2009b)

canonical example of Tone-in-Noise detection presented in chapter 3, studies relied on
equal-energy stimuli (Richards et al., 1991), envelope modulated pure tones (Richards
and Nekrich, 1993), roving-level sounds (Kidd et al., 1989), or chimeric stimuli (Davidson
et al., 2009b). �e underlying idea is the following: If behavior changes as a function of a
particular feature, all other stimulus properties being uninformative, this feature must
be critical for the observer decision and vice versa.

O�en however, controlling a single stimulus property without a�ecting others is
di�cult in practice. In addition, the necessary manipulations may introduce di�erences
from non-manipulated stimuli, e.g., subtle artifacts, which in turn may unintentionally
in�uence observer judgements. Furthermore, this approach may even become practically
impossible when individual features are strongly interdependent or with large sets of
candidate features. For these reasons, the present study strictly relies on non-manipulated
stimuli that correspond to the original perceptual task as presented in chapter 3.

2.5 Molecular Psychophysics and Sequential Dependen-

cies

Almost half a century ago, Green (1964) introduced the concept “molecular psychophysics”:

“[T]he subject matter of molecular psychophysics must be the individual response of the
individual subject.”

For David Green, one of the goals of psychophysics is to be able to explain and
predict observer behavior on a single-trial level. He mentions two main virtues of such
an analysis:

“First, a trial-by-trial analysis of the observer’s response may provide a critical and
e�cient test of a hypothesis that is impossible on the molar level. [...] Second [...], molecular
analysis provides a rigorous and demanding test of ideas about the manner in which
nonstimulus variables in�uence the judgment process.” (Green, 1964)

He noted that, unfortunately, the observer’s responses most likely not only depend on
the stimulus, as the “external factor”, but also on “internal factors” that are not accounted
for by models that only consider stimulus predictors. In order to estimate the relative
in�uence of external and internal determinants of the decision, he proposes to quantify
observer “consistency” in multi-pass experiments. In such a con�guration, the exact
same stimulus is presented multiple times. For example, observer consistency could
be quanti�ed by presenting a set of 100 stimuli twice and measuring the proportion of
stimuli to which the listener responded identically in both runs.

Among those models that explain and predict the listener’s decision based on the
relationship of stimuli and corresponding responses, there can not be a better estimator
of the observer’s decision than the observer himself in an earlier trial. Necessarily then,
the consistency determines how precise the behavior of a listener can be predicted by
any such observer model. In Appendix G I derive the corresponding upper limit for
model-observer agreement depending on observer consistency in a two-pass experiment.
A more complex derivation of the same limit can be found in Neri and Levi (2006).
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Given that internal �uctuations do not allow a perfect “molecular” prediction of
responses on every single trial, Green proposed that the behavior of the observer can
still be quanti�ed precisely in a “quasi-molecular” manner by estimating the probability
that a listener would respond in a certain way to a particular stimulus.

Most “internal factors” determining behavior, such as attention or fatigue, is hard to
assess or even control. O�en their e�ect is simply subsumed under the term “internal
noise”, being “synonymous with the presence of e�ects that are not fully understood” (Green,
1964).

Even so, there is a unique component that is likely to in�uence a listener’s decision and
that an experimenter has direct access to: the sequence of past responses. In his extensive
discussion of observer consistency, Green (1964) pays particular attention to this point
and argues that “[t]here is little question that the subject is in�uenced by the sequence
of past responses”. Anyone who has ever participated in a psychophysical experiment
will agree: A�er repeatedly pressing only one button in a binary choice experiment,
the urge increases to press the other button at some point—presumably because such a
monotonous stimulus sequence appears increasingly unlikely. Listeners may also have
a tendency to try and discover patterns in the stimulus sequence which also results in
sequential dependencies in their responses.

At the time when Green wrote his early manuscript, the importance of the response
factors had almost exclusively been estimated in conditions with little or no sensory
stimulus and it had yet to be investigated how pronounced this e�ect was with supra-
threshold stimulation. �e strength of sequential dependencies in concert with other
uncontrolled internal factors critically determines how well an observer can be predicted
by a model that is based on the stimulus alone.

As Green (1964) writes,

“If response mechanisms could be understood in detail, then the experimenter [...] could,
in theory, predict the trial-by-trial behavior of the subject.”

As long as the in�uence of other internal factors remains unknown, this ambitious
aim will never be fully achieved. Nevertheless, being able to quantitatively describe the
mechanisms underlying the response-sequence e�ect at least improves the quality of
single-trial predictions.

Since Green’s early publication, other studies investigated the e�ect of sequential
response dependencies and its existence was proven early on (Howarth and Bulmer, 1956;
Green et al., 1977). Later, sequential dependencies were studied in the framework of
signal detection theory with a focus on their in�uence on criterion setting (Treisman
andWilliams, 1984; Lages and Treisman, 1998) or estimates of the psychometric function
(Fründ et al., 2011a). Even more recently, Busse et al. (2011) found particularly strong
sequential dependencies in an animal study with mice, where in extreme cases the imme-
diately preceding trial determined the current response as strong as the current stimulus.
An analysis of a number of data sets from human psychophysical studies collected in
both visual and auditory tasks concluded that a majority of observers exhibited these
e�ects albeit to a weaker extent (Fründ et al., 2011b, 2012).

As a consequence, this study attempts to directly model the e�ect of sequential
dependencies in response behavior. For that purpose, the linear observer model in Eq. 2.1
which traditionally only allows for the in�uence of the current stimulus on observer
behavior, is supplemented with information on the listener’s behavior. In concrete terms,
the decisions in several immediately preceding trials are included as individual binary
predictors which are associated to a corresponding relative “behavioral” weight. �is
approach is closely related to the method used in an animal study by Busse et al. (2011),
though these authors considered only the most recent trial. To my knowledge, the
proposed analysis method is the �rst attempt of this kind in the context of human
psychophysics, and almost certainly the �rst attempt to jointly estimate causal perceptual
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cues together with behavioral determinants based on stimuli and response history.
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Chapter 3

�e Auditory Task:

Tone-in-Noise Detection

The central intention of the present study was to develop a quantitative description
of the perceptual processing in Tone-in-Noise (TiN) detection—an as yet not fully

resolved problem rooted in classical auditory psychophysics. �e following section
discusses the historical developments surrounding this paradigm and its connection
to the concept of the critical band. Later sections shed some light on the evolution of
Signal Detection �eory as well as an experimental technique called “Frozen-Noise”
both of which were tightly linked to the TiN paradigm. Subsequently, I discuss studies
of the perceptual cues and quantitative models for TiN detection which provide the
immediate foundation for the present study. In the �nal section, I present the details
of the experimental procedure used while collecting TiN detection data in a hearing
laboratory.

3.1 �e History of Tone-in-Noise Detection

�e auditory system is a highly intricate, sensitive and hard-to-access mechanism, whose
function should best be studied in an intact system—as we know now, it includes ac-
tive feedback components that are essential to its capacities (Gold, 1948; Kemp, 1978).
Generally, it is e�cient to study such complex neural systems in parallel both on a
functional/algorithmic level as well as from a physiological/implementational perspec-
tive. Psychophysical hearing experiments o�er a powerful approach to elucidate the
overall function of the auditory processing mechanism on the algorithmic level, which
constitutes the general focus of the present thesis.

When studying a complex system, such as the human auditory system, it is convenient
to start with its most fundamental functions and properties. In Steven’s Handbook of
Experimental Psychology (Pashler and Yantis, 2002) Laurel Carney writes

“A primary function of the auditory system is to encode the frequency spectrum of
a sound, that is, the level of energy at each frequency within a stimulus. �e physical
dimensions of frequency and sound level convey most of the important information in
sounds.”

Harvey Fletcher, as the Director of Research at the Bell Telephone Laboratories, was
the �rst to rigorously study auditory frequency analysis with psychophysical methods.
Swets et al. (1962) summarize his seminal studies on the hearing process:

“For the better part of a century, attempts to specify the process of auditory frequency
analysis were based almost exclusively on anatomical and physiological evidence. �en,

17
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Figure 3.1: Illustration of a standardTone-in-Noise detection stimuluswith a band-limited
noise masker (gray) centered on a signal tone (bold black) at frequency Fc. In each trial
of a YES/NO detection task, the signal may be present or not. �e signal-to-noise ratio
(SNR) may be adjusted by modifying the masker or signal level.

in 1940, Fletcher presented psychophysical data that gave a new form to the problem. He
reported an experiment showing that only noise components in a narrow region about a
pure tone are e�ective in masking the tone.�is region he termed the ‘critical band’.”

�e Tone-in-Noise (TiN) detection experiment was the central paradigm that gave
rise to this discovery. During such an experiment, a listener is asked to detect a pure
tone masked by background noise, a sample stimulus as illustrated in Fig. 3.1. �e“�e simple psychophysical task of de-

tecting a pure tone in the presence of a
random noise has been of fundamen-
tal importance in the development of
auditory theory. Essentially all modern
models of auditory processing include
an initial array of narrowband �lters,
and for detection of a tone in noise, it
is generally assumed that a �lter tuned
near the frequency of the tone is used.”
(Carney et al., 2002)

masker either consists of wide-band Gaussian noise, band-limited noise centered on
the signal or notched noise with an “empty region” surrounding the tone. As described
by Swets et al. (1962), it was �rst introduced by Fletcher (1938, 1940) who used it to
determine the characteristics of a hypothetical auditory �lter. With his idea of the
“critical band”, Fletcher established one of the most important concepts in the theory of
auditory perception. �e concept of the auditory �lter is useful for explaining a range of
psychophysical phenomena, including TiN detection, loudness perception, nonlinear
distortion, frequency discrimination, binaural interactions as well as the perception of
pitch, individual harmonics and relative phase (Hartmann, 1998).

Relying on the TiNdetection paradigm, several early studies attempted to characterize
the properties of the auditory �lter hypothesized by Fletcher. Critical bandwidth was“�e concept of auditory �ltering, or crit-

ical band, is the single most dominant
concept in auditory theory. Mainly, it
is de�ned by masking experiments, but
it is also said that the critical band is
that frequency bandwidth or frequency
separation where perceptual properties
change suddenly.” (Hartmann, 1998,
Sec. “�e Ubiquitous Critical Band”)

usually measured by varying the bandwidth of the noise (Fletcher, 1940; Schafer et al.,
1950; Swets et al., 1962) or by comparing the performance of the observers with theoretical
detection systems (Hawkins and Stevens, 1950; Je�ress, 1964; Green and Swets, 1966).
Fletcher concluded from his data (see Fig. 3.2)—or at least assumed for simplicity—that
the auditory �lter was rectangular in shape. Later on, more precise measurements found
that the transition between the rising and constant slopes of the threshold curve was in
fact not as sharp but gradual instead, suggesting a corresponding �lter that was smooth
in shape. �e shape of the auditory �lters was not only of interest as regards the frequency
discrimination, but also the absolute hearing capability. �e joint curve of the combined
critical band �lters is assumed to generate the hearing threshold curve (Schafer et al.,
1950).

Unfortunately, depending on the particular assumptions and experimental settings,
the width of the critical �lter varied over almost one order of magnitude (Ahumada,
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Figure 3.2: Tone-in-Noise detection thresholds (y-axis) for varying noise bandwidths
(x-axis) and signal frequencies (symbols) as measured by Harvey Fletcher. Reprinted
�gure with permission from H. Fletcher (1940), “Auditory patterns”, Reviews of Modern
Physics 12, 47–65. Copyright 2013 by the American Physical Society.

1967). Very early it was recognized that there may not be a single bandwidth, but that
the properties of the auditory system are adapting depending on the task (French and
Steinberg, 1947; Swets et al., 1962; Je�ress, 1964). As Swets et al. (1962) state:

“[I]t seems unlikely that all of these experiments are measuring the critical band, a
�xed property of the auditory system that exists independent of experiments. It seems more
reasonable to suppose that the parameters of the auditory system are not �xed, speci�cally,
that they may vary from one sensory task to another under intelligent control.”

In conclusion, even though over the course of the 20th century the critical band
had a unifying e�ect in auditory theory, it has been more critically scrutinized in recent
decades. As Hartmann (1998) writes:

“Historically, the critical band has been a unifying element in the explanation of many
psychoacoustical e�ects, particularly their dependences on bandwidths or frequency sepa-
rations. [...] According to contemporary view, most psychoacoustical e�ects are actually
rather complicated, and although auditory �ltering is an important part of any explanatory
model, it is rarely enough by itself.”

In any case, whether auditory researchers attempt to verify or disprove the idea of
the “critical band”, they all agree that it is a meaningful and valuable concept to base their
studies on. �ere is no doubt that Fletcher’s original TiN detection experiment and his
interpretation in terms of an auditory �lter lead to signi�cant progress in the �eld of
auditory theory and still today—a�er more than 70 years—inspire research projects like
the present study.
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3.2 TiN Detection and the Origins of Signal Detection

�eory

Until the middle of the twentieth century, most psychophysicists believed that observers“Den Punct, wo die Merklichkeit eines
Reizes oder eines Reizunterschiedes
beginnt und schwindet, wollen wir kurz
die Schwelle nennen.” (Fechner, 1860,
chap. X, “Die Tatsache der Schwelle”)

could best be understood as behaving according to Fechner’s “threshold model”, i.e.,
whenever a perceptual signal was larger than a certain threshold, it could be correctly de-
tected; whenever it was below, observers could merely guess (Fechner, 1860). As a direct
consequence of this assumption, the theory had di�culties of explaining meaningful
ordering that was observed in data comprising so-called “subthreshold” events1 (Green,1 Fechner was well aware of this fact:

“An die Unmerklichkeit kleiner Unter-
schiede knüp� sich von selbst eine feine
und nicht unwichtige Frage für das
Massverfahren der Emp�ndlichkeit
nach der Methode der richtigen und
falschen Fälle. [...] Trotzdem, dass ein
Unterschied für sich unmerklich ist,
wird er doch bei einer hinreichenden
Anzahl Verglei-chen ein Uebergewicht
richtiger Fälle zu Gunsten des schwer-
eren Gewichtes, allgemein des grösseren
Reizes �nden lassen.” (Fechner, 1860,
Sec. X.3 “Allgemeinere Betrachtungen
bezüglich der Schwelle.”)

1960). Several attempts were made to “�x” the threshold model. �e suggested changes
o�en bore similarities with signal detection theory (SDT), a new concept that was intro-
duced into psychophysics in the 1950s and ’60s (Swets, 1961). Eventually detection theory
was accepted as the appropriate general framework for explaining psychophysical per-
formance data (Krantz, 1969). �is early history of the development of signal detection
theory is closely linked to the classical auditory paradigm of Tone-in-Noise detection, as
detailed in the following paragraphs.

�e theory of signal detection is generally grounded in the statistical theory of
hypothesis testing. Without reference to any kind of psychophysical paradigm, Peterson
and Birdsall (1953) and Peterson et al. (1954) provided a very general quantitative account
of the problem of detecting a signal in stationary, band-limited, white Gaussian noise.
In terms of possible applications, their manuscripts mainly deal with the problem of
detecting a target in a radar signal. Even though the authors do not explicitly elaborate“�e mathematical model of signal de-

tections is applicable to the problem of
visual detection. [...]�e experimental
data supports the logical connection
between the forced-choice and yes-no
techniques developed by the theory.”
(Tanner and Swets, 1953)

on applications in psychophysics, this early work represents a central foundation of the
“theory of signal detectability” (later termed “signal detection theory”, SDT). Tanner
and Swets (1953, 1954) immediately drew a connection to psychophysics. Based on the
manuscript by Peterson and Birdsall (1953) (and “a series of seminars conducted by Dr.
H. R. Blackwell”), they developed a “New�eory of Visual Detection” which—in their
opinion—explains the psychophysical data better than earlier theories.

Subsequently, for his doctoral thesis entitled “Detection�eory and Psychophysics”,
Marill (1956) critically studies and improves upon the work by Tanner and Swets (1953),
and—also based on Peterson and Birdsall (1953)—concludes that “the two-category forced-“It is found that, except for being ap-

proximately 13 db less sensitive, sub-
jects behave very much like the ideal
detector—that is, in accordance with the
mathematical predictions—when the
signals are pure tones.” (Marill, 1956)

choice technique is found to be particularly advantageous on theoretical grounds.” He
then for the �rst time applies SDT to an auditory psychophysical paradigm, namely
the detection of pure tones masked by broadband Gaussian noise. Using the newly
developed theory, he attempts to “predict the probability that the subject will perceive the
signal”. He observes that his listeners are much less sensitive than a theoretically derived
“ideal detector” and infers the width of the hypothetical critical band from the measured
discrepancy (see section 3.1).

In 1960, Green (1960) reviewed the current developments in detection theory and
its application to signal detection in wide-band masking noise while he notes that there
seems to be “some confusion both about the theory and its applications”. He concludes
that the experimental data “seriously con�ict with [...] the threshold model and give some
measure of support to the decision-theory analysis.” In the same manuscript, Green also
elaborates on the mathematical concept of the ideal observer and derives the shape of
the psychometric function.

A few years later, Je�ress (1964) “re-invented detection theory” (his ownwords! (Je�ress,“[�is paper] is beholden to TSD [�e-
ory of Signal Detectability] for many
basic concepts and hopes to pay part
of the debt by casting a little more light
into one or two dark corners.” (Je�ress,
1964)

1967)) and theoretically analyzed the problem of detecting a tonal signal in a background
of narrow-band Gaussian noise using “receiver operating characteristic” (ROC) curves.
�is same paradigm of “narrow band Tone-in-Noise detection” then becomes one of the
central paradigms in the now classical textbook on SDT by Green and Swets (1966). �e
authors theoretically derive the detection performance of an ideal observer depending
on the characteristics of the background noise and the signal to be detected while the
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listener is assumed to employ sound energy as the decision variable.
In conclusion, the Tone-in-Noise detection paradigm was one of the earliest test

cases for detection theory. Its successful application in this context certainly helped the
young theory to be embraced in the psychophysical community. As soon as detection
theory was accepted as a fundamental framework for the analysis of psychophysical
data, subsequent Tone-in-Noise detection studies naturally relied on the corresponding
concepts to analyze and explain the data.

3.3 Frozen Noise in TiN Detection

Fletcher (1938) used a thermal noise generator to generate the masking noise and was
able to �nd dependencies between the statistics of the stimuli and detection perfor-
mance. However, because in Fletcher’s and most of the subsequent studies (Hawkins and
Stevens, 1950; Schafer et al., 1950; Marill, 1956; Swets et al., 1962; Je�ress, 1964) the sounds “�e signal and noise outputs were

added and recorded on [...] a dual
channel tape recorder. In this manner
one obtains about 5 or 6 minutes of
exactly reproducible stimulus material.”
(Sherwin et al., 1956)

were never recorded, the authors principally could not investigate relations between the
characteristics of particular sound samples and the corresponding observer responses.

�e “frozen noise” technique, i.e., the ability to record and replay the auditory noise
waveforms exactly as they were presented to the listeners, was a critical technical de-
velopment for the progress in the study of TiN detection. A study by Sherwin et al.
(1956) represents one of the �rst accounts where recorded sound samples are used in the “While it is impossible to guarantee

that the two presentations of the tape
were exactly alike, every precaution
was taken to approach that goal.�e
largest source of stimulus variability
probably arose because of variation in
the speed of the tape through the heads
and slight variation in contact between
the playback head and the magnetic
tape.” (Green, 1964)

investigation of the TiN paradigm. �e recordings were used to measure a correlation
between an energy detector and a listener responses.

Even though the frozen noise technique is perfectly suited to investigate the e�ect of
particular characteristics of the stimulus on the observer’s responses, even a decade later
only a few more studies had relied on this method. Watson (1964) performed a rating
experiment and correlated the rating judgements with “voltage peaks” within a narrow
frequency band centered on the stimulus. Green (1964) used noise waveforms replayed
from magnetic tape to measure observer consistency during multiple presentations of
identical stimuli. And �nally, Pfa�in and Mathews (1966) used reproducible noises to
�nd dependencies between observer behavior and the output of a digital �lter. �ey
also made an observation they only could have made with “frozen noise”: “Special
characteristics of certain noises appear to a�ect the subject’s response when these noises
appear in either signal or non-signal trials.”

During that time, the computer revolutionwas about to greatly simplify the controlled “Twelve noise samples were used as
stimuli in these experiments.�ey
were generated by a random number-
generating program on an IBM-7094
computer that produced 240 indepen-
dent numbers for each noise stimulus.
�e stimuli were stored in numerical
form in the memory of a Packard Bell
250 computer.” (Pfa�in and Mathews,
1966)

(re-)presentation of stimulus samples and subsequent data analysis. In fact, already Pfaf-
�in andMathews (1966) did not record their noise samples on tape, but instead generated
and stored them digitally on a computer from where they were directly delivered to
headphones. Even more advanced digital equipment allowed Ahumada and Lovell (1971)
to not only repeatedly present a small number of computer-generated narrow-band TiN
bursts, but also to correlate the recorded rating responses with the energy present in each
of several frequency bands surrounding the signal using multiple regression.

Meanwhile, computers and sound cards have became a standard tools in auditory
psychophysics replacing analog “thermal noise generators” and tapes. As a consequence,
employing the “frozen noise” technique no longer implies a di�erence in terms of the
way the experiments are set up and executed. It only means that the computer-generated
sound samples are stored and used during later analysis.

Today, an ordinary lab computer can store and analyze hundreds of thousands of
high-de�nition sound samples. Together with the corresponding listener responses, these
data can be comprehensively investigated in any conceivable aspect, whether that are
complex stimulus features or observer reaction times. �e present study makes use of
this impressive progress in terms of equipment, in particular the advances in storage and
computing power.
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3.4 Perceptual Cues in TiN Detection

A central problem concerning the paradigm of TiN detection has been the question as to
which perceptual cues observers employ in order to detect the masked tone signal. �e
present section discusses a number of suggestions that have been made regarding this
problem.

�e underlying assumption when estimating critical bands with a TiN detection
experiment is that observers “measure” some property of the auditory stimulus that
passes the critical band �lter surrounding the signal tone. In early studies, this property
was usually assumed to simply be the overall energy of the sound (sum over the squared
amplitudes) (Fletcher, 1940; Hawkins and Stevens, 1950) or signal amplitude (Je�ress,
1964). Fletcher (1940) assumed that the signal could be detected as soon as the intensity of
the tone was equal to the average noise intensity. Sherwin et al. (1956) performed the �rst“However, the observer’s false alarm rate

is about an order of magnitude lower
than that calculated for the �uctuating
threshold detector so it is clear that the
model is de�cient in some important
respect.” (Sherwin et al., 1956)

experiment to actually measure a correlation between the output of an energy detector
and a listener’s response, though the observer turned out to perform better than the
detector. Using reproducible noises, Pfa�in andMathews (1966) correlated the observer’s
responses with a digital �lter of �xed width. �ey concluded that responses could be
explained in part, but not entirely, by the presence of sound energy near the signal tone.
Using concepts from the newly developed “theory of signal detectability” (see section 3.2),
Je�ress (1964) analyzed TiN detection data and suggested that observers use an “envelope
detector”, i.e., the maximum amplitude height is detected and used as the critical cue.
He discusses in detail whether a detector based on voltage (amplitude/envelope) or
voltage-squared (power) better describes the detection data and concludes “that amplitude
[envelope height], rather than power [energy], is the basis for detection.”

Nevertheless, in their discussion of TiN detection in the context of the psychophysical
theory of signal detection, Green and Swets (1966) suggested that observers rely on
di�erences in energy between noise and signal stimuli to detect the tone:

“[T]hey propose that this detection process may be represented conceptually by a band
pass �lter, a nonlinear transformation of the output of the �lter (a square-law device in
their example), an integrator and �nally a detection mechanism.” (Kidd et al., 1989)

However, in order to quantitatively match the data with their theoretical predictions
Green and Swets (1966) had to assume a very high level of internal noise. To get a more“�e obvious next research step is to see

whether such a model can actually give
an output that correlates better with
the observer’s responses than does the
single-�lter energy-detection model.”
(Ahumada, 1967)

direct estimate of auditory �lter width, Ahumada (1967) correlated the energy passed by
�lters of varying bandwidths with observer responses. �e author found that a simple
energy-detection model could not explain the data, in particular for those trials where
the signal was absent. He concludes that this “sort of result” would be expected “if the
observer is looking at a set of measures, only one of which represents essentially the energy
[...]” and that “this kind of behavior would be exhibited by a �lter-bank model [i.e.] the
observer is monitoring a set of narrow �lters tuned to di�erent frequencies [...].”

�us, over the three decades following Fletcher’s original experiment, ample evidence
had been collected that the energy or amplitude of the sound passing through a single
auditory �lter were not su�cient to explain the observed data. Over the following years,
even more observations were made that were incompatible with the simple “critical-band
energymodel”. For example, the e�ect of “ComodulationMasking Release” demonstrated
that information in frequency bands far away from the critical �lter is able to positively
e�ect signal detection thresholds (Hall et al., 1984). A simple way to test whether a certain
stimulus features serves as the basis for detection is to observe the e�ect of making this
potential cue more or less reliable. Based on this idea, several studies using roving level
paradigms (Kidd et al., 1989; Berg et al., 1992) or equal energy stimuli (Richards et al.,
1991) have shown that the presence or absence of the energy cue does not necessarily
have a substantial e�ect on detection performance.

In a roving level experiment, the overall sound level of the stimuli is randomly
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modulated from stimulus to stimulus, so that the energy cue necessarily becomes less
informative. Kidd et al. (1989) “roved” the sound level of the stimuli in the two intervals “[T]he traditional critical-band energy-

detector model could not account for
the results, which are attributed to
discrimination based on spectral shape
or on wave shape.” (Kidd et al., 1989)

of a two-interval forced choice task by up to 32 dB. Both at masker bandwidths above and
below the width of the critical �lter the masking threshold was very similar in the roving
and non-roving (constant level) condition, or at least the di�erence between the two
conditions was lower than predicted from an energy-detector model. �e opposite e�ect
of making the energy cue more informative can be achieved by adjusting the energy
of every noise masker in order to perfectly equalize their sound energy across the two
intervals of a trial. In this way, because the random variability of stimulus energy due to
�uctuations in the noise token was eliminated, detecting the signal based on stimulus
energy should become easier. Richards et al. (1991) applied this technique and found that
“[n]either increasing nor decreasing the variance of the noise-alone and tone-plus-noise
energy di�erence distributions altered the detectability of a tone added to noise.” concluding
that “the changes in energy that are concomitant with the addition of the tone are not the
sole cue for the detection of the tone.”

Obviously, the traditional model based on “energy detection” had become insu�cient.
Auditory detectionmodels that incorporated energy frommultiple critical-band detectors
not centered on the tone were considered a natural alternative in conditions with noise
bandwidths close to or wider than critical bands. Gilkey and Robinson (1986) found
that “[l]inear combinations of the outputs of several detectors that di�er in center frequency
or integration window provide even better �ts to the data [than a single-tuned �lter] [...]
suggesting that a subject’s decision is based on a comparison of information in di�erent
spectral or temporal portions of the stimulus.” �is observation was later con�rmed by “A model based on a weighted combina-

tion of energy in multiple critical bands
performed best, predicting up to 90% of
the variance in the reproducible-noise
data.” (Davidson et al., 2006)

Davidson et al. (2006).
In addition, a number of stimulus features were proposed that relate to sound �ne

structure (i.e., phase modulation) as well as envelope. Mathematically, any narrow band
signal can be described in terms of a quickly varying instantaneous phase ϕ(t) and a
slowly varying envelope A(t) (Hartmann, 1998):

S(t) = A(t) ∗ sinϕ(t) (3.1)

Both can be derived as the angle and magnitude of the complex “analytic signal”

X(t) = S(t) + iH∥S(t)∥ (3.2)

with the Hilbert H transform of the original signal S(t)
H∥S(t)∥ = 1

π
∫
+∞

−∞

dt′
S(t′)
t − t′

(3.3)

While the envelope determines the time-varying amplitude of the signal, the instanta-
neous phase characterizes the �ne structure, e.g., position of zero crossings or variations
in frequency. In practice, the envelope can also be approximately extracted by a half-wave
recti�er and a low pass �lter adapted to the frequency range of the sound.

A number of studies focused on the relative contribution of energy, �ne structure
and envelope features (Richards et al., 1991; Richards and Nekrich, 1993; Davidson et al.,
2009b). Richards (1992) analyzed an extensive collection of “engineering type” �ne- “�e simulations indicated that changes

in both the �ne structure and envelope
were su�cient for the detection of a tone
added to noise when reliable energy-
based cues were not present.” (Richards,
1992)

structure and envelope descriptors, such as envelope mean, kurtosis, crest factor (peak
divided by average), average slope or the distance of zero-crossings and variance in instan-
taneous frequency. She concluded that either �ne structure or envelope characteristics
could explain detection performance.

Dropping the assumption, that TiN detection is dominated by a single stimulus
characteristic, Richards and Nekrich (1993) investigated whether observers may rely
on a combination of multiple auditory features and found that a substantial fraction of
observers appeared to be simultaneously relying on level-dependent (i.e., related to sound
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energy) as well as level-invariant cues. Davidson et al. (2009a) corroborate the idea of
cue-combination by observing that “dependence upon both envelope and �ne structure
[...] is required to predict the detection results”.

Following a suggestion by Green et al. (1992), the envelope (or “modulation”) power
spectrum has been scrutinized regarding its involvement in narrow-band TiN detection:

Envelope frequency

P
o
w

er

 

 
N+S

N

�e average power spectrum of the
envelope of a narrow band masker (N)
with and without a pure tone signal
(S).

“Basically, we assume that the auditory system can compute the envelope of a narrow-
band stimulus, and that changes in the shape of the envelope power spectrum are used to
detect changes in the power spectrum of the original waveform.”

Adding a pure tone to a narrow-band noise masker characteristically modi�es the
typical triangular shape of the envelope spectrum (see graph on the side). Based on this
concept of envelope extraction, Dau et al. (1996a) designed a complex “quantitativemodel
of the ‘e�ective’ signal processing in the auditory system”. In this model, the envelope
was approximately computed through half-wave recti�cation and low-pass �ltering. �e
temporal activity pattern of the signal processed in such a way was then compared to
a stored template representing the signal to be detected. �e model was able to predict
thresholds for a range of auditory detection conditions, and Dau et al. (1996b) concluded
“that the present model is a successful approach to describing the detection process in the
human auditory system.” Later, the model was expanded with a modulation �lterbank
(Dau et al., 1997; Verhey et al., 1999).

Berg (2004) suggested that a physiologically more plausible way to extract envelope“Discharge cadence may be as viable
as tonotopic activity in providing a
mechanism for detecting a tone in
noise, but it may also contribute to
the discrimination of complex periodic
sounds.” (Berg, 2004)

information was to observe the output of a leaky integrator, i.e., the cadence of neural
discharge would serve as the decision variable. By comparing human detection thresholds
with computer simulations, he demonstrates that—at least in principle—such “a temporal
code can account for critical bands in Tone-in-Noise detection”.

However, one can not immediately conclude that models based on the envelope
spectrum completely explain auditory processing, even though they may be successful at
predicting psychophysical thresholds in TiN detection tasks. An observer model that is
supposed to capture the causal details of the observer’s decision mechanism should aim
at predicting behavior not merely in terms of thresholds averaged over a set of stimuli,
but on a “molecular” level—in the terminology of Green (1964):

“[T]he subject matter of molecular psychophysics must be the individual response of the
individual subject. [... A] trial-by-trial analysis of the observer’s response may provide a
critical and e�cient test of a hypothesis that is impossible on the molar level—impossible
either because there is no di�erence in prediction on that level or because the amount of
data required to select one hypothesis over another would be excessive.”

“Comparisons of the dependencies of
each model on envelope and �ne-
structure cues to those in the data
suggested that dependence upon both en-
velope and �ne structure, as well as an
interaction between them, is required to
predict the detection results.” (Davidson
et al., 2009a)

As regards trial-by-trial predictions, current models for TiN detection are less suc-
cessful. A�er testing the performance of a number of these models —including single
and multiple critical-band as well as �ne-structure and envelope-based detectors—in
predicting TiN detection data, Davidson et al. (2009a) concluded that even though these
models successfully predicted listeners’ thresholds, they “cannot explain diotic detection
patterns for reproducible noise maskers”, i.e., they were not able to explain the data on a
single trial level.2 Notwithstanding the poor overall performance, the study concluded2 Davidson et al. (2009a) did not test

models whose decision mechanism is
based on an envelope �lter bank such
as proposed by Dau et al. (1997). Such
models may have been able to explain
the data on a single-trial level, but so
far they have not been tested in this
regard.

that the “data were best predicted by an energy-based multiple-detector” while “complicated
temporal models [including an envelope-template model] [...] were weakly correlated with
subjects’ responses”.

In conclusion, despite decades of research in TiN detection, no �rm answer has been
given to the question which cues observers employ under narrow-band conditions. A
number of models have been established to predict response patterns, but none of these
can reliably predict the listeners’ behavior on the basis of individual stimuli (Davidson
et al., 2009a)—possibly because the choice of candidate features was too limited and did
not include the actual cues.



Chapter 4

Principal Research Methods

This chapter presents details on how the TiN stimuli were generated and preprocessed
both for the computer simulations and behavioral experiments described in chap-

ters 5 and 6. Furthermore, some implementational details concerning the psychophysical
experiments are discussed.

4.1 Stimuli

Tone frequency, noise masker bandwidth and length of the Tone-in-Noise stimuli were
chosen according to standard values in the literature (Ahumada and Lovell, 1971; Richards
and Nekrich, 1993; Evilsizer et al., 2002). �e masker stimulus consisted of a 100 Hz wide
band of noise centered at 500 Hz. In signal trials, a pure tone at 500 Hz was added to the
masker. At this frequency range, human observers should be able to access �ne structure
cues which may not be available at substantially higher frequencies (in the range of kHz)
due to the limited �ring rate of auditory nerve �bers (Rose et al., 1967). �e width of the
auditory �lters at 500 Hz center frequency is expected to be slightly narrower than the
noise bandwidth of 100 Hz, although estimates vary widely (Ahumada, 1967).

Instead of preparing Gaussian noise and a�erwards applying band-pass �lters, the
noise was generated as the sum of individual pure tone components of the desired
frequencies with Rayleigh-distributed amplitudes and uniformly distributed random
phases (Hartmann, 1998, chap. 23).1 For signal stimuli, a signal tone was added with 1

�e norm
√
a2 + b2 of two nor-

mally distributed quantities a and b is
Rayleigh-distributed. A random noise
signal can be represented as a sum of
independent and normally distributed
sine- and cosine-signals of di�erent
frequencies. �e amplitude of each
frequency component is computed as
the norm of the two orthogonal sig-
nals and consequently has a Rayleigh
distribution (Hartmann, 1998, App. I).

random phase. �e strength of the signal relative to the masker, or signal-to-noise ratio
(SNR), for TiN stimuli is usually measured as the unit-less ratio E/N0, signal energy E
(Power ⋅ Time) divided by noise spectrum power N0 (Power / Frequency). �e noise
level was �xed while the signal level was varied to achieve a wide range of SNRs covering
the entire range of psychometric performance (–6 to 18 dB for the simulations, and 7 to
15 dB for the psychophysical experiments). On each trial of the single-interval task, a
noise or signal-plus-noise stimulus could appear with equal likelihood.

All stimuli were 200 ms in length. Stimuli were windowed with comparatively long
50 ms cosine-squared ramps, in order to minimize the energy present in frequency
components outside the narrow noise-band (for details see Appendix D). Nevertheless,
the remaining steady-state portion of 100 ms had a length similar to earlier TiN detection
studies (Swets et al., 1962; Ahumada and Lovell, 1971; Richards and Nekrich, 1993). �e
stimulus magnitude during digital processing was adjusted to minimize the e�ects of
sound clipping, which is discussed in detail in Appendix C.

25
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4.2 General Aspects of Data Preprocessing

Generally, data preprocessing is regarded as a critical step when applying machine
learning algorithms to mine large sets of data. In particular, preprocessing is o�en
necessary in order to reduce the dimensionality of the input, as calculations may be
practically unfeasible due to time or memory constraints. �e raw time series data of the
auditory TiN stimuli consist of manymore dimensions than the actual number of degrees
of freedom of the signal, which is governed by the number of noise components. Ideally,
the preprocessing should scale down the �tting problem to the actual dimensionality.
Reducing the dimensionality not only makes the problem more manageable in terms of
computation time and memory requirements, but also reduces the risk of over-�tting.

In addition, the preprocessing needs to be adapted both to the space of mappings the
model provides and, in the context of a psychophysical study, the perceptual mechanisms
the observers are expected to rely on. �e mathematical function that maps stimulus
input to behavioral output usually covers a limited space of mappings. For example, a
linearmodel—such as used in the present study—can not reproduce a nonlinearmapping
from the input data to the output, unless the raw data are nonlinearly transformed. In
addition, dimensions that are very unlikely to be relevant for data �tting, e.g., sound
properties that are not accessible to the observer for physiological reasons such as phase
information of high frequency tones, should be eliminated.

�e preprocessing of stimuli may be considered the most decisive aspect of data anal-
ysis when attempting to explain and predict behavioral data from stimulus characteristics.
Not only does it critically e�ect the chances of successfully �tting a model, but also the
ability of meaningfully interpreting the �t—since the preprocessed stimulus properties
form the basis for explaining the decision mechanism of the �tted model. �e interpre-
tation of the resulting decision cues is substantially simpli�ed when a straightforward,
comprehensible and reproducible preprocessing technique is employed.

4.3 Stimulus Processing

Stimuli were preprocessed to extract three potentially relevant auditory features and
corresponding predictors as depicted in Fig. 4.1:

• Sound energy. �is feature is extracted by integrating (or summing, for a dis-
cretized signal) over the squared instantaneous amplitudes of the sound waveform
S(t):

E = ∫
T

t=0
S(t)2dt (4.1)

�is transformation represents a simple quadratic mapping.

• Power spectrum of the sound or �ne structure. During the simulations (chap-
ter 5), the spectrum of the waveform was extracted through a discrete Fourier
transformation. In principle, the Fourier transform is a linear mapping. However,
the extraction of the amplitude of each component and the squaring of these
is a nonlinear process. While analyzing the experimental data (chapter 6), the
spectrum of the �ne structure (extracted through a Hilbert transform) was em-
ployed, not the raw waveform. In this way, a complete separation between spectral
features and energy was achieved, because the �ne structure—by de�nition—is
independent of sound energy (see Eq. 3.1).

• Power spectrum of the envelope. �e extraction of the sound envelope via the
Hilbert transform represents a highly nonlinear mapping (see Eqs. 3.1–3.3). Subse-
quently, the envelope spectrum is extracted via Fourier power transform, another
nonlinear processing step.
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Figure 4.1: Stimulus preprocessing. Schema of the preprocessing steps that transform
the raw stimulus time series (top le�) into three sets of stimulus descriptors (marked
in bold) through Hilbert (HT) and Fourier (FT) transforms resulting in altogether 41
stimulus predictors. �ese predictors were used for analyzing the experimental data. For
the simulations, the sound waveform was directly Fourier transformed (without �rst
computing the �ne structure) to extract the sound power spectrum.
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�ese preprocessing steps were chosen both for their clear mathematical interpretabil-
ity as well as physiological plausibility—all of them should be available to a human listener
in similar form and have been proposed in earlier studies of the problem (see section 3.4).
�e total sound energy, which has been proposed as a cue in the majority of early TiN
studies, is approximately represented by overall neural activation in the auditory nerve
(Sachs, 1974). �e spectral properties of the sound, though not as �ne-grained as through
a Fourier transformation, should be partially accessible through the tuning properties
of multiple auditory nerve �bers centered close to the stimulus frequencies. Finally, the
envelope spectrum could be extracted by nerve cells in the inferior colliculus which are
sensitive to speci�c amplitude modulations of pure tones (e.g., see Snyder et al. (1995)
for data from cats). I also paid attention to choose features that are independent of
assumptions about the characteristics of hypothetical auditory critical bands. Otherwise,
one might end up with a dangerous case of circular reasoning. �ese bandwidths are
usually derived in TiN detection experiments under the assumption that observers rely
solely on energy. �is assumption, however, is one of the main open questions I am about
to investigate.

Both the waveform/�ne structure power spectrum and the envelope (or “modula-
tion”) power spectrum were extracted using standard functions for Fourier and Hilbert
transformations of the computing so�ware ( , hilbert in Matlab,�e Mathworks, Inc.,
2010). Each of the spectra was truncated to isolate those components that contained
stimulus energy. �e sound power spectrum was entirely de�ned with 21 components
ranging from 450-550 Hz with 5 Hz distance (the maximum spectral resolution available
from a stimulus of 200 ms length), all other frequencies do not contain any energy.
Similarly for the envelope power spectrum: 21 components ranging from 0-100 Hz with
5 Hz distance entirely de�ned the stimulus in this domain. �e 0 Hz component was
excluded being equivalent to sound energy, and the 100 Hz component as it contained
almost no energy. In total, the vector of predictors describing the stimulus then consisted
of 41 entries: energy (one entry), waveform/�ne structure power spectrum (21 entries)
and envelope power spectrum (19 entries). During model �tting, all predictors were
presented collectively independent of observer or condition.

In order to uncouple the scale of the model weights from mean and variance of
the associated predictors, the predictors were standardized, i.e., they were individually
rescaled to zero-mean and unit-variance across samples. More precisely, standardization
is performed across the training data set alone. �e test set is then scaled and shi�ed by
the same amount. In this way, preprocessing of the training and test stimuli is identical,
but strictly independent of the characteristics of the, a priori unknown, test set. Stan-
dardization is a common processing step in machine learning to prevent input data with
abnormal original values to bias the model weights and to improve numerical tractability
(Hastie et al., 2009, chap. 11.5.3). As a result, the weights of a linear model directly
correspond to the extent to which a predictor controls the model output based on the
stimulus data: Predictors with small associated weights have little in�uence, while those
with large weights govern the responses.

4.4 Correlations between Features

Interdependencies between model predictors generally pose a challenge during model
�tting and should be taken into account when estimating relative weights. A correlation
matrix for the current set of predictors is plotted in Fig. 4.2. Only the components
de�ning the sound spectrum do not exhibit any correlations with each other, since they
are independently sampled during stimulus generation. By contrast, most components
in the envelope spectrum display correlations among each other and with components
in the sound spectrum. In addition, sound energy is correlated to the sound power
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Figure 4.2: Correlation matrix for stimulus features. Pairwise correlations between
individual predictors for signal (E/N0 = 12dB, upper le� diagonal) and noise (lower
right diagonal) stimuli, values range linearly from –0.3 (black) to +0.7 (white).

spectrum.
For signal stimuli, particularly robust correlations appear between the total sound

energy and the amplitude of the signal frequency, and between frequency pairs in the
sound spectrum and corresponding beat frequencies in the envelope domain, as com-
binations of components in the sound spectrum add up to single components in the
envelope spectrum. �is re�ects the fact that the combination of pure tones results in a
beating sound which generates a single frequency component in the envelope domain.
Overall, pairwise correlations range from −0.3 to 0.7, with a majority clustering between
−0.1 - 0.3 for noise stimuli. For signal stimuli, the values depend on signal level. As a
typical example, for signal stimuli at 12 dB SNR they range between −0.05 - 0.2.

�e fact that the correlation is lower for signal than for noise stimuli may be counter-
intuitive. Essentially, the underlying reason is that the overall variance of some of the
predictors is much higher for signal than for noise stimuli. �erefore, even though
the overall covariance between features moderately increases for signal stimuli, the
correlation still decreases as it corresponds to the covariance divided by the individual
variances.

4.5 Details of the Behavioral Experiments

In the following, I brie�y discuss some of the choices that were made during the imple-
mentation of the human psychophysical experiments which are further described in
chapter 6.

�e �rst and probably most important decision concerned the question whether to
realize the TiN detection task as a two-interval forced-choice (2IFC) or a one-interval
YES/NO-paradigm. A 2IFC-implementation has several theoretical (e.g., observer are
expected to use a �xed decision criterion (Marill, 1956; Green and Swets, 1966)) and
practical advantages (according to Blackwell (1952) it generates the “best” threshold
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estimates, at least for highly trained observers). Based on the concept of the ideal observer
from signal detection theory, observers in a 2IFC task have long been assumed to follow
the ideal “di�erence strategy”: �e single decision variable is computed as the di�erence
between a perceptual measure that characterizes each of the two stimuli (Green and
Swets, 1966). �orough empirical tests of this assumption have shown, however, that an
average naïve observer does not appear to employ such a strategy (Jäkel and Wichmann,
2006; Yeshurun et al., 2008), unlike highly trained ones as in the study by Blackwell“We �nd little evidence supporting the

claims that 2-IFC is unbiased [...] and
we also reject the two claims associ-
ated with the Di�erence Model [...].”
(Yeshurun et al., 2008)

(1952). Instead of weighing both stimuli equally strongly, as in the di�erence strategy,
observers may, for example, attempt to make a decision already a�er the �rst interval
(which may appear more salient) or only based on the second interval (which is closer
to the response window). Or they may weigh each interval according to the respective
perceptual evidence. From the response data alone, one can hardly judge which decision
rule they followed.

To summarize, in a 2IFC paradigm there exists a whole range of possible decision
strategies. All of them need to be considered when attempting to capture the listener’s
decisions, which generally requires a substantially more complex behavioral model com-
pared to the simple linear mechanism that was assumed here (Eq. 2.1). In consequence, I
decided to employ a YES/NO-paradigm, where listeners are presented with a single stim-
ulus before giving a response and which is quite common for this kind of task (Isabelle
and Colburn, 1991; Evilsizer et al., 2002; Davidson et al., 2006, 2009b). Essentially then,
there is only one simple strategy a listener can follow—pressing a button depending on
the stimulus currently presented—which corresponds exactly to the way the observer
model behaves.

�e second critical decision is related to experimental feedback. �e feedback that
observers are presented during a psychophysical experiment generally has a critical
in�uence on their behavior (Blackwell, 1952; Richards, 2002). Providing feedback is
an important tool at least for two purposes: First, with feedback observers can learn a
task implicitly, i.e., without direct instructions. In this way, it may be easier for listeners
to �nd an e�cient strategy while remaining completely naïve as to the purpose of the
experiment (Pedersen and Ellermeier, 2008). Second, during prolonged monotonous
tasks, feedback may serve as a motivational factor and increase attention. Unfortunately,
providing feedback also has a signi�cant downside: In particular at low signal levels,
when even an optimal observer is only slightly better than chance, immediate feedback
may prevent observers from developing a consistent decision strategy. As they regularly
receive negative feedback, they continuously try and adjust their behavior to improve
their “score”.

In the psychophysical experiments presented in chapter 6, a hybrid strategy was
employed as a compromise between the bene�ts and downsides of feedback. During an
initial training phase spanning the �rst few sessions, immediate feedback was presented
during all trials of an experiment. Later on, when listeners had grasped the general idea
of the task and stabilized in performance, immediate trial-by-trial feedback was shown
only during the beginning of every block. In this way, a�er taking a short break between
blocks, listeners were able to readjust to the task, which was particularly important when
the signal-to-noise ratio had changed. In addition, as a motivational incentive at the
end of each block, observers were informed about their current percent-correct and
percent-valid scores (averaged over the preceding block). During the subsequent data
analysis, all trials with immediate visual feedback were discarded, as were the initial
sessions before the observers stabilized in psychophysical performance.

Another important choice concerned the range of signal-to-noise ratios (SNRs) that
observers were presented with. I chose to perform the experiment at four di�erent SNR
conditions, to be able to discover potential di�erences in observer decision strategy. For
theoretical and practical reasons, only intermediate ranges of observer performance are
useful for the analysis of observer strategy. At very high SNRs all observers reach the top
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plateau of the psychometric function and thus give identical (namely correct) responses.
Consequently, no information about observer strategy can be extracted—the decision
already being known beforehand. At very low SNRs, observers mostly guess and merely
reach chance performance. In principle this range provides the most information about
observer strategy because individual di�erences in response strategy are most prominent.
In psychophysical practice, however, low SNRs are to be avoided, as human observers are
not able to learn a useful strategy and are quickly frustrated by the lack of success. �us,
during the initial training sessions, the SNR for all observers was adjusted in order for
them to reach about 60/70/80/90%-correct scores in each of four di�erent SNR levels.
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Chapter 5

Computer Simulations

The theoretical analysis presented in this chapter aims at quantitatively assessing how
speci�c and reliable the proposed cue-identi�cation procedure works. �erefore,

simulated behavioral data were generated from “arti�cial observers” for which the true
perceptual cues and decision rules can be independently veri�ed. �e observers perform
the Tone-in-Noise detection (TiN) task presented in chapter 3 according to known
preprogrammed decision strategies. Representing a classic auditory task, TiN detection,
was considered as a speci�c test case to evaluate the capabilities of the proposed cue
identi�cation method. In addition, the present simulations serve as a preparation for the
analysis of “real” experimental data which is presented in chapter 6.

In the following, I demonstrate that by employing a sparse regression procedure
perceptual cues can be identi�ed even among linearly dependent stimulus features. At
the same time, observer models were constructed that reliably predicted response behav-
ior. In particular a�er introducing observer noise, estimates of the model parameters
were robust while the required amount of data remained in a range that can be col-
lected during moderately expensive psychophysical experiments. �e advantages of the
proposed method are corroborated by directly comparing the results with two earlier
(non-regularized) techniques for identifying perceptual cues—logistic regression and
reverse correlation—that were discussed in chapter 2.

5.1 Methods

In this study, simulated behavioral data from a Tone-in-Noise detection task was analyzed
using di�erent techniques for �tting a linear observer model. �e procedure followed
the subsequent steps (numbers referring to Fig. 5.1):

1. Tone-in-Noise sound samples were generated (section 4.1) and preprocessed to
extract a set of stimulus features (section 4.2).

2. Observer responses were computed according to one of three strategies in a
YES/NO-paradigm: detection of Energy, Spectrum or Envelope cues (section 5.1.1).

3. �e �tting procedure was applied to sound stimuli and corresponding observer
responses for a subset of the data, the training set (section 5.1.2). For regularized
procedures, the ideal regularization parameter λ was determined during a previous
parameter optimization (section 5.1.4).

4. As a measure for the quality of the �tted model, the agreement between observer
and model was estimated for the remaining data, the test set (section 5.1.3).

33



34 CHAPTER 5. COMPUTER SIMULATIONS

Test

Set

Data

Stimuli

Observer 

Reponses

Stimulus 

Features

Model-

Observer 

Agreement

Training

Set

Observer 

Model

Data

Pre-

Processing

1

"Artificial"

Observer

2

Model 

Training

3

Model 

Test

4

Data Generation

Data Analysis

Observer 

Cues

Feature 

Weight

Extraction

5

Figure 5.1: Diagram of the simulation sequence, the circled numbers refer to the descrip-
tion in section 5.1.

5. Predictor weights were extracted from the model to estimate the cues underlying
the observer responses. �e estimated observer cues were then compared to the
true decision strategy (section 5.1.5).

All simulations were performed on a desktop computer running a custom-written script
under standard scienti�c computing so�ware.

5.1.1 Response Generation with Arti�cial Observers

In order to test the utility and e�ciency of the proposedmethod, three di�erent observers
were simulated relying on the following strategies:

• �e Energy Detector forms the decision variable from total sound energy. �is
observer exploits the fact that signal stimuli have a higher energy on average (Green
and Swets, 1966).

• �e Spectral Shape Detector (top le� in Fig. 5.2) uses three adjacent Gammatone
�lters (Patterson et al., 1991), with parameters chosen according to standard multi-
ple detector models (Gilkey and Robinson, 1986): one centered on the signal (500
HZ) and two sideband �lters (450 and 550 Hz). Center and sideband �lter outputs
are subtracted to generate a 1D-decision variable. �is observer can be considered
a di�erential analyzer of the power spectrum. It ignores overall changes in sound
energy (or loudness), and instead relies on relative changes in power between
di�erent spectral bands. Exploiting the peak in the sound spectrum resulting from
the added signal tone, it is in fact barely correlated with the energy observer for
noise stimuli.

• �e Envelope Shape (or Modulation) Detector (bottom le� in Fig. 5.2) relies on
the power at the output of a low-frequency (25 Hz) and a high-frequency (75 Hz)
2nd-order bandpass-�lter (50 Hz bandwidth) operating on the Hilbert envelope
(Appendix E o�ers details on the �ltering algorithm). �is detection mechanism
was inspired by envelope-frequency models (Dau et al., 1996a) that are based on
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Figure 5.2: “Arti�cial” observers for Tone-in-Noise detection. Le�: Observer strategy
and underlying signal �lters in the frequency (top) and envelope (bottom) domain. �e
average spectra in each domain are shown as dashed lines for signal (black) and noise
(gray) stimuli. Right: Psychometric functions for the three simulated observers (top to
bottom). Each plot displays results for deterministic observers (black, no lapse or noise)
and probabilistic observers at high noise levels (gray, 10% lapses, 200% decision noise).
Because of the long windowing, the average spectra in the envelope domain (bottom
le�) deviate slightly from standard envelope spectra of Tone-in-Noise stimuli (Green
et al., 1992).
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a decision rule �rst proposed by Green et al. (1992). �e two envelope �lters are
centered at the positions where the spectra of noise and signal stimuli diverge most.
�eir outputs are subtracted resulting in a 1D-decision variable. �is observer
mainly depends on an increase of low frequency envelope components resulting
from an interaction (also called “beats”) of signal and noise components.

During a trial, the simulated observers are presented with a single sound stimulus
and respond in a YES/NO-fashion. An ideal observer applies a probability ratio criterion.
Instead, a threshold criterion was applied, which generates exactly the same responses for
most but the rare extreme values of the decision variable—assuming normal distributions
with similar variance for the decision variable (Green and Swets, 1966). �e decision
threshold was set to the median value of the decision variable of all presented stimuli
in individual conditions so that observers were unbiased.1 With a value of the decision1 More precisely, for the observers to

be truly unbiased, the median was
calculated from an equal amount of
signal and noise stimuli.

variable above this threshold, observers responded “Yes” (signal present), otherwise “No”
(signal not present). �ese decision mechanisms give rise to psychometric functions as
shown in the right column of Fig. 5.2. Best performance is achieved by the spectral shape
detector, while the envelope shape spectrum detector shows the worst performance.

To test the robustness of the procedure under more realistic conditions, simulations
were also performedwith observers exhibiting two kinds of probabilistic behavior: lapsing
and decision noise. �e lapse rate determines the percentage of (randomly distributed)
trials, on which observers give arbitrary responses independent of the stimulus. To
simulate decision noise a Gaussian random number was added to the decision variable
before the threshold-based decision. Following the concepts of signal detection theory
(Green and Swets, 1966), the amount of noise was measured relative to the standard
deviation of the noise distribution, i.e., the distribution of the decision variable for noise
stimuli. A decision noise value of 100% means that the width of the noise distribution
has doubled. �e same amount of noise was added to the signal+noise distribution.
Probabilistic observers were simulated with decision noise of 100% (“medium noise
level”) and 200% (“high noise level”). �e respective lapse rates were set to 5% and 10%
broadly covering experimentally observed values of around 5% (Wichmann and Hill,
2001).

In order to test whether complex cue-mixing strategies can also be identi�ed, condi-
tions were included where observers switched between di�erent decision mechanisms
across trials. For example, such an observer would rely on the spectral cue in 25% of the
trials and on the envelope cue in the remaining 75%, corresponding to a mixing propor-
tion of 1:3. Altogether, a set of nine mixed-cue strategies was implemented each of which
combined two of the three proposed observer cues (Energy/Spectrum, Energy/Envelope
or Spectrum/Envelope) to a proportion of 3:1, 1:1 or 1:3.

In conclusion, the simulated observers relied on energy and spectral �lters in the
frequency as well as envelope domain. A spectral �lter can be described as a weighted
sum of the squared Fourier amplitudes of the sound. �us, a linear model provided
with the sound energy, as well as the squared Fourier components of the sound and the
envelope is capable of reproducing the three observer strategies. �e corresponding
preprocessing steps were performed accordingly as detailed in section 4.2.

5.1.2 Model Fitting

In contrast to earlier studies (Gilkey and Robinson, 1986; Richards and Tang, 2006;
Pedersen and Ellermeier, 2008), a regularized version of multiple logistic regression was
applied in order to pro�t from the sparse regularization procedure described in section 2.3.
�e toolbox LibLinear (Fan et al., 2008) served as an implementation for regularized
logistic regression, which o�ers both sparse (L1-) and non-sparse (L2-) regularization.
Model �tting as well as model predictions are both based on binary response data by
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default.
Two classical procedures for �tting linear models were included, reverse correlation

and (non-regularized) multiple logistic regression, as a baseline comparison to evaluate
the advantage of the proposed method to cope with probabilistic data and dependencies
between predictors. �e logistic regression was implemented with glm�t in Matlab
(�e Mathworks, Inc., 2010). Reverse correlation analysis was approached similar to
“classi�cation images”: First, the average of all predictors in each response class was
computed. To estimate the correlation coe�cients between predictors and responses, the
di�erence between the response-averaged predictors was then calculated. �e coe�cients
are directly proportional to the relative weights.2 2 For binary response data from an

equal number of signal and noise tri-
als, reverse correlation (point-biserial
correlation between stimuli and re-
sponses) and the classi�cation image
procedure (stimulus averages condi-
tioned on responses) are mathemati-
cally identical (Ahumada, 2002).

In all cases, observer responses are predicted following a linear-binary rule (see
Eq. 2.1):�e predictors are linearly weighted according to the extractedmodel parameters
and then combined to generate a “signal” or “no-signal” response according to an overall
positive or negative sum, respectively.3 As described in section 2.3, model “training”

3 We ignored the bias term since it
does not in�uence extracted model
weights and, for unbiased observers
and zero-mean predictors, has little
e�ect on the resulting predictions.

(�tting the model to the data) with all procedures was performed on a training subset
of the data, while model “testing” (estimating agreement between data and model) was
done on the remaining chunk of data.

5.1.3 Quanti�cation of Model Agreement

A�er the linear observer model was trained to the data, it was veri�ed whether it reliably
captured observer behavior. �erefore, the agreement between observer and model was
quanti�ed in terms of the proportion of trials (in a 400-sample test set) where the model
accurately predicted the observer’s response. Only when predicted responses agree well
with the observer, the model and observer are expected to be functionally equivalent and
model weights to have a meaningful interpretation. Failure in training the model may
have several reasons: an insu�cient amount of data, too weak or too strong regularization
or an inappropriate stimulus representation which does not allow a prediction of the
responses with a linear decision rule. �ese obstacles were avoided by �rst optimizing the
parameters controlling the amount of data and regularization (see the following section),
and choosing predictors which allow a linear modeling of responses.

For noisy and consequently unreliable observers, the precision of predicting single
trial responses is necessarily limited. Observer reliability was quanti�ed in terms of (self-)
consistency: the proportion of trials that observers give the same response on repeated
presentations of identical stimuli (Green, 1964). For observer consistency measured
in a “double-pass” experiment, i.e., in presenting two passes of the same stimulus set,
Neri and Levi (2006) provided an upper and lower bound for the single-trial prediction
accuracy achieved by the best-possible model. �e agreement of the observer models
was compared against this theoretical limit by directly estimating self-consistency of the
“arti�cial observers” in each experimental condition by computing responses twice for
the same set of stimuli (1000 samples).

5.1.4 Parameter Optimization

Before running the full set of simulations, an estimate of the amount of data necessary
for reliable and stable solutions was determined. For a limited set of conditions, training
data sets with di�erent numbers of trials were analyzed within a range that was both
appropriate for the algorithm and computationally feasible (25–6000 samples in log-
arithmic steps). An independently generated test data set of �xed size (400 samples)
was used to estimate agreement between the trained model and the data, as shown in
Fig. 5.3. Around 1000 to 2000 training data samples allowed the �tted model to reliably
achieve more than 95% test agreement for deterministic observers. To be con�dent to
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Figure 5.3: Grid search for optimizing simulation parameters. Agreement of model pre-
dictions with observer responses is indicated as the gray level, depending on the number
of training data samples (x-axis) and regularization parameter λ (y-axis). Values range
linearly from 50% (black) to 100% (white) and are indicated as numbers on the surface.
Data are shown for an L1-logistic regression �t to data obtained with a deterministic
Envelope observer at 8 dB signal level.

operate in a safe regime for probabilistic observers too, 4000 training samples were used
in subsequent analyses while retaining the number of 400 test samples.

When �tting the observer model with regularized procedures, the value of the reg-
ularization parameter λ had to be optimized to concurrently maximize prediction per-
formance and sparseness of the weights. �erefore, in preliminary tests, the outcome
of the �tting algorithm was analyzed with di�erent values of λ. To choose the best λ,
an automated procedure was followed: Observer-model agreement was plotted against
the regularization parameter λ. �is usually resulted in a high plateau for small λ corre-
sponding to a moderate sparseness constraints. Beyond a critical value for λ, agreement
fell o� abruptly where regularization was too strong pushing too many weights to zero.
A plot showing the relationship between number of data points, regularization and the
resulting model agreement is shown in Fig. 5.3. As the ideal λ, a value was chosen that
was both on the plateau, where the algorithm provided good predictions, but also close
to the fall-o�, favoring sparse weights. �is is illustrated with an example in Fig. 5.6.
�is procedure was repeated for each condition (signal-to-noise ratio/SNR, observer
strategy and observer noise/lapse) to determine the corresponding optimal λ that was
used during the subsequent �nal model �t.

5.1.5 Analysis of Model Weights

�e output of the observer model is computed from a weighted linear sum of model
predictors. �e weights w i obtained through model �tting are represented as a vector
w. �is weight vector can be used to generate predictions from new data and to analyze
the underlying decision mechanism: �e weight the model applies to each predictor is a
direct measure of the in�uence of the associated stimulus feature on the model output.

To determine the main stimulus cue that governs model predictions, the relative
weights were computed that are associated with the three sets of predictors: energy,
spectrum and envelope. �ese set weights Ws indicate on which of those three predictor
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sets a particular observer strategy is based. �e full weight vector had as many weights as
there were predictors (41 entries, see section 4.2). By combining the weights belonging
to each set into a single number, this vector was projected from 41 down to three dimen-
sions, where each new dimension represented the weight on the three sets of predictors
respectively. Mathematically, this corresponds to separately computing the vector norm
(or RMS value) of the weights associated with each set. As a �nal step, these (positive)
set weights were scaled to sum to one in order to represent the relative importance of
each predictor set:

Ws =

√∑i∈s w2
i

∑Ws (5.1)

with s designating each of the three predictor sets. For example, the set weight for the
spectrum is de�ned as the vector norm of the weights associated with the sound spectrum
predictors, divided by the sum of all set weights. Predictor sets that receive a signi�cant
nonzero weight are considered to be critical for explaining behavior. �e metric of
these set weights actually corresponds to the proportion of trials an observer relies on
a particular cue, as con�rmed in abstract numerical simulations. If the investigated
predictors are statistically independent and if su�cient data are given, these proportions
are precisely reproduced.

To investigate model strategies in more detail, the complete ensemble of model
parameters was examined. �e weights associated with the sound spectrum and envelope
spectrum predictors can be interpreted as spectral �lters and directly compared to the
�lters of the Spectrum and Envelope observers. However, as derived in Appendix F, they
�rst need to be rescaled according to the equation f i = w i/σi , with the reconstructed
observer �lters f i , the model weights w i and the standard deviation of the original
predictors σi . Finally, an appropriate comparison of �lters also needs to take into account
the weight on the energy feature, which is equivalent to a constant shi� of all spectrum
weights. �us, to provide a fair model comparison, the extracted power spectrum �lter
was adjusted to re�ect the combination of both the energy and the spectrum weights.

5.2 Results

Results reported here refer to three principal model �tting procedures: L1-regularized lo-
gistic regression, “standard” (non-regularized) logistic regression and reverse correlation.
In addition, some results for an L2-regularized logistic regression are provided. Simu-
lations were performed for all combinations of signal-to-noise ratios (SNR), observers
(including deterministic and probabilistic decision strategies) as well as �tting proce-
dures. Each condition was repeated six times with identical parameters. �e con�dence
intervals in the present study were estimated using bootstrap sampling: �e simulation
procedure was repeated several times with di�erent sets of randomly generated stimuli.
�e error bars in Figs. 5.4–5.9 display the mean and standard deviation of the results
across repetitions.

5.2.1 Model Agreement

For deterministic (“no noise”) observers, both logistic regression models mimic observer
behavior across the entire range of tested SNRs. As shown on the le� of Fig. 5.4, a
model-observer agreement around 98% was achieved across all SNRs. �us, the model
predictions were identical to the observer’s response in almost all trials. For model
estimates from reverse correlation the predictive quality depends on the tested SNR,
dropping to 85% agreement for the lowest levels. In conclusion, for deterministic ob-
servers, both logistic regression algorithms outperform reverse correlation at low SNRs.
For noisy observers, percent agreement drops to 60–70% for all training procedures and
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Figure 5.4: Model-observer agreement of L1-logistic regression (top), non-regularized
(GLM) logistic regression (middle) and reverse correlation (bottom) models with di�er-
ent observers (di�erent symbols; gray level designates deterministic and probabilistic
decision rules). Le�: Agreement as a function of SNR (data for probabilistic observers at
high noise levels). Right: Agreement as a function of observer self-consistency. Data
for probabilistic observers include both medium and high noise levels. �e optimal
agreement given at a certain level of observer consistency is represented as a dashed line
(following Neri and Levi (2006)).
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Figure 5.5: Variations of the regularization parameter λ depending on observer (symbol,
see legend), noise condition (black—deterministic, gray—noisy), and signal level (x-axis).

is highly dependent on the SNR—because decision noise is more e�ective in interfering
with the observer’s strategy at low SNRs.

Nevertheless, the models perform almost ideally within the theoretical limits dictated
by observer reliability, as demonstrated on the right of Fig. 5.4. Across the entire range of
tested SNRs and observer noise levels as well as corresponding observer self-consistencies
(ranging from 50%–100%), the prediction of single trials with the proposed methods
attains close-to-optimal values—it lay less than 5% below the theoretical limit determined
by observer reliability when predicting probabilistic observer responses.

5.2.2 Regularization Parameter λ

�e absolute values of the parameter λ have no clear interpretation, but di�erences across
conditions provide valuable insights indeed. Figure 5.5 shows both the average and the
variation of λ across conditions for the three observers. Between di�erent signal levels,
there are no systematic changes. For the energy observer, the regularization parameter
was larger than for the other observers across all conditions. Generally, stronger L1-
regularization results in sparser weights. �e energy observer is the “sparsest” observer, it
can be modeled with only a single predictor. �erefore, a model �t to the corresponding
data pro�ts most from increased regularization.

For probabilistic observers, the regularization parameter was much larger (2 orders
of magnitude) than for deterministic observers. When �tting a model to noisy data, there
is an increased risk of “over-�tting”, i.e., �tting irrelevant noise structure in the training
data set. Regularization is applied to prevent over-�tting. Accordingly: �e noisier the
data, the stronger the regularization that has to be applied to prevent over-�tting and
achieve good test data predictions.
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Figure 5.6: Regularization in practice. Data sample from a single �tting procedure, for
an energy observer at SNR=-6 dB under deterministic (le�) and noisy (right) conditions.
Top: Model-observer agreement on a test set depending on the strength of regularization.
�e open circles indicate the position of the maximum model agreement. Bottom:

Relative weights on the feature sets (symbols, see legend) at di�erent regularization levels.
In particular for the noisy data set, strong regularization increases model agreement. At
the same time, the stimulus energy is being identi�ed as the critical cue.

While for most conditions, λ varies very little across repetitions, in rare cases there
are some outliers that increase the variance of λ. �ese outliers are the result of �at
regularization/model agreement-pro�les around the maximum agreement, i.e., model
agreement changes very little even with strong variations in λ. However, even though λ
varies strongly across conditions, the weights (just as the model agreement) change very
little and the resulting models are stable nonetheless. Figure 5.6 contains a sample plot
(including a deterministic and noisy energy observer at -6 dB) to illustrate this point.

5.2.3 Set Weights

�e set weights represent a measure for the relative importance that the model attributes
to the three sets of predictors associated with energy, sound spectrum, and envelope
spectrum. In the following, they are directly compared with the true observer cues.

As shown on the le� of Fig. 5.7, the L1-logistic regression procedure almost perfectly
extracts the correct cues for all observers: When training with data from the Energy
observer, a set weight close to unity is attributed to energy, while spectral and envelope
predictors are ignored. Similarly, for the Spectrum and Envelope observers, the set
weights are almost entirely placed on the sound or envelope predictors, respectively.
Weights on predictors corresponding to non-critical features are e�ciently suppressed,
as expected given the sparseness property (section 2.3.1). Results are stable across a wide
range of SNRs, except for the very highest observer performance levels.

As expected given the interdependence of predictors (section 4.2), the results for
reverse correlation on the right of Fig. 5.7 show little variation among di�erent observers
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Figure 5.7: Set weights for L1-regularized logistic regression (le�) and reverse correlation
models (right), for deterministic Energy, Spectrum and Envelope observers (top to
bottom). �e markers represent relative set weights on the energy (E), spectrum (S) and
envelope (V) predictor sets (di�erent symbols, see legend) across SNRs.
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Figure 5.8: Same as Fig. 5.7, results for non-regularized (le�) and L2-regularized (right)
logistic regression �ts.
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Figure 5.9: Same as Fig. 5.7, results for probabilistic observers at high noise levels.

in terms of set weights: For all observers, spectrum and envelope predictors receive a
signi�cant proportion of set weights around 0.3-0.5, usually with a smaller part attributed
to energy. When dropping the regularization constraint, multiple logistic regression is
still able to reconstruct di�erences among observer cues, but non-critical features are
less e�ciently suppressed, in particular for the Spectrum observer, as seen on the le� of
Fig. 5.8. In addition, extracted weights become less stable across repetitions resulting in
larger error bars.

As discussed in section 2.3, di�erent regularization paradigms correspond to diverg-
ing constraints on the model which in turn determine the resulting weights. While
an L1-regularization favors a solution with few nonzero weights, an L2-regularization
generally results in weights distributed across many predictors. Indeed, L2-regularized
logistic regression (Fig. 5.8, right) reconstructs the Energy observer with most of the
weights attributed to the sound spectrum in contrast to the L1-logistic regression which
almost exclusively relies on the single energy predictor (compare top panels in Figs. 5.7
and 5.8).

In terms of predictive accuracy and stability, there is little reason to prefer either
the L1- or L2-regularized algorithm. However, this study was based with one central
assumption: Given multiple equally performing models, the one that uses the least
number of predictors is preferred. Consequently, the sparse L1-norm regularization
should be strongly favored.

Next, the stability of the procedures was tested with data from probabilistic observers.
As expected, prediction performance declines (Fig. 5.4) and extracted set weights gen-
erally become more noisy as observers become less reliable (Fig. 5.9). However, the
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extraction of critical cues with L1-logistic regression remains robust. �e Energy ob-
server is precisely identi�ed (a set weight on the energy predictor reaching unity), while
for the Spectrum and Envelope observer the critical cues consistently achieve a set weight
of 0.7-0.9 on the correct cue.

In the same conditions, the non-regularized logistic regression algorithm generates
strongly �uctuating weights which do not re�ect the critical observer cues. For all
observers, a weight of only 0.5 or less is attributed to the critical predictor set. Results for
reverse correlation are stable and mostly una�ected by observer noise, but exhibit the
same shortcomings as for the deterministic case. In conclusion, L1-regularized logistic
regression outperforms both standard logistic regression and reverse correlation in terms
of robustness and reliability of observer reconstruction under conditions with high noise
and lapse levels.

5.2.4 Model Filters

As a next step, the extracted spectral and envelope �lters were compared with the strate-
gies underlying the Spectrum and Envelope observers. Again, the e�ciency of the logistic
regression models in comparison to the reverse correlation procedure was evident: Both
L1- and standard logistic regression algorithms precisely reconstructed the �lter shapes
employed by the Spectrum and Envelope observers, except for the highest SNR (Fig. 5.10).
�e weights from the reverse correlation �t strongly depended on signal level (Fig. 5.11).
For low levels of SNR, they were most similar to the underlying observer �lters. For
higher SNRs, however, �lters degenerated both in the sound spectrum and envelope
domain and diverged from the actual observer strategy.

For independent predictors, reverse correlation is expected to extract the true weights.
Because predictors characterizing the sound spectrum are mostly independent, the
corresponding �lters are well reconstructed. Only for high SNRs, spectrum predictors
that refer to the signal frequency and its sidebands become correlated due to spectral
splatter. Consequently, the extracted spectrum �lters show distortions in this region.
In comparison, envelope �lters are less well reconstructed overall even for low SNRs,
re�ecting the fact that envelope predictors are generally correlated for TiN stimuli (see
section 4.2). Taken together with the results for the set weights, the extracted cues barely
represent the underlying observer strategy, even though reverse correlation reliably
predicted observer behavior (Fig. 5.4).

Even for highly probabilistic observers (10% lapse, 200% decision noise), both non-
regularized and L1-regularized logistic regression robustly reconstructed the shape of
the spectral �lters underlying the decision mechanism as demonstrated in Fig. 5.12.
Variability is increasing, as was expected for more noisy data. Only for the Spectrum
observer at very high SNRs the extracted �lters degenerate. At these conditions, however,
none of the �tting procedures reliably extracts information about the observer strategy,
as already observed in Fig. 5.9. Results for the reverse correlation procedure are almost
completely unchanged for noisy data, and still depend on SNR.

5.2.5 Comparison across Conditions

In order to evaluate the results across all SNRs, observers and noise conditions, collapsed
data in terms of estimation error and variability for both set weights and extracted
�lters are displayed in Fig. 5.13. �e set weight error corresponds to the fraction of
weights erroneously attributed to predictors corresponding to non-critical features. For
example, when a set weight of 0.8 is attributed to energy for the Energy observer, the
error amounts to 1 − 0.8 = 0.2. Set weight variability is de�ned as the average standard
error of the estimates in each condition across repetition (error bars in Fig. 5.7, averaged
across the three set weights for each SNR). In almost all situations, L1-logistic regression
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Figure 5.10: Observer �lters as extracted by L1-logistic regression (top) and standard
logistic regression (bottom). �e extracted �lters for the Spectrum observer (le�) and
Envelope observer (right) are displayed for di�erent SNRs (gray level, see legend). �e
dashed gray line represents the true underlying observer �lter. �e narrow graph below
each plot displays the deviation of the extracted �lters from the true �lter shape.
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Figure 5.11: Same as Fig. 5.10 for reverse correlation.

results exhibit little error and variability. Only at high psychometric performance levels,
observer identi�cation fails. In contrast, standard logistic regression leads to increased
error and variability in the majority of conditions. Reverse correlation results are stable,
but consistently display large set weight errors (around 50% or more).

As an overview over the quality of the extracted �lters, �lter error and variability
were computed. Error was de�ned as the RMS error of the �lter amplitudes compared
between the true observer strategy and the estimated model �lter. For an indi�erent
model �lter (constant at zero), the error was scaled to unity. Variability designates the
average standard error of the �lter amplitudes across repetitions of the simulations.

In terms of extracting the true observer �lter shapes, non-regularized logistic regres-
sion has a small advantage over the L1-regularized method (average �lter RMS error for
standard logistic regression E f = 0.20, for L1-logistic regression E f = 0.23).

4
�us, the4

�ese and the following values were
determined across all data points
in Fig. 5.13, except for those where
psychometric performance exceeded
95% to exclude situations with strongly
degenerate model �ts.

introduction of the sparseness constraint generally leads to slightly distorted �lters. �is
e�ect is small, however, compared to the overall range of the �lter errors (E f ≈ 0...1).
While reverse correlation is generally able to extract the shape of the spectral �lters for
the Spectrum observer (E f = 0.23), it fails with the envelope �lter (E f = 0.41), as already
seen in Fig. 5.11. In terms of �lter variability, the L1-logistic regression o�ers a small
improvement (average �lter variability Vf = 0.25) against standard logistic regression

(Vf = 0.28), i.e., results are slightly more stable against random �uctuations in the data.
In terms of �lter variability, reverse correlation seems to operate even better than the
other procedures (Vf = 0.13). In practice, however, this does not provide a genuine
advantage, because �lter error was substantially larger, in particular for the Envelope
observer.

5.2.6 Observers with Mixed Cues

Additional analyses were carried out for data generated from strategies that mix dif-
ferent cues. �e goal was to investigate whether individual cues were still identi�ed
and whether the set weights provide a quantitative measure of the mixing proportions.
�e data were analyzed in exactly the same way as for the single-cue observers. In the
majority of conditions, the variations in decision strategy are well re�ected in the set
weights, as displayed in Fig. 5.14. In particular for the observers with Energy/Envelope
and Spectrum/Envelope mixing strategies, the weights agree well with the true mixing
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Figure 5.12: Same as Fig. 5.10 for probabilistic observers at high noise levels.
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Figure 5.13: Comparison of modeling procedures across conditions. Di�erent symbols
correspond to observers (see legend), gray level denotes deterministic (black) and proba-
bilistic observers (gray, for both medium and high noise levels), marker size represents
observer performance with the smallest symbols indicating performance close to 100%-
correct. Le�: Errors and variability of set weights across conditions (compare with
Figs. 5.7, 5.8 and 5.9). Right: RMS error and variability of extracted �lters (compare with
Figs. 5.10, 5.11 and 5.12). Several outliers are marked with arrows, the values given on top
indicate their true position on the x-axis.
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Figure 5.14: Modeling results for observers that mix di�erent decision strategies across
trials. Le�: Set weights for observers that mix Energy/Spectrum (E/G, top), En-
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tions as indicated on the x-axis. �e connected white symbols correspond to the correct
solution, the true mixing proportions. Right: Spectrum and envelope �lters extracted for
observers mixing Spectrum and Envelope strategies at di�erent proportions (see legend).
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Figure 5.15: Set weights for mixed observers (top to bottom: Energy-Spectrum, Energy-
Envelope, Spectrum-E nvelope) for classical model �tting procedures (Le�: standard
logistic regression, Right: reverse correlation). Di�erent symbols indicate the relative
weight on individual predictor sets (energy, spectrum, envelope). �e connected open
symbols represent the true proportion.
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proportions. �e underlying �lters of the mixed strategies are accurately reconstructed
corresponding to the intermixed cues for Spectrum/Envelope observers. Filter estimates
for mixed-strategy observers are not as reliable as in the single-cue case, since, e�ectively,
fewer trials are available to infer the individual cues. For comparison, Fig. 5.15 shows
the results for mixed observers with classical model �tting procedures. Non-regularized
logistic regression failed in conditions that include the energy observer cue with set
weights deviating up to 0.5 from the true mixing proportion, while reverse correlation
failed under all conditions, designating signi�cant weights around 0.25-0.35 to predictors
that were not relevant as observer cues.

5.3 Discussion

Taken together, the present results demonstrate that the L1-regularized multiple logistic
regression procedure reliably reproduced the prede�ned decision strategies of di�erent
“arti�cial observers” performing a TiN detection task, in contrast to a non-regularized
multiple logistic regression and a reverse correlation procedure.

�e primary advantage of using an L1-regularizer is the ability to explicitly distin-
guish the critical observer cues even under challenging conditions with covarying model
predictors and noisy observers. Results for L1-logistic regression are close to the ideal
solution and stable across a wide range of SNRs and corresponding psychometric perfor-
mance levels as shown in Figs. 5.7 and 5.10. For deterministic decision strategies, observer
identi�cation and reconstruction was very good, i.e., critical cues and employed �lters
are con�dently reproduced by the model, as long as psychometric performance does
not exceed 95%. In contrast to non-regularized procedures, correlated but non-critical
features are e�ciently suppressed (Fig. 5.7).

�e application of regularization prevents over-�tting and gives rise to a robust
estimation of model parameters. �is is particularly obvious when comparing the data
with results from non-regularized logistic regression which exhibit strongly �uctuating
weights in particularwith noisy observer data (Fig. 5.9).�ese �uctuations appear because
predictors associated with the energy and sound spectrum are linearly interdependent.
�emodel is “ill-conditioned” because the observers strategies are not uniquely de�ned in
terms of the considered predictors.5 Even for the Envelope observer, completely ignoring5 An increase in weight on energy

is equivalent to a constant increase
across all spectrum weights.

both energy and spectrum, the model placed considerable weights on these predictors—
essentially, energy and spectrumweights canceled each other out andwere then e�ectively
ignored in the decision mechanism. �e large variations across repetitions are driven by
the combination of small random �uctuations in the data and the fundamental instability
of the under-constrained solution. �is particular problem was one of the reasons, why
regularization was originally introduced (see section 2.3): By adding a constraint, an
ill-posed optimization problem becomes well-de�ned and robustly solvable.

On the other hand, using reverse correlation for model �tting provides stable, but
wrong weight estimates, that do not allow a valid reconstruction of the underlying
observer cues in most conditions (Fig. 5.7). �is result is expected, since the assumption
that predictors are independently distributed is violated—an assumption that is central
when applying reverse correlation for directly estimating relative weights.

In terms of trial-by-trial predictions, both regularized and non-regularized logistic
regression procedures display a clear advantage over reverse correlation, anticipating the
observer’s decision in almost 100% of the trials, independent of signal level (Fig. 5.4). �is
advantage vanished for probabilistic observers. While the reverse correlation method
incorporated non-critical features into the observer model, this only marginally impaired
the predictive power of the resulting model. Nevertheless, only the L1-regularized logistic
regression procedure was able to consistently uncover the underlying decision strategies
with their corresponding observer cues. Non-regularized regression attributed a large
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proportion of the weights on predictors associated with non-critical features, and overall
results showed stronger �uctuations (Fig. 5.13) due to over-�tting.

Apart from identifying the critical features, the L1-logistic regression also reproduced
the precise weighting applied to the associated predictors in terms of spectral �lters
(Figs. 5.10 and 5.12). �e sparseness constraint of the L1-regularization pushes individual
weights towards zero. Potentially, this property may have distorted the extracted �lter
shapes compared to a non-regularized logistic regression. However, this e�ect was barely
noticeable (see section 5.2.5), demonstrating the �exibility of L1-regularization to even
recover mildly sparse solutions (Donoho, 2004). A reverse correlation procedure only
reconstructed �lter shapes for non-correlated stimulus features, but failed for those that
covaried (Fig. 5.11).

Overall, the L1-logistic regression was able to accurately extract individual observer
decision rules from stimulus-response data alone, both qualitatively in terms of the
employed cues and quantitatively in terms of the relative weights. �e other two methods
compared here, non-regularized logistic regression and reverse correlation failed in
di�erent aspects of this task. Traditional reverse correlation could perform better in
terms of predictions if only trained on a subset of predictors corresponding to the current
observer cue. However, in practice one typically does not know in advance which
predictors are relevant. Instead of running through multiple combinations of predictors,
the proposedmethod recovers the relevant ones in a single step, without the experimenter
knowing which predictors to preselect. In addition, this study explored the impact of
correlated predictors. A priori, reverse correlation was expected to produce misleading
results because of the violation of the fundamental assumption of independent predictors.
Still, it was not clear in advance how strong the e�ect of this violation on model estimates
would be. �emain reason for including reverse correlation was to show howmuch better
a regularized regression method can do with both deterministic and noisy data under
statistically challenging conditions explicitly violating the independence assumption.

5.3.1 Limitations – Correlations, Signal Level and Features

As any method, the application of L1-logistic regression has limits. First of all, principally
no method can tell apart two perfectly correlated stimulus features, one of which deter-
mines behavior. Generally, multiple logistic regression takes into account correlations
between input variables, in contrast to reverse correlation. Accordingly, both L1- and
non-regularized logistic regression procedures deliver good �ts overall for deterministic
observers. When the decision mechanism is noisy, however, the results indicate that
only by introducing the regularization constraint correlated but non-critical features are
suppressed. Even though this modern statistical approach is less e�ected by correlations
and data �uctuations than earlier weight estimation methods, there is a limit in how
much interdependent predictors of non-critical features can be suppressed. �is limit
depends on the amount of data as well as the structure and strength of the correlations.
When strongly correlated predictors are included in the analysis, the results need to be
interpreted with appropriate care.

Furthermore, since sparse regularization is equivalent to the prior assumption that
the observers employ only few features, the amount of regularization must be well
balanced. Otherwise, by applying too much regularization, features that have lower
priority to the observer, but are still consistently used, may remain undetected. �e
simulations demonstrate that even when observers rely on features corresponding to a
large proportion of predictors (e.g., the mixed observers described in section 5.2.6 were
modeled with 40 out of 41 predictors) the sparseness constraint still allows for all of these
cues to be detected.

As mentioned in sections 5.2.3, 5.2.4 and 5.2.5, recovering the observer strategy was
increasingly more di�cult at high signal levels. When an observer correctly classi�es
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Figure 5.16: Correlations of the decision variables of the simulated observers (E–energy
observer, G–spectral/gammatone Filter observer, V–envelope observer, symbols indicate
di�erent combinations, see legend) for noise-only stimuli (le�most position on the x-axis)
and mixed noise & signal+noise stimuli at di�erent SNR (indicated on the x-axis). �e
output of the energy and spectral observer are hardly correlated for noise-only stimuli.

the stimulus in every single trial, there is no way to identify which cue she was relying
on. �e particular stimuli for which an observer gives correct (hits+rejects) or wrong
(misses+false alarms) responses can be understood as a signature of his decision strat-
egy. Even at identical observer performance, responses in individual trials may still
di�er between observers. With increasing signal levels the psychometric performance
increases as well, and observers must become more similar and in consequence harder
to discriminate. Figure 5.16 shows the relationship between signal-to-noise ratio and
the correlation between the responses of di�erent observers. In the present simulations,
the strategy of deterministic observers could be reliably discriminated at a psychometric
level of up to 95%-correct—even though at this level observers give a correct (and thus
identical) response on 3800 out of the 4000 trials. In the extreme case of 100%-correct,
all observers respond identically and are principally indistinguishable.

On the other extreme end, the lower the signal level of the stimuli, the larger the
variance in individual behavior, and the easier the strategy can be reconstructed, at least
for deterministic observers. For probabilistic observers, the lower the signal level, the
more their responses are governed by decision noise. �us, more data are required to
discover regularities in the relationship between stimuli and responses.

�e choice of stimulus features and associated predictors is considered the most
critical part of the approach determining to a large extent the success of the method.
Obviously, if the critical cues are not among the features assessed during the analysis, they
cannot be identi�ed. Clearly, the machine learning-based system identi�cation technique
still relies on the user’s knowledge, skill and intuition at this crucial step. In this respect,
the approach reveals the same limitations as classical correlation or regression analyses,
but it is not worse either. However, it allows to simultaneously investigate large sets of
predictors, thereby massively increasing the search space of stimulus features. Instead
of just a handful, several dozens of presumed observer cues and their combinations
can be tested in a single step. In addition, they need not be under direct control of the
experimenter and may be statistically interdependent.

If the cue that the observer relies on is di�erent from the features analyzed in the
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investigation, two situations may arise: First, the �tted model may not be able to predict
observer responses, giving a strong hint that the critical cue is not among the features.
Second, the model may provide reliable predictions, because a subset of the candidate
features is related to the observer cue. In this case, a mixture of cues is identi�ed as
underlying the observer’s decision. A thorough analysis of this mixture may o�er hints
which other features ought to be investigated to establish an even simpler observer
model. Whatever the case, it is only the analysis that needs to be repeated, not the entire
experiment.

5.3.2 Application of the Method to Experimental Data

Although this study demonstrated the potential of the proposed cue extraction method
with Tone-in-Noise detection in a YES/NO-paradigm, the proposed cue identi�cation
approach is not limited to this particular experiment. It can equally well be applied to a
variety of di�erent paradigms, e.g., 2IFC-experiments, and perceptual discrimination
tasks. �e only essential change compared to the procedure presented here would be
a di�erent choice of sound features and associated predictors according to the task at
hand.

�e data quantity used for training in the simulations (4000 trials per condition) can
be collected during moderately expensive psychophysical experiments. As the results
are solid, not only for deterministic observers, but also for unpredictable behaviors such
as decision noise and lapse, it is expected to be directly applicable to real observer data.
�e method is based on the common assumption that response behavior is stationary.
�us, care must be taken that this is the case with the investigated observers. Periods of
perceptual learning ought to be excluded from the analysis.

In the present simulations, data for di�erent levels of SNR were separated with stable
results across a wide range of signal levels. Consequently, if observers are expected to
employ a static decision mechanism independent of level, data from di�erent SNRs,
e.g., from an adaptive procedure, can be pooled for the analysis. Conversely, if data
from di�erent SNRs is analyzed separately, SNR-dependent changes in strategy can be
uncovered, e.g., observers may be switching between di�erent cues depending on how
informative they are and how much attention they require. Even if observers switch
between several stimulus cues during the experiment, the proposed method is able to
quantitively recover the underlying mixing ratios (see section 5.2.6).

�e results demonstrate that L1-regularized logistic regression has a major advantage
over earlier methods: As long as the critical cue is present, including many non-critical
stimulus features in the analysis is not a problem, even if the associated predictors
are not statistically independent from the critical one. �is observation is the major
advantage over using correlational techniques, where correlated predictors usually result
in misleading weight distributions, as well as over non-regularized logistic regression,
where these dependencies and the presence of noise may lead to ill-conditioned solutions
and instabilities in the estimated model variables.

When the regularization parameter λ is properly chosen (see description in sec-
tion 5.1.4), the regularized procedure produces a model that is “as sparse as possible”
without compromising the �t to the data. �ere is little risk of obtaining a model that
fails to capture the data because it is overly sparse. Even when an L1-regularized logistic
regression is not able to extract a sparse solution (because of noise in the data, or because
a sparse solution simply does not exist), it approaches a standard logistic regression both
in terms of quality of �t and reliability. In that sense, the regularized logistic regression
has no disadvantage with respect to the non-regularized method.

In these simulations, generating more “experimental” data was cheap. For the sake of
simplicity, the optimal regularization parameter λ was therefore optimized beforehand
with additionally generated data sets (see section 5.1.4). For real behavioral experiments,
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where the amount of data is usually limited, the application of cross-validation is recom-
mended instead. �is method is a means to generate independent data subsets that can
be used for proper model training and testing (as described in section 2.3) and is widely
used in machine learning (Bishop, 2006, chap. 1.3); (Hastie et al., 2009, chap. 7.10). It
o�ers a more elaborate but equally reliable way to optimize regularization.

As discussed in section 5.2.1 and shown in Fig. 5.4, the relationship between model
agreement and observer consistency provides an informativemeasure to assess the quality
of the established observer model. For this reason, experimenters are encouraged to
measure consistency of their observers, e.g., by using double-pass data for a subset of the
stimuli.

Even though this study focused on binary response data, the current method can be
generalized in a straight-forward way to experiments that measure response probabilities
to individual stimuli, e.g., frozen noise experiments: Model training proceeds in the same
way, with the only di�erence that individual stimuli are presented multiple times with a
distribution of responses corresponding to the measured probabilities. For example, if
an observer had a 80% chance of answering “Yes” to a particular stimulus, this stimulus
is added to the data altogether �ve times: four times with a “Yes” and once with a “No”
response. �e resulting model can then be used to probabilistically predict responses
on a stimulus basis. �e predicted and measured response probabilities could then be
compared as a measure for the goodness of �t.

5.4 Conclusions

�is simulation study compared di�erent methods for estimating relative combination
weights from behavioral data under the assumption of a linear decision process. In
simulations of a standard auditory psychophysics paradigm, it was demonstrated that an
L1-regularized multiple logistic regression procedure reliably reproduced the detailed
decision strategies of deterministic as well as probabilistic observers in a Tone-in-Noise
detection task. �e resulting “sparse” observer models also allowed reliable trial-by-trial
predictions of observer behavior. In addition, they followed the law of parsimony, relying
on the smallest subset of stimulus features that was both necessary and su�cient to
explain observer responses.

Importantly, near-optimal solutions were obtained under conditions where classical
procedures hit fundamental hurdles. In addition to random �uctuations in the data, the
features investigated in this study exhibited signi�cant interdependencies, a condition
that regularly appears in auditory experiments. Consequently, both correlation analysis
and non-regularized multiple logistic regression procedures failed to extract the unique
decision mechanisms underlying the simulated behavioral data. As an advantageous
alternative, the regularization-based technique provides robust estimates of relative
weights from psychophysical data in conditions that were not accessible due to constraints
and limitations of classical techniques.

In conclusion, L1-regularized logistic regression represents an e�cient and reliable
method for extracting stimulus cues that are critical for observer behavior. �e proposed
procedure holds substantial bene�ts over classical weight estimation techniques, and at
the same time, its scope is general enough such that it can be applied in a wide range of
auditory discrimination tasks. It opens up new opportunities by giving experimenters
more freedom in choosing their set of potential cues, independent of which stimulus
properties they directly control.



Chapter 6

Psychophysical Experiments

In a psychophysical experiment, which was thoroughly prepared and executed, large
amounts of data were collected from several listeners performing the classical narrow-

band TiN detection experiment presented and discussed in chapter 3. �ese data were
then analyzed using the sparsely regularized regression procedure presented in chapter 2
that had the main purpose of extracting the perceptual cues and decision strategy of the
observers. It is demonstrated that listeners follow highly idiosyncratic decision strategies
and employ an individual mixture of auditory features including sound energy, spectrum
and envelope. A linear decision model combined with nonlinear stimulus preprocessing
appears to be largely su�cient to predict observer behavior on a “molecular” trial-by-trail
level. In addition, responses of half of the observers were found to depend on decisions
in preceding trials which generally calls for a consideration of such behavioral factors in
psychophysical experiments.

6.1 Methods

6.1.1 Subjects, Stimuli and Setup

Six listeners, 5male and 1 female with amean age of 25.8±2.8 years (mean± sd) performed
the experiment a�er giving written informed consent. Subjects were naïve with respect to
the purpose of the experiment. �ey were seated in a quiet and darkened laboratory room
in front of an LCD screen providing instructions as well as visual feedback. In order to
determine whether remaining environmental sounds were su�ciently shielded through
the headphone inserts, hearing thresholds were measured both in our laboratory and a
double-walled IAC sound-insulated chamber. �resholds ful�lled standard audiometric
criteria for normal hearing and di�ered on average by no more than ±2 dB, except for
one observer (see Appendix B for details on the listener hearing tests).1 1 Subject S6 reported a transient

monaural Tinnitus-like percept during
one of the hearing tests, which signi�-
cantly increased the hearing threshold.
He did not report such a sensation
during the main experiment and the
concerned narrow band of frequencies
(3–4 kHz) was 2–3 octaves away from
the experimental stimuli.

�e masker stimulus consisted of a 100 Hz wide band of noise centered at 500 Hz
and presented at an average sound pressure level of 70 dB. In signal trials, a pure tone
at 500 Hz was added (see section 4.1 [p. 25] for details). �e signal tone was presented
at di�erent sound levels resulting in four conditions of signal-to-noise ratio (SNR or
E/N0): 9, 11, 13 and 15 dB for observers S3 and S6; for the remaining four listeners the
signal was presented at 7, 9, 11 and 13 dB.�ese settings were chosen so that observers
roughly spanned the same range of psychophysical performance (the choice is discussed
in more detail in section 4.5). �e signal tone was presented simultaneously with the
noise mask. All sounds were 200 ms in length with 50 ms cosine-squared on-/o�-ramps
to minimize spectral spread. �us, the steady state section was 100 ms in length.

Stimuli were presented binaurally with Etymotic ER-2 (Etymotic Research, Inc., USA)

57
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in-ear headphones providing −30 dB external noise exclusion according to the manu-
facturer. �e analog signal to the headphones was generated with an external 24-bit
RME Fireface 400 (Audio AG, Germany) sound card and ampli�ed with a fan-less Naim
Headline (Naim Audio Ltd., UK) headphone ampli�er. Headphones were calibrated
with a G.R.A.S. RA0045 (G.R.A.S. Sound&Vibration A/S, Denmark) headphone coupler-
microphone, as well as a B&K Falcon 2669microphone preampli�er and B&K Nexus
2690 conditioning ampli�er (Brüel & Kjær A/S, Denmark). Digital signal generation
and output, as well as response registration and feedback display were controlled from
an Apple Mac Pro desktop computer running Matlab with the Psychtoolbox-3 extension
(Kleiner et al., 2007). Further details concerning the setup and calibration procedure are
presented in Appendix A.

6.1.2 Experimental Procedure

Subjects had to perform a single interval identi�cation task (“YES/NO-task”) where the
signal was present (“signal trials”) or absent (“no-signal trials”) with 50% probability. In
each trial, the presentation of the sound (200 ms) was followed by a response window
adapted to the typical response speed of the subject (800 ms for S1 and S2, 700 ms for S5
or 600 ms for all other subjects measured from sound o�set). Observers indicated the
perceived presence (“Yes”) or absence (“No”) of the signal by pressing one of two buttons
on a dedicated USB-device that recorded high-precision response times with an internal
clock (Response Time Box, developed by Xiangrui Li).2 Trials where observers did not2 Department of Psychology,

University of Southern Cali-
fornia, xiangrui.li@usc.edu,
http://lobes.usc.edu/RTbox (last ac-
cessed on 09/12/12)

respond or gave responses too early (before sound o�set) or too late (a�er the response
window) were discarded as invalid. �e beginning of the next trial was determined by a
rest interval lasting 1000 ms (from the end of the response window to the onset of the
next sound).

Stimuli were presented in blocks with a �xed signal-to-noise ratio E/N0 to allow
listeners to form a consistent response strategy in each signal level condition. �e number
of trials per block (50 trials for observers S1, S2; 60 trials for S3, S4, S5, S6) was adjusted
so that each listener could comfortably generate the required amount of data. �e �rst 10Our data analysis assumes that ob-

servers employ a consistent decision
strategy. Although feedback was re-
quired for learning the task, it may
confuse listeners in particular at low
signal levels. Under these conditions
they would regularly receive a negative
trial-by-trial feedback prompting them
to try and adjust their strategy in order
to avoid mistakes. �is behavior would
violate the initial assumption. �e
feedback strategy is discussed in more
detail in section 4.5.

trials of each block included immediate visual feedback indicating the correct response
in order for subjects to (re-)adjust to the task. However, only the remaining trials in a
block—those without feedback—were used in the subsequent analysis. At the end of
each block, subjects were visually presented with their average performance (proportion
of correct and valid responses in the preceding block). A�er six blocks, i.e., 300–360
trials (including 240–300 trials without feedback), the signal-to-noise ratio was lowered
to the next level. During each session 1200–1440 trials were performed with all four
E/N0-levels in decreasing order. In this way, observers always started with the easiest
condition and slowly progressed towards more di�cult levels.

A session lasted about one hour, including self-paced breaks between blocks. In
all, each subject performed between 25 to 33 sessions. �e initial 7 to 12 sessions were
used for subject training and to �nd the appropriate E/N0-levels as well as secondaryAcross observers, roughly 1.5% of trials

recorded during this period of data
collection were registered as invalid.
While observers S4 (5.6%) and S5
(1.9%) produced a considerable propor-
tion of invalid trials, presumably be-
cause they tended to not respond when
in doubt, the other four observers
achieved a value of only 0.2–0.7%.

experimental parameters (number of trials per block, length of the response interval).
A�erwards, the E/N0-levels and other parameters were �xed for the remaining 18 to
22 sessions so that each subject produced between 4’983 and 5’696 valid trials at each
E/N0-level. Only the latter data with �xed parameters was used for the investigations
presented in this study. Across conditions, listeners completed 7,726–14,335 valid trials
for training and 20,024–22,752 for analysis. In total, 217,621 valid trials were collected,
125,560 of which were analyzed and form the basis for the conclusions drawn below.
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6.1.3 Observer Consistency Estimate

A subset of the stimuli was used to estimate observer consistency, i.e., the fraction
of identical responses in repeated presentations of identical stimuli. Since I had not
intentionally collected two-pass data with identical stimuli, I used stimulus samples that
exhibited a strong similarity according to the correlation in their time series. I chose a
threshold for the correlation of 0.95, so that at least 100 pairs per observer and signal
level were classi�ed as su�ciently similar to be regarded as two-pass pairs. �e number
of similar pairs for the di�erent conditions varied widely, usually ranging from a few
hundred for low SNR to more than a thousand for high signal levels. �e estimation
error for these values was computed from the number of pairs assuming a binomial
distribution. For four observers, identical stimuli multiple times were unintentionally
presented.3 For these observers, the consistency computed from truly identical double- 3 Quite likely, the random seed was

reset and the same random numbers
were generated a�er the computing
environment was restarted.

pair stimuli was compared with the consistency for similar stimuli, as assessed by the
0.95-correlation criterion, and found no signi�cant di�erence in estimated consistency
(1.3±4.2 percent points)—a post-hoc corroboration of the (arbitrarily chosen) correlation
coe�cient criterion.

6.1.4 Linear Observer Model

�e critical features, or “cues”, that govern observer decisions were identi�ed by analyzing
trial-by-trial dependencies between stimulus characteristics and individual responses.
Each stimulus feature is represented by a set of one or multiple predictors. I followed the
common assumption that observer behavior depends on a linear combination of these
predictors in each trial.

Consequently, the observer model was expressed as a weighted sum of predictors p i
(a set of values characterizing the stimulus) followed by a static nonlinearity, the logistic
function S:

P = S [∑
i

w i p i + b] (6.1)

with the model weights w i and a bias term b (identical to Eq. 2.1). �e function S gives
rise to the model output P which corresponds to an estimate of the probability of a Yes-
response given a particular stimulus. �e weight parametersw i are obtained by �tting the
model to data from individual observers using a sparse logistic regression procedure (see
section 6.1.6). �e weights represent the basis for the prediction of trial-by-trial responses
as well as for evaluating the relative importance of particular stimulus features—a feature
is considered to be a perceptual cue if the �tted model attributes a substantial weight to
the corresponding predictors.

6.1.5 Stimulus Processing

Stimuli were preprocessed to extract three potentially relevant auditory features and
corresponding predictors as described in detail in section 4.3 (p. 26):

• the sound energy

• the �ne structure power spectrum

• the envelope power spectrum

In addition to these stimulus characteristics, the analysis included the sequence of
earlier responses as a behavioral predictor in order to account for sequential dependencies
in response behavior: For each trial the responses in the �ve preceding trials within the
same block were collected, coded as ±1 for “Yes”/“No”, and 0 where no previous response
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was available. �e complete information for each trial, including stimulus features as
well as response history, was then combined into a vector with 46 entries. �e response
in the current trial was collected as a separate variable.

6.1.6 Data Analysis

�e data analysis was then performed as follows: For each subject and each signal level,
the collected data were entered into an L1-regularized logistic regression to estimate the
optimal model parameters, with the vector of predictors as regressor and the observer’s
responses as output. �is method is similar to a standard logistic regression with the
additional property of enforcing a sparse weight distribution, i.e., model weights that are
not explicitly necessary to predict the listeners’ responses are suppressed (Schönfelder
andWichmann, 2012). For model �tting the toolbox LibLinear (Fan et al., 2008) was used
which provides an e�cient implementation of L1-regularized logistic regression. �e
entire data analysis was based on custom-written scripts for standard scienti�c computing
so�ware running on a desktop computer.

6.1.7 �ree Measures of Predictive Power

In machine learning, model training and testing are generally performed on independent
subsets of the data in order to rule out over-�tting (Bishop, 2006). As depicted in Fig. 6.1,
for each observer and signal level a model was �t to a “training set” of data—a large
random subset of the data (5⁄6 of trials). As a second step, the predictive accuracy of the
model was measured on the smaller “test set” that consisted of the remaining chunk of
data (1⁄6 of trials) for the same observer and E/N0-level.

�ree measures were used to estimate the predictive accuracy of the model: model-
observer agreement, model likelihood and model deviance. �e �rst two measures are
strongly related—the agreement only relies on the predicted binary responses and pro-
vides an easily interpretable measure. �e likelihood, as a standard measure in machine
learning contexts, takes into account the response probabilities and, in consequence,
o�ers more �ne-grained results. It is useful for comparingmodels but hard to interpret on
an absolute scale. A model with a large likelihood necessarily exhibits a strong agreement,
but not vice versa.

In the following, r i represents the empirically measured response of the listener,
taking the values 0/1 for “No”/“Yes”. �e probability Pi corresponds to the probability of a
Yes-response estimated by the logistic model given a particular stimulus. �is probability
Pi was converted into a binary response R i (“Yes”/+1 whenever Pi > 0.5 and “No”/0
otherwise).

�e model-observer agreement A is based on binary response predictions and corre-
sponds to the percentage of trials where the model agreed with the observer:

A =
1

N

N

∑
i=1

I(R i , r i) (6.2)

where I(a, b) = 1 if a = b and 0 otherwise. �e likelihood is computed as:

L =
N

∏
i=1

Pr ii (1 − Pi)1−r i (6.3)

Essentially, model agreement weighs all predictions equally, whereas with the likeli-
hood a correct (or wrong) outcome that was predicted with higher con�dence is rewarded
(or punished) stronger.
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Because likelihood is hard to interpret in absolute terms, I developed a third measure
termed model deviance that is based on probabilities and provides an absolute quan-
ti�cation by comparing the empirical with the predicted probability for a Yes-response.
Ideally, I would have directly compared this on the basis of individual stimuli. However,
since every stimulus was only presented once, observer response probability could not be
estimated on a stimulus-basis. Instead, empirical estimates of response probability were
obtained by pooling stimuli. More precisely, all stimuli were �rst sorted according to the
associated response-probability of a Yes-response as predicted by the �tted observer model.
Stimuli with similar predicted response probabilities were then pooled into bins with a
�xed number of items. Next, for the stimuli in each bin the average empirical probability
was determined as the proportion of trials with recorded Yes-responses. Finally, the
predicted probability averaged over each bin was compared with the empirical probability
(for an example data set the result of this procedure is shown in Fig. 6.4).

To summarize the relationship between predicted and empirical response probability
for the stimuli in each bin, the deviance was computed for each observer and signal level,
i.e., the log-likelihood ratio between a hypothetical optimal model and the current model.
For binomial data, deviance is asymptotically χ2N-distributed, with N designating the
number of bins. When deviance is divided by N , its mean value represents an absolute
measure independent of bin size. Asymptotically, this measure attains a theoretical lower
bound of unity when a model completely describes all aspects of the data. In practice
a model with average deviance values near unity (below 1.5) can be considered a “very
good” �t, at least in psychophysics (Goris et al., 2008; Wichmann, 1999; Wichmann and
Hill, 2001; Collett, 2003).

�eoretically, the best estimate of model deviance would be attained in the limit of
small bin sizes approaching the ideal level of individual stimuli. However, the smaller
the number of trials collected in a bin, the larger the estimation error for the empirical
response probability. On the other hand, larger bins increasingly pool stimuli that have
large di�erences in terms of associated response probability, running counter the original
idea of grouping “similar” stimuli.

Because there is no a-priori “correct” bin size, the analysis was performed with
varying bin sizes ranging from 10 to 250. For bin sizes larger than 50 trials/bin, model
deviance started to increase as shown for a single observer in Fig. 6.6 (le�). Accordingly,
to obtain the single estimates for model deviance per observer and signal level shown in
Fig. 6.6 (right), the results were averaged over bin sizes ranging from 10 to 50 trials/bin.

6.1.8 Optimized Regularization with Cross-Validation

�e parameter that controls the L1-regularization, i.e., the amount of sparseness, needs
to be optimized during model �tting. �erefore, a cross-validation (CV) procedure was
performed within the training set as shown in Fig. 6.1 (for an extensive discussion of
cross-validation procedures refer to Browne (2000)). For cross-validation, the training
data (see section 6.1.7) were further subdivided into ten folds. �e model was then
trained on nine CV-folds and tested on the remaining one. �is was repeated with all
permutations of training and test folds resulting in an estimate of the likelihood for the
training data set at a �xed regularization parameter (in that process the independent
test data set remains untouched). �e procedure was reiterated with di�erent values
of the regularization parameter. Increasing the parameter typically did not e�ect the
estimated likelihood up until a critical value, where the likelihood would drop steeply
with increasing regularization due to under-�tting.4 In an automated procedure, the 4 Usually, likelihood also drops with

weak regularization due to over-�tting.
However, because of the large amount
of data compared to the number of
parameters the e�ects of over-�tting at
low regularization strength were small.

largest value of the parameter right before the drop-o� was chosen as the optimal trade-
o� for a regularization strength that results in maximally sparse models that are still
good predictors. �erea�er, the model was �t to the entire training set using the optimal
regularization parameter, before the de�nite quality of �t was evaluated on the—as yet
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Figure 6.1: Schema depicting model �tting including parameter optimization through
cross-validation (CV) and subsequent training and testing. Top: training/test-set split-
ting. Middle: optimization of the regularization-parameter through cross-validation.
Bottom: �nal training and testing which result in the data reported for model parame-
ters (predictor weights) and measures of predictive power (likelihood, agreement and
deviance, see section 6.1.7).

untouched—independent test set.

A�er �tting, the predictor weights were extracted from the observer models. �ey
were used for two purposes. First, the relative weighting of each of the four sets of
predictors was determined (three “stimulus feature” sets, one “behavioral” set with earlier
responses), i.e., the relative importance of each set for predicting observer decisions.55

�e full set of weights (associated to
the 46 predictors) was projected onto
the four dimensions of the weight sets
by separately applying a vector norm
to the weights w i in each set s: V 2

s =

∑i∈s w
2
i . Each of the four obtained

vector norms was then divided by
the sum of all norms, resulting in
relative set weights summing to one:
Ws = Vs/∑Vs .

�ese set weights indicate whether and to what extent a particular stimulus or behavioral
feature was relevant for predicting listeners’ responses. Second, the weights on individual
feature components in the �ne structure and envelope domainwere interpreted as spectral
�lters to uncover the detailed perceptual processing that determined the response. As
explained in Appendix F, the predictor weights need to be rescaled before they can be
interpreted as spectral �lters. In this second step, the weights on previous responses were
also analyzed to see how earlier decisions in�uenced the current trial. �e obtained �lters
and weights provide insights into the speci�c quantitative processing that governed the
behavior of individual observers.

�e con�dence intervals in the present study were estimated by repeating the analysis
procedure multiple times with di�erent subsets of stimuli used for model training and
testing. If these subsets had been independent, the standard error of the estimate across
repetitions could be directly interpreted as a con�dence interval. However, the data
subsets were overlapping and not independent: �e data were split into six subsets and
in each repetition one of these subsets was removed before data �tting. Generally, this
results in an underestimation of the con�dence interval of the model parameters. In
order to account for this e�ect, the estimated standard error across repetitions had to be
multiplied with a correcting factor. �is factor was estimated numerically by computing
the variance of a Gaussian random variable from both independent and overlapping data
sets. �e ratio between these variances was found to depend on the overlap between
subsets and was not related to the overall size of the data sample. For the amount of
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Figure 6.2: Observer psychometric performance. Markers represent raw data, lines
represent �ts of the psychometric function for all observers. Symbols indicate di�erent
observers, �ll color corresponds to the index of the signal level for each observer (all ob-
servers were tested at four levels, but in di�erent ranges of E/N0: 7–13 dB or 9–15 dB).�e
vertical lines marked with open symbols represent 80%-correct thresholds for individual
listeners.

overlap used during the main data analysis, the ratio was estimated to be 8.34 ± 0.01.
Accordingly, the standard error of the model weights determined across repetitions was
multiplied with the square root of this value. �e values obtained for predictive power
(agreement, likelihood and deviance) were estimated on the non-overlapping test sets.
For this reason, their con�dence intervals had not to be corrected. Unless indicated
otherwise, the reported values for the estimated perceptual weights and the measures of
predictive power represent the mean and standard error of the modeling results across
repetitions.

6.2 Main Results

6.2.1 Analysis of Psychophysical Measures

In terms of raw psychometric performance, most listeners were hard to distinguish. �e
curve �ts of the individual psychometric functions shown in Fig. 6.2 were computed with
psigni�t by Wichmann and Hill (2001). Average 80%-correct thresholds amounted to
12 dB (ranging between 11.6–12.4 dB), except for observer S5 who achieved a signi�cantly
lower threshold (10.3 dB). While most observers were unbiased with a proportion of
Yes-responses within ±5% around 50%, listener S2 was more conservative with an average
bias of 36%. Response times (measured from the o�set of the stimulus) typically ranged
between 200–400 ms.

With respect to general psychophysical performance measures, percent correct and
response bias, the model generally reproduced the listeners’ behavior with one consistent
deviation as shown in Fig. 6.3 (le�): Model responses resulted in a signi�cantly increased
percent correct score as compared to the observers (on average +9 ± 2 percent points).
�is e�ect can most likely be explained by the fact that the model implements the
observer decision mechanism in a strictly deterministic fashion without any internal
noise component (see Eq. 6.1). As regards response bias, no signi�cant di�erence between
model and observer was found (−1.8 ± 2.6 percent points).
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Figure 6.3: Comparing raw performance and agreement of observer and model. Le�:
Comparison of observer andmodel in terms of task performance (“percent correct”, �lled
symbols, gray level represents signal level as in Fig. 6.2) and bias (percent Yes-responses,
gray open markers). Right: Comparison of model-observer agreement against observer
consistency (see section 6.1.3), observer symbols as in Fig. 6.2. �e black line represents
the theoretical upper limit for a hypothetical optimal model as derived by Neri and Levi
(2006).

6.2.2 Model Predictive Power

Two measures were used to assess predictive power of the individual observer models
on an absolute scale. First, observer consistency and model-observer-agreement were
compared with an upper bound for a hypothetical optimal model as given by Neri and
Levi (2006) and depicted in Fig. 6.3 (right). By relying on observer consistency, this
bound takes into account the probabilistic nature of observer behavior when estimating
the best possible prediction rates. Across the observed consistencies, the empirical
agreement is close to the theoretical limit and follows this upper bound with an average
distance of 5.2 ± 2.9 percent points, i.e., the model �t was close to ceiling.66

�is value was estimated from a
model �t that excluded the predictor
representing previous responses. �e
derivation by Neri and Levi (2006)
follows the assumption that the model
relies on the current stimulus only
while the inclusion of “internal” deter-
minants such as previous responses is
not accounted for. Consequently, the
model agreement shown in Fig. 6.3
was also estimated from models that
did not rely on the “internal” pre-
dictors. Model agreement improved
minimally when these predictors were
included. �e respective plots can
hardly be distinguished while the re-
ported average distance to the bound
marginally decreases to 4.9 ± 3.0 per-
cent points.

Second, the predicted and empirical response probabilities were compared for groups
of individual stimuli as described in section 6.1.7. Overall, the model estimates showed a
close match with the empirically observed behavior across the entire range of response
probabilities (see Figs. 6.4 (black dots) and 6.5). As a summary measure for each observer
and signal level, model deviance was computed. �is analysis results in excellent values
between 0.8–1.4 as shown on the right of Fig. 6.6. Across all observers and signal levels,
model deviance achieved an average value of 1.15 ± 0.10.

As an independent post-hoc con�rmation that response probability—as predicted by
the model—orders stimuli in a behaviorally meaningful way, I analyzed the relationship
between the estimated response probability and the measured response times of the
listeners, which were not used during model �tting. According to Pièron’s law, response
times should become shorter with increasing sensory evidence (Pièron, 1914). Indeed,
when the model assigned strong sensory evidence to a stimulus (Yes-response proba-
bility close to 0 or 1), observers responded faster compared to stimuli for which a high
uncertainty was predicted (response probability close to 0.5) as shown in Fig. 6.4 (gray
graph) with an example data set.

To quantify the e�ect, a quadratic function was �t that captured the dependence
of observer response time on the predicted response probability for individual (not
binned) stimuli. �e function was centered at 0.5-probability, while o�set and curvature
were determined by minimizing the RMS-error. Sample data and the associated �t are
presented on the le� of Fig. 6.7, the same procedure was carried out for each observer and
signal level separately. �e quadratic �ts provided an estimate of the average di�erence
in response time ∆RT for stimuli for which the model predicted a large uncertainty
(response probability close to 0.5) and with which it associated a strong con�dence
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Figure 6.4: Comparing response probability between model and observer for individual
stimuli (sample data for listener S4 at E/N0 = 9 dB). Stimuli are binned according to
the average response probability predicted by the model (x-axis) and compared with
estimates of the empirical response probability (le� y-axis). �e average response time
for stimuli in each bin is plotted in gray (right y-axis).

(response probability at 0 or 1). Although response time data were, as always, noisy overall
(see le� graph in Fig. 6.7), the parameters of the quadratic regression could be estimated
with little error thanks to the large number of data points per observer. Mean response
time di�erences across observers and signal conditions are plotted in Fig. 6.7 (right). �ey
were signi�cantly larger than zero and varied from 25 up to 140 ms in strict accordance
with the behavioral prediction. Overall, the values increased with stronger signal levels,
presumably because “easy” stimuli—resulting in fast responses—were particularly easy in
these conditions as compared to “di�cult” stimuli which appeared under all conditions.

In conclusion, the analysis of model-observer agreement and model deviance as
well as the comparison of estimated response probability and measured response times
con�rm that the �tted models capture the perceptual decision behavior of the listeners on
the level of individual stimuli for all individual observers and experimental conditions.

6.2.3 Relative Importance of Predictor Sets

A�er having con�rmed that the trained models accurately capture the listeners’ trial-
by-trial behavior, the distribution of model weights for the individual observers was
analyzed. �e resulting relative predictor set weights for each listener and signal level are
shown in Fig. 6.8. �ey are highly idiosyncratic in terms of the distribution of set weights,
i.e., the relative importance of each of the four sets of predictors—a general summary
is provided in Table 6.1. Only for two observers, S1 and S5, energy was the dominant
auditory cue with set weights larger than 50%. For the other four, �ne structure went
head to head with energy at around 30–40% weight assigned to each of them.

Half of the listeners, S1, S2 and S4, also relied on envelope cues (with a set weight
of 20%–30% when averaged across signal levels), while for the remaining subjects this
cue was negligible (12% or below) compared to the other two stimulus predictor sets
(30%–50%). �e in�uence of previous responses showed a similarly diverse picture:
While three observers, S3, S4 and S6, showed a clear interaction of responses with earlier
trials (10% or larger averaged across signal level), serial dependencies almost vanished
for the others (around 5% or below).
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Figure 6.5: Direct comparison of predicted (x-axis) and empirical (y-axis) response
probability estimated from binned stimuli (75 trials per bin). Data are shown for each
observer (top to bottom) and signal level (increasing from le� to right). �e deviance
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the results from multiple bin sizes). Most data points are close to the diagonal which
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Figure 6.6: Model deviance. Le�: �e computed deviance between empirical and pre-
dicted response probability for binned stimuli is shown for one example data set (observer
S4 at multiple signal levels represented by gray level). �e estimated deviance varied
depending on the bin size (x-axis) used for stimulus pooling. Deviance averages and
standard errors shown on the right were estimated from bin sizes 10–50 as indicated by
the straight lines. Right: Average deviance estimates across all observers (symbols as in
Fig. 6.2) and signal levels range from 0.8 to 1.4. In addition, average deviance across all
observers and signal levels is represented by a straight line, the corresponding standard
error by dashed lines.
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Figure 6.7: Response times to individual stimuli depending on predicted response prob-
ability. Le�: Sample data (≈5000 trials from observer S1 at E/N0 = 9 dB) showing
measured response times to individual stimuli against the response probability as pre-
dicted by the observer model. �e curve represents a quadratic regression �t to the data
points, the indicated distance ∆RT corresponds to the estimated di�erence in response
time for stimuli with 0.5 and 0/1 predicted response probability. Right: Estimated di�er-
ence in response time ∆RT (between stimuli with Yes-response probabilities of 0.5 and
1/0) for all observers across signal levels. �e data for the sample shown on the le� is
marked with an arrow.



68 CHAPTER 6. PSYCHOPHYSICAL EXPERIMENTS

S1

 

 
S2

 

 

S3

 

 
S4

 

 

E F V R
0

10

20

30

40

50

60

Predictor set

S
et

 w
ei

g
h

t 
[%

]

S5

 

 
S6

 

 

low...          high SNR

Figure 6.8: Set weights for all observers. Relative weights for the four predictor sets
(E)nergy, (F)ine structure, en(V)elope and previous (R)esponses for all observers across
signal levels (represented by gray level). �e large gray symbols represent the observers
as in Fig. 6.2.

Observer Energy

dominant

Symmetr.

Filters

Envelope Sequential

Depend.

S1 ○ yes (no*) no yes no
S2 ◻ no yes yes no
S3 ◇ no no no yes
S4 ▽ no no yes yes
S5 △ yes yes no no
S6 C no no no (yes*) yes

Table 6.1: Summary of observer decision strategies, * for more information see section 6.4
“Additional Analysis and Results”.
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Figure 6.9: Fine structure �lters. Filter amplitudes of the observer models in the �ne
structure domain across signal levels (gray level as in Fig. 6.8). �e inset parallel lines
(bottom le�) depict standard errors of the estimated �lters averaged over each signal
level condition.

Perhaps surprisingly, the results were stable across all observers and signal levels—the
decision strategy of the observers changed only marginally as a function of task di�culty
(for individual observers standard error amounted to 2–3.5 percent points across signal
levels when averaged over predictor sets). �us, each observer was unique in the cues
she used to perform the TiN-task even for this nominally “easy” low-level task of TiN
detection, but the strategy itself did not depend on task di�culty.

6.2.4 Spectral and Behavioral Weights

Individual spectral �lters in the �ne structure and envelope domain were reconstructed
from the individual model weights and are shown in Figs. 6.9 and 6.10. For four observers,
S1, S3, S4 and S6, the �lters in the �ne structure domain were strongly asymmetric,
according to visual inspection. �e peak frequency was typically centered above the
signal tone with a negative lobe below and a positive or neutral �lter weight above. Data
from observers S2 and S5 resulted in largely symmetrical �lters centered on the signal
frequency.

For the three observers for which the envelope achieved a strong set weight, S1, S2 and
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Figure 6.10: Envelope �lters and weights on previous responses. Le�: Filter amplitudes of
the observer models in the envelope domain across signal levels for observers considered
relying on an envelope cue. Right: Weights on individual preceding trials for observers
considered depending on previous responses. Gray level indicates signal level as in
Fig. 6.8, inset parallel lines depict standard errors as in Fig. 6.9.
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S4, the corresponding �lters in the envelope domain have a similar shape (see Fig. 6.10,
le�): At low frequencies, the �lter’s amplitude vanishes, but with rising frequency it
exhibits an increasingly negative weight.

For the three listeners S3, S4 and S6 for which substantial serial dependencies in
responses were observed, Fig. 6.10 (right) shows the precise interaction pattern in terms of
the weights on earlier trials. For subjects S3 and S6, the response during the immediately
preceding trial exerted a dominant positive in�uence on the current trial, i.e., they tended
to press the same button in consecutive trials. In the lowest SNR-level, the most di�cult
condition, they also preferred to choose the opposite response to the second-to-last and
earlier trials. In contrast, for observer S4, a dominant positive in�uence appeared for
the second-to-last trial. For observer S3, previous responses had the strongest in�uence.
As an extreme example, fast responses (i.e., trials with response times shorter than the
median for each signal level) could be predicted from earlier decisions alone with 58–60%-
accuracy—an almost 10% improvement from chance even when completely ignoring
stimulus information.

6.2.5 Additional Con�rmation of Consistency

A model may be a good predictor of the listener’s behavior, even though it does not
capture anything about the internal decision strategy of the observer. For high signal-to-
noise ratios, where observers respond correctly in a large proportion of trials, a model
might have been trained to merely discriminate between the true stimulus classes (signal
and no-signal). In order to rule out this possibility, the analysis was repeated based on
no-signal and signal trials separately.7 In this case, since only one class of stimuli is used 7 Ahumada and Lovell (1971) per-

formed the same kind of analysis,
though with little success: “As a further
check on the validity of [the multiple
regression procedure] for predicting
response totals, regression analyses were
done separately for the SN stimuli and
the N stimuli. [...]�ese estimates [...]
suggest that most observers are not
adequately described by the model.”

for training, there is no way the model can pick up ground-truth di�erences between
no-signal and signal stimuli.

Predictions from these data subsets were almost as accurate even though only half
the number of trials entered each �t (model agreement dropped by 2.5± 2.2 and 2.3± 2.5
percent points on average when separately �tting noise and signal data, respectively).
�e relative weights on predictor sets were not signi�cantly a�ected either with mean
di�erences across all conditions and observers amounting to 4.5±6.4 and 3.6±5.6 percent
points for noise and signal stimuli, respectively. �ese results validate and con�rm the
earlier model �ts and corresponding conclusions on the distribution of relative weights.

To verify that the extracted set weights do indeed relate to the observer’s use of
the corresponding features, one of the predictor sets was separately removed during
the analysis to see how model predictions were a�ected. As presented in Fig. 6.11, the
improvement of model likelihood when adding a particular predictor (envelope or
sequential dependencies) is clearly related to the corresponding set weight: �e larger the
set weight, the more the likelihood increased when that predictor is included compared
to being excluded. �is result also validates the earlier classi�cation of observers into
those that depended on, or ignored stimulus envelope and earlier responses.

We assumed that di�erences in the trained models correspond to variations in in-
dividual observer decision mechanisms and are not merely the consequence of noise
in the data. �e fact that the weight distribution varies much more strongly across ob-
servers than across SNR-conditions lends support to this claim. Stimulus generation
and data analysis for each observer as well as each condition were performed completely
independently. It is highly unlikely that noise in the data by chance resulted in inter-
individual, but not intra-individual di�erences. On the contrary, similarities should
rather be expected for the same SNR-condition across listeners (i.e., opposite as to what
was observed), since the overall stimulus variability was determined by the signal level.

As a further con�rmation that inter-individual di�erences in terms of perceptual
cues resulted not merely from noise but re�ect actual di�erences in observer behavior,
decisions of one observer were predicted with models trained to another observer’s
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Figure 6.11: Likelihood gain and relative set weight. Improvement inmodel log-likelihood
by inclusion of the envelope feature (V, le�) or previous responses (R, right) duringmodel
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all SNR condition, symbols represent observers as in Fig. 6.2). Filled symbols designate
observers that were considered relying on the envelope feature or previous responses,
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Figure 6.12: Prediction improvement in terms of log-likelihood when training and testing
models with data from the same vs. a di�erent observer. �e big gray symbol and
corresponding label on the x-axis represent the observer whose decisions were predicted.
�e black open symbols depict the listener with whose data a model was �t. �e y-axis
represents the improvement in log-likelihood when the observer’s behavior was predicted
from its own data instead. �e black marker next to each group represents observer
averages, the bold marker on the far right indicates the grand average over all observers.
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data. If variations in the weights were mainly determined by noise and observers were
behaving largely identically, then each listener should predict the behavior of the other
observers as good as her own decisions. �is analysis was con�ned to conditions with
the lowest signal levels (E/N0 = 7 and 9 dB), because this is where individual di�erences
are most prominent. At higher signal levels, di�erences in decision strategy are harder
to distinguish behaviorally because the majority of meaningful strategies leads to the
correct and thus identical response. �e results of the present analysis can nevertheless
be transferred to high SNR conditions since the weights for all observers varied little
across signal levels.

In addition, I accounted for the fact that individual di�erences in response bias were
observed. �is may lead to a deterioration in predictive power in cases where the strategy
of two observers is perfectly identical in terms of the weights w j , and merely di�ers in
terms of the response bias (b in Eq. 6.1). In this analysis, observer behavior was therefore
predicted with the model weights w j from di�erent observers while the model bias b was
�xed to the value obtained from the same observer. As a consequence, degradations in
predictive power represent a true measure for individual di�erences in terms of predictor
weights or, equivalently, the perceptual decision rule.

�e extent towhich the predictive power su�erswhen a listener’s behavior is explained
with a model trained to a di�erent observer is displayed in Fig. 6.12. Model predictions
measured in terms of log-likelihood are deteriorated across all listeners although for two
observers the di�erence did not reach signi�cance. I conclude that variations in model
parameters resulted from individual behavioral di�erences, not just from random noise
�uctuations.

6.3 Preliminary Discussion

Based on linear models �t with a sparse regression procedure, the behavior of six ob-
servers in a TiN detection task was predicted with high accuracy. Using the empirically
estimated observer consistency, I con�rmed that agreement between observer and model
was close to the theoretical upper bound. �is analysis also illustrated how the observers’
inconsistencies prevent a perfect prediction of responses on a trial-by-trial level. Nev-
ertheless, the observer models were able to identify sets of stimuli to which observers
responded with “Yes” or “No” with large con�dence or where listeners appear to be very
uncertain. Using response time data collected during the experiment, this claim was
independently validated. �us, the observer models are truly “molecular” in the sense of
David Green. Having shown that little room is le� for improving predictions with any
kind of observer model (Fig. 6.3, right), I conclude that relying on a simple linear model
(in combination with nonlinear stimulus features) for explaining observer behavior does
not seem to represent a strong restriction.

Even though the listeners could hardly be discriminated according to their psychome-
tric performance (Fig. 6.2), they were using very di�erent decision strategies as quanti�ed
by the extracted weighting of predictors (Figs. 6.8, 6.9, 6.10) and con�rmed by the drop
in prediction performance when predicting one observer’s behavior from the decisions
of another (Fig. 6.12). �ese idiosyncrasies in cue distributions, which are detailed in
Table 6.1, have already been observed in earlier studies (Richards et al., 1991; Richards
and Nekrich, 1993). In the current analysis, stimulus energy was partially predictive for
the behavior of all observers, but with two out of six observers, only a minority relied
predominantly on this cue. While corroborating that sound energy is an important factor
in TiN detection, I also con�rmed that it is not the only cue listeners rely on in agreement
with earlier experiments employing level variation (Kidd et al., 1989). Instead, observers
seem to be relying on a combination of multiple characteristics of TiN stimuli comprising
energy, �ne structure as well as envelope.
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In addition to the energy cue, behavior was best explained with asymmetrical spectral
�lters exhibiting strong negative weights on the lower half of the noise spectrum for
a majority of four listeners. For the remaining two observers, the analysis predicted
a symmetrical �lter centered on the signal. �e behavior of half of the observers also
depended on the envelope characteristics of the stimuli, with increasingly negative �lters
for high modulation frequencies and little to no weight attributed to frequencies below
the central 50 Hz. �e interpretation of this result is discussed in more detail in the
following section.

Responses for three out of six observers did not only depend on the current stimulus,
but also on decisions in immediately preceding trials. �e analysis of the associated
predictor weights uncovered very diverse interaction patterns where the last or second
to last response had the strongest in�uence on the current decision, but dependencies
were observed for up to �ve preceding trials. �us, it may generally be bene�cial to take
sequential dependencies into account when explaining behavioral data on a trial-by-trial
level, though their in�uence appears to be less strong in humans than in behaving animals
(Busse et al., 2011) and shows pronounced individual di�erences.

Our “best” observer in terms of psychometric thresholds, S5, did not show any sequen-
tial dependencies (which always degrade performance) and instead relied dominantly
on energy. In addition, his behavior is best predicted with a symmetrical spectral �lter
centered on the signal, i.e., closer to an “optimal” observer (Peterson and Birdsall, 1953).
Interactions with envelope characteristics were small compared to other stimulus cues—
thus, this observer may be regarded as resembling the archetypical energy observer as
initially postulated by Green and Swets (1966).

To validate the consistency of the present results, I demonstrated that di�erences
between observer models in terms of predictor weights are not merely a result of noise
in the data. Otherwise, the prediction rate should not have declined a�er a model �t to
data from one observer was used to predict the behavior of another. In consequence,
the idiosyncrasies in terms of decision mechanisms must have been real, not just an
e�ect of noise. Conversely, since I have shown that the procedure was principally able to
discriminate di�erent strategies—namely across observers—the stability of individual
strategies across signal levels must have been real as well and could not have been merely
an artifact of the analysis method (e.g., by relying on a too constrained model).

�e smooth spectral �lters in the frequency domain that were estimated for the
listeners can be construed as gammatone-like auditory �lters or combinations thereof.
�e interpretation for the weights in the envelope domain is however not as clear-cut.
Observers do not seem to rely on the most predictive portions of the envelope spectrum
as proposed by Green et al. (1992), otherwise a signi�cant proportion of the weights
should be concentrated near the central component of the envelope spectrum (above
and below 50 Hz), and not at the high frequency components as observed.

�e above-mentioned interpretation of “increasingly negative �lters for high envelope
frequencies” is probably not the most meaningful description of the observers’ reliance
on the stimulus envelope. A di�erent representation of the envelope characteristics in the
observer model, i.e., a di�erent set of predictors characterizing the envelope may result
in a clearer picture regarding the listeners decision strategy. �erefore, the following
section extends the analysis to include an earlier proposed set of six envelope descriptors
that listeners may employ in TiN detection tasks (Richards, 1992).

When expanding the set of predictors in this fashion, I rely on a critical advantage of
the newly proposed sparse weight estimation procedure (Schönfelder and Wichmann,
2012): Even for data sets of moderate size, large sets of predictors can be investigated
even though they may overlap in terms of the stimulus information they contain. �e
L1-regularizer then identi�es the smallest set of predictors that is both necessary and
su�cient for explaining behavior, while suppressing the weights on the remaining predic-
tors. Because the method is �exible in this particular regard, two additional descriptors
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of the �ne structure were included to see whether they would obtain a signi�cant relative
weight in addition or at the expense of the �ne structure predictors employed so far.

6.4 Additional Analysis and Results
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Figure 6.13: Set weights for all observers when �tting the data with the fully extended set
of predictors (including alternative envelope [V+] and �ne structure [F+] predictors).
Otherwise same as Fig. 6.8. �e set weights on the envelope power spectrum (V) as well as
the alternative �ne structure predictors (F+) nearly vanish, while the alternative envelope
predictors (V+) gain a large proportion of the overall model weights for observers S1, S2,
S4, and S6.

�e additional analysis aimed at identifying a simpler and possibly more meaningful
description of the observers reliance on the stimulus envelope by using a di�erent set of
predictors to represent envelope characteristics.

�e model �tting procedure was repeated in the same manner as for the earlier analy-
ses, relying on the previously proposed set of predictors (energy, �ne structure spectrum,
envelope spectrum, previous responses) and—in addition—a set of six “classical” enve-
lope predictors that had been collected by Richards (1992): envelope variance, maximum
divided by minimum, envelope crest factor [peak divided by average] and kurtosis as
well as the overall number of extrema and average envelope slope. All of these measures
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Figure 6.14: Model weights associated with individual predictors for alternative enve-
lope and �ne structure descriptors ([envelope] variance, maximum/minimum, maxi-
mum/mean, kurtosis, extrema count, average slope; [�ne structure] variance in instanta-
neous frequency, variance in zero crossing distances). For most observers, almost all of
the alternative weights are concentrated on envelope extrema count and average slope.
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Figure 6.15: Set weights for all observers using alternative envelope predictors formodel �t-
ting. Relative weights for the three predictor sets (E)nergy, (F)ine structure, en(V*)elope
(“alternative” predictors average slope and extrema count) and previous (R)esponses for
all observers across signal levels (represented by gray levels).

were determined a�er normalizing the envelope to make sure that overall di�erences in
sound level did not in�uence these variables. Richards (1992) had also suggested two
�ne structure predictors, which were included as well (variance in the temporal distance
of zero-crossings, variance in instantaneous frequency), totalling a number of 54 model
predictors.

As a result of using this supplemented set of stimulus predictors, a substantial shi� of
the weight distribution was observed for those listeners that were previously identi�ed
as relying on the envelope (S1, S2, S4): As displayed in Figs. 6.13 and 6.14, almost all
of the weights on the envelope spectrum were transferred to the predictors associated
with envelope slope and extrema count (the weight on the envelope spectrum set fell by
−17.3 ± 1.3 percent points to 6.2 ± 2.1% averaged over all observers and conditions). For
the remaining three observers, the weight on the envelope spectrum had already been
comparatively small and did not change much (−3.5± 1.2%). As regards the �ne structure,
no such shi� of weights occurred: �e weight for the two predictors associated with
variance in instantaneous frequency and zero-crossing distances was small and merely
achieved signi�cance (1.7 ± 1.6% on average across observers).

Realizing that the newly obtained observer models did assign only small weights
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Figure 6.16: Comparison of model predictive power (in terms of model likelihood) when
training with envelope power spectrum (V) or envelope extrema count and average slope
(V*). Gray level depicts signal level as in previous �gures.

to the envelope spectrum predictors as well as the classical �ne structure predictors,
the analysis was repeated again, this time entirely excluding these predictors. When
comparing the predictive power of the models that rely either on the resulting reduced
set of predictors (energy, �ne structure spectrum, envelope slope and extrema count,
previous responses, for a total of 29 predictors) or the earlier employed set of predictors
(envelope power spectrum instead of slope and extrema count, resulting in 46 predictors),
the previous set provided as good an explanation for observer behavior as the new much
smaller set, as shown in Fig. 6.16 (the average likelihood di�erence across observers and
signal levels amounted to only 3.4± 22.6). For every single listener and at all signal levels,
the two alternative envelope predictors were able to capture the observers’ dependence
on the stimulus envelope just as well as a complete description of the envelope spectrum.

�e set weights that resulted frommodel �tting with the reduced set of predictors are
presented in Fig. 6.15, where the new set of envelope predictors V* consists of the average
slope and the extrema count. In comparison to the previous results presented in Fig. 6.8,
part of the weight on energy is transferred to the two alternative envelope predictors, so
that envelope is now the most dominant cue for listeners S2 (46% for envelope against
18% for energy on average across signal levels) and S4 (47% against 18%) while being
roughly in balance with energy for S1 (34% against 37%). Listener S6 that was formerly
classi�ed as not relying on the envelope, must now be considered envelope-dependent,
but still energy-dominated (22% for envelope, 31% for energy). For these four observers,
both the envelope slope and extrema count were weighted negatively, with the slope
obtaining on average a �ve times (5.2±3.8) larger weight. �at means that mainly with an
increase in average slope (and to a smaller extent in the number of extrema), observers
responded “No” (perceived “noise” stimulus) with higher probability. �is corresponds
to a sensible decision strategy since average envelope slope and extrema count both grow
at reduced signal levels.

For the observers S3 and S5, the new set of the envelope predictors slightly altered
the relative weight on the energy (−3.6 ± 1.6 and +1.7 ± 1.5 percent points, respectively)
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Figure 6.17: Linear correlation between components of the envelope power spectrum
(x-axis) with envelope extrema count (top) and envelope average slope (bottom). �e
estimates were obtained with TiNmaskers as used in the study (450-550 Hz wide, 200 ms
long with 50 ms on/o�-ramps).

and envelope (+4.2 ± 1.2 and −1.9 ± 1.5 percent points) predictors. However, the earlier
assessment still holds: With a relatively small set weight (12% and 7%, respectively),
envelope characteristics of the stimulus only played a minor role compared to the other
stimulus predictors (together about 71% and 87%, respectively). �e relative set weight
for the �ne structure spectrum changed for two observers (S2: −3.3 ± 2.8% and S4:
−6.9± 2.0%), while there was no signi�cant di�erence for the other listeners. Di�erences
in the set weight on earlier responses were well below 1% and insigni�cant for all observers
(0.2 ± 1.1% on average). �e weight distribution on individual previous responses was
not e�ected, nor was the overall shape of the spectral �lters.

6.5 Final Discussion

An additional analysis indicated that a large set of predictors (19 values de�ning the
envelope power spectrum) could be replaced with only two simple envelope descrip-
tors (average slope and extrema count) without reducing the predictive power of the
individual observer models. Assuming that a model that relies on fewer predictors can
be considered to be better, I must conclude that a model relying on envelope slope and
extrema count instead of the earlier proposed envelope spectrum provides an even better
description for the behavior of the observers. Nevertheless, both approaches provide a
valid representation of observer behavior. In fact, they are directly related: Strong high
frequency components in the envelope coincide with faster �uctuations which give rise
to larger average slope values as well as an increased number of envelope extrema. In
quantitative terms, for the presently used noise stimuli the linear correlation between
components of the envelope spectrum and the average slope as well as extrema count
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increases roughly linearly with envelope frequency (Fig. 6.17). �us, for a listener that
relied strictly on envelope slope or the number of extrema, the empirically observed
envelope �lters can be qualitatively expected. However, the increase in relative weight on
the envelope predictors for some observers at the expense of energy or the �ne structure
suggests that the two alternative envelope predictors contain even more information
related to the observer decision mechanism than the envelope spectrum.

Based on the modi�ed set of predictors, the earlier classi�cation of observer decision
strategy in Table 6.1 had to be revised in two respects: One observer (S1) could not any-
more be classi�ed as energy-dominated, while a dependence on envelope characteristics
was found for one additional observer (S6).

6.6 Summary and Conclusion

Using a large human behavioral data set collected in TiN detection experiments, this
study applied a modern statistical analysis procedure to explain and predict trial-by-trial
responses of individual listeners.

No simple answer was found as to which perceptual strategy observers rely on in a
narrow-band TiN detection task—it appears there is no unique simple auditory feature
that governs TiN detection. Instead, the importance attributed to particular auditory
features was highly observer speci�c even for such a (nominally) simple psychophysical
task. �e only commonality across listeners was the use of multiple sound properties.
Responses of all observers depended at varying proportions on sound energy and sym-
metrical or asymmetrical spectral detectors. �e distribution of spectral weights can be
interpreted as a multiple detector model, with one detector centered or slightly above
signal frequency, and negatively weighted side-band �lters above and below in order
to compare information in di�erent spectral bands (Gilkey and Robinson, 1986). An
asymmetry in spectral weights has been observed before, but was characterized with
much lower spectral resolution (Richards and Buss, 1996, their Figs. 1, 2).

�e decisions of half of the listeners were also determined by envelope characteristics,
although the estimated perceptual weights concentrated outside of the most informative
regions of the envelope spectrum—assuming they relied on the envelope spectrum (Green
et al., 1992; Rosas and Wichmann, 2011), the listeners were thus not behaving "optimally".
Instead, two simple envelope predictors, average slope and extrema count, were found to
provide at least as good an explanation for observer decisions as a representation of the
full envelope spectrum consisting of 19 predictors. Both �ndings do not support a trial-
by-trial decision strategy that relies on the rich information contained in the envelope
spectrum, even though corresponding models may successfully predict psychophysical
TiN detection thresholds (Dau et al., 1996b).

�e strong idiosyncrasies that were observed emphasize the necessity for explaining
behavior on an individual level instead of �tting models to data from multiple observers
simultaneously—at least for the present data set. However, when large inter-individual
di�erences appear for such a basic discrimination task, they are likely to also emerge in
similar or more complex auditory tests.

Overall, the current study corroborates and consolidates previous �ndings on narrow-
band TiN detection: Sound energy is an important determinant of observer decisions if
present, though not necessarily dominant. In addition, all observers were found to rely
on auditory �lters which are presumably based on critical-band detectors. In addition,
the behavior of some listeners was in�uenced by sound envelope. �is dependence can
be characterized either by a non-optimal envelope �lter or, much simpler, by two scalar
envelope descriptors.

�e present study extended the perceptual weighting analysis used in earlier research
to simultaneously quantify the in�uence of stimulus factors and the strength of sequential
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dependencies in response behavior. It was shown that perceptual decisions in a fast
paced auditory detection experiment are not purely stimulus-driven—even for highly-
trained observers a�er thousands of trials. At least for some observers, responses in
several immediately preceding trials had a substantial in�uence on the current decision,
collectively gaining relative weights of up to 20%. �e applied technique successfully
incorporated Greens idea of not only taking external stimulus factors into account when
explaining data on a “molecular” level but also internal factors in terms of the sequential
e�ects of past responses.

Despite substantial di�erences in individual decision strategies, all observer models
accurately predicted trial-by-trial responses, even though they were based on a simple
linear weighting scheme (combined with nonlinearly transformed stimulus features). In
terms of improving the agreement between predicted and empirically observed responses,
I conclude that there is little room le� for alternative models, e.g., relying on di�erent
sound features or more complex nonlinear decision mechanisms.

Finally, the additional investigation presented in section 6.4 that extended the analysis
to a large and partially redundant set of stimulus predictors demonstrated the �exibility
of the method proposed by Schönfelder andWichmann (2012) for exploratory analysis of
auditory psychophysical data. However, care should be taken when subjecting the same
behavioral data to multiple analyses.8 �e supplementary investigation also emphasized 8 Subjecting a data set to multiple

tests might lead to results that are spu-
riously signi�cant, while just being
the result of an uncontrolled “�shing
expedition” until “something interest-
ing” is found. �e signi�cance tests
or con�dence intervals need to be in-
terpreted and corrected appropriately
(Wagenmakers et al., 2011).

the point that modeling results critically depend on the set of stimulus predictors that
are used during data �tting—the relative weights must always be seen and interpreted
in the light of the currently used set of model predictors. �e more comprehensive the
set of stimulus (and behavioral) predictors, the more likely an experimenter can infer
an unbiased estimate of the perceptual decision scheme that underlies the observers’
behavior. �e sparse regularized regression procedure is particularly appropriate to such
an investigation as it provides a way of probing large sets of predictors simultaneously.

�e analysis method may be applied using other sets of features spanning di�erent
explanatory domains. Here, a set of abstract mathematical descriptors of the stimulus
was chosen integrating information over the entire stimulus length. Alternatively, using
spectrograms instead of Fourier transforms, additional information on a temporal scale
may be useable similar to the method used by Shub and Richards (2009) to estimate
psychophysical spectro-temporal weights. Such an approach may uncover strategies that
rely on features that are con�ned to the beginning or end of the stimuli or that employ
short-term cues as suggested by Davidson et al. (2009a). Correlations between predictors
that result from overlapping spectro-temporal windows should not pose a problem for
a sparse regularized regression. Furthermore, physiologically motivated descriptions
of behavioral data from TiN detection could be obtained by relying on models of the
auditory periphery that estimate spike trains in auditory nerve �bers (Heinz et al., 2001;
Carney et al., 2002). �e set of predictors could in this case be composed of a number of
spike train metrics. Finally, following the observation that observer decisions depend
on responses in preceding trials, descriptors of preceding stimuli may be included as
model predictors to determine whether such dependencies (auditory “context e�ects”)
are present as well.9 9

�is proposition is closely related to
the idea of dynamically changing tem-
plates that depend on a small number
of previously presented stimuli (David-
son et al., 2009a). An analogous e�ect
was recently observed in visual psy-
chophysics (Chopin and Mamassian,
2012).

All of the above suggestions have in common that the corresponding analysis could
be based on data that has already been collected as long as single-trial stimulus waveforms
and responses have been recorded.
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Chapter 7

Overall Conclusion and Outlook

The present doctoral dissertation conjointly developed two strands: a methodological
one that deals with the problem of extracting perceptual cues from behavioral

data and an empirical one which pertains to the auditory paradigm of Tone-in-Noise
(TiN) detection. In chapters 2 and 3 I laid out in depth the research history related to
both aspects which provides the background and foundation of the present research.
In this �nal chapter I again—but with a little more distance—review and discuss the
methodological insights and empirical �ndings that I obtained in the process of preparing
this dissertation. In a �nal outlook, I collect some ideas relating to possible applications of
the proposed method and mention further research that the present work might inspire.

7.1 Conclusions

As regards the methodology, I discussed in section 2.2 that the classically employed
techniques for observer modeling have signi�cant di�culties when they are used to ana-
lyze behavioral data based on large sets of potentially interdependent stimulus features.
To overcome this methodological limitation, I proposed to apply a recently developed
algorithm from machine learning—a sparse L1-regularized logistic regression—in com-
bination with the classical linear observer model. In section 2.3, I also argued that a
“sparseness” constraint represents a critical property of the analysis procedure given the
aim of identifying the essential stimulus cues that best capture behavior. In addition, in
chapter 2.5, I asserted that a “molecular”, i.e., trial-by-trial, analysis of psychophysical
data should take into account behavioral factors such as sequential dependencies in
observer decisions which appear to contaminate a majority of behavioral data sets.

As regards the empirical aspect of the present work, the experimental paradigm of
Tone-in-Noise detection, there still existed a substantial gap concerning the understand-
ing of the perceptual mechanisms that govern listener decision in this seemingly simple
task. As discussed in section 3.4, up until now none of the proposed models intended
to explain observer behavior was able to explain the data on a trial-by-trial level. It had
already become clear, though, that neither a single stimulus cue nor even a single strategy
covering all observers exists. While applying a modern analysis procedure to a large
psychophysical data set from TiN detection, I intended to simultaneously probe a large
set of stimulus features for two purposes: �rst, to establish observer models that predict
listener decisions on a single-trial level, and, second, to identify the perceptual cues that
best explain individual behavior.

As a �rst step, I intended to convincingly demonstrate that the sparsely-regularized
regression procedure indeed possessed the promised qualities. �erefore, I tested the
method in computer-simulated behavioral experiments concluding that the procedure

83
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worked surprisingly well:�e perceptual cues underlying the decisions of several di�erent
simulated observers could be precisely identi�ed from a large number of interdepen-
dent predictors. At the same time, the prediction of single-trial decisions was nearly
optimal. Even in realistically noisy conditions and with limited amounts of data, the
method was shown to hold substantial advantages over classical non-regularized weight
estimation procedures which failed under these circumstances. �is comprehensive test
of the method provided the basis for its application to empirical data, which represented
the next step in the preparation of the doctoral dissertation: In thoroughly prepared
psychophysical experiments, I collected an extensive data set from multiple observers
performing the classical TiN detection task. Subsequently the sparse regression proce-
dure was applied to the data in order to train individual observer models and �nally
extract individual stimulus cues that underly the listeners TiN detection strategy.

As in several earlier studies (Richards et al., 1991; Richards and Nekrich, 1993; David-
son et al., 2006), the obtained decision mechanisms were highly idiosyncratic: Observers
appeared to rely on diverse sets of di�erent auditory features, including sound energy,
critical �lter-like spectral detectors and a small set of envelope descriptors. �e spec-
tral �lters appeared strongly skewed with negative spectral weights below the signal
frequency, which corroborated earlier—but less clear-cut—�ndings (Richards and Buss,
1996). In an additional data analysis using an extended set of stimulus descriptors, I
further investigated the aspect of the perceptual strategy that was based on envelope
characteristics. It was found that observers did not make use of the rich information
present in the full envelope power spectrum as suggested by Green et al. (1992) and Dau
et al. (1997), but were better captured by much simpler envelope descriptors as proposed
by Richards (1992).

�e majority of previous studies on the subject deliberately combined multiple sig-
nal levels during the data analysis without con�rming beforehand whether this was an
admissible approach. In the present study, data from di�erent signal levels was sepa-
rately analyzed with the purpose of identifying potential variations in observer strategy
depending on the di�culty of the task. Notably, however, no substantial di�erences in
terms of perceptual strategy were found for any observer. Listeners appeared to follow a
remarkably stable decision rule, independent of whether the task was easy or hard. In
this case then, combining di�erent signal levels into a single analysis seems to be a viable
procedure.

Based on Green (1964), I argued that a truly molecular analysis of psychophysical
data needed to allow for both external and internal determinants of observer decisions.
Consequently, the analysis of perceptual predictors was extended —in a natural, robust
and e�cient fashion—to take into account the e�ects of sequential dependencies (e.g.,
previous decisions). To my knowledge, this represents the �rst time that behavioral
factors in terms of the sequential dependencies in observer responses are included in
an analysis of perceptual cues. It was found that such dependencies were present for
a substantial proportion of observers. For these, the precise properties of sequential
dependencies were as diverse as the perceptual decision rules. �erefore, I conclude that
any trial-by-trial analysis of behavioral data should generally take potential in�uences
of sequential dependencies into account. Using several metrics for evaluating model
predictive power, I �nally demonstrated that—based on both perceptual and behavioral
predictors—the trained linear observer models are indeed able to predict previously
unseen data with high precision on a “molecular” level.

In conclusion, I gained new insights by combining classical psychophysical exper-
iments and analysis techniques with recent machine learning tools. �e theoretically
predicted advantages of sparse regularization discussed in section 2.3 indeed translated
into substantial practical bene�ts—an L1-regularized multiple logistic regression repre-
sents a powerful approach to extract perceptual cues from psychophysical data. When
applied to a classical auditory psychophysical paradigm, which is still not fully under-
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stood, this procedure enabled the identi�cation of perceptual cues and the estimation
of “molecular” observer models that predict the behavior of individual listeners on a
trial-by-trial level.

7.2 Outlook

�e large data set collected in the completed study provides a rich source for further
analysis. For example, the obtained linear decision models could be combined with dri�
di�usion models (Ratcli�, 1978; Ratcli� and Rouder, 1998) attempting to capture the
relation between perceptual evidence and response latency. By further exploiting the
rich information available through the recording of individual response times, observer
behavior could then be captured in even more detail beyond the question which button
they pressed. Alternatively, e�ects of learning could be studied by separately analyzing
early and late experimental sessions. By combining data from multiple signal-to-noise
ratios, limitations in the amount of available data could be counterbalanced. Such an
analysis could, for example, investigate whether the improvement in performance during
the learning phase can be attributed to a more e�cient perceptual strategy or a general
decrease in decision noise.

As an alternative to the presently used model predictors, which are based on mathe-
matically inspired stimulus features, the behavioral data could be analyzed on di�erent
levels using other predictor sets. From the present analysis no inferences can be made
on the actual neural mechanisms which implement the perceptual decision rules. �ose
represent a completely di�erent level of analysis. Some insights regarding the question
of neural mechanisms could be obtained, for example, by using dynamic physiological
predictors as input to an observer model. For example, realistic models of auditory nerve
�bers could be employed to estimate single or several parallel spike trains (Heinz et al.,
2001). A number of spike train metrics, such as spike count or synchronicity could then
serve as predictors for behavior. A priori, however, the exact details of such an approach
need to be well prepared as it is unclear what properties the potential critical features
may have in this domain. Until now, the neural code remains a mystery and the selection
of sensible spike train metrics is still under debate. For the presently employed stimuli, a
whole range of auditory �bers are activated and it is an open question which of them
carry the critical information—even binaural interactions in the auditory pathway may
prove to be essential.

Davidson et al. (2009a) suggested that observers in a TiN detection task may rely
on short-term cues. Relying on sound spectrograms as model predictors may be a valid
approach to implement such a decision mechanism. Usually, neighboring sectors in a
spectrogram exhibit correlation because both temporal and spectral analysis windows
are overlapping. Using a sparse modeling procedure may help to sharpen the spectral-
temporal weights which might otherwise be blurred due to these interdependencies.
However, one potential di�culty with this approach is that the temporal location of the
cue might change from trial to trial. �us, the corresponding weights might “wash-out”
when simultaneously analyzing the full data set. As mentioned by Davidson et al. (2009a),
it is also not clear yet on which temporal time scale cues can be expected, as temporal
integration time estimates vary from ten to hundreds of milliseconds.

Several aspects of the presently employed experimental design could be improved
upon in future research projects. �e experiments of the study at hand were set up to
collect a single binary response to each auditory stimulus. �ere was a good reason
for this: Originally, I intended to analyze this single-pass data with a support vector
machine, which strictly focuses on binary classi�cation. Only later, I decided to employ a
sparse regularized logistic regression (for which e�cient implementations had just been
developed (Lee et al., 2006; Park and Hastie, 2007)). By design, this procedure accurately
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models response probabilities.
In contrast to the original intention and by a fortunate stroke of serendipity, I had

presented a subset of stimuli for multiple times. �e corresponding data were used to
estimate observer consistency. In a future study, a controlled subset of stimuli in each
session could be presented for multiple times. �is would allow the detection of changes
in observer consistency measures across the progress of the experiment which could
then be related to changes in model predictive power.

One could even go one step further and make use of the central bene�t of logistic
regression: Instead of relying on single-pass stimulus-response data, all of the stimuli
could be presented multiple times in a “frozen-noise” procedure, as has been done in
earlier studies (Evilsizer et al., 2002; Davidson et al., 2009b; Macke andWichmann, 2010).
For each stimulus a precise response probability could then be estimated, which would be
directly exploited while �tting a probabilistic model using logistic regression. �is would
obviate the need to relate model-observer agreement scores with observer consistency.
Instead, a deviance score that compares empirical and predicted response probabilities
on the level of individual, not pooled, stimuli would provide a more direct measure of
model predictive power. Whether stimuli are presented once or multiple times, does not
make any di�erence regarding model �tting. As long as there are enough stimuli so that
the predictors roughly cover the entire permissible variable space, the reliability of the
model estimates mainly depends on the overall number of trials. As noted by Macke
and Wichmann (2010), “for logistic regression, the two views of classi�cation with repeated
stimuli and regression onto probabilities are mathematically equivalent.”

Additional insights into the mechanism underlying TiN detection can be expected
from the comparison of data collected in various experimental conditions. For example,
it would be of signi�cant interest how the reliance on the energy cue would be a�ected
when roving level or equal-energy stimuli were used, which corrupt the informativeness
of this particular stimulus feature. Another important aspect of TiN detection could be
investigated by using wider or extremely narrow-band maskers. �e question at which
point the spectral information becomes uninformative to the observers tightly relates
to the width of the presumed auditory �lters as discussed in section 3.1. By switching
between conditions from block to block, it could also be studied how �exibly observers
are able to adjust the distribution of perceptual weights.

Due to its �exibility and generality, the proposed analysis procedure is not only
applicable to the single detection paradigm tested here. Some researchers argued that a
“free running” task, where short signals are presented in a continuous noise background,
represents a more natural detection paradigm (Shub and Richards, 2009). Under such
conditions, perceptual weights in the temporal as well as spectral domain might be very
e�ciently estimated using the proposed analysis method in combination with spectro-
grams. Moreover, the modeling approach could also be applied to more complex tasks.
For example, the broad �eld of speech perception may substantially bene�t from the
ability to analyze and identify interdependent auditory features. In speech, many of
the critical stimulus aspects, for example the spectro-temporal properties of formants,
are tightly coupled. A sparse regression analysis may nevertheless allow researchers
to identify the critical aspects of the speech sounds that govern perception. In visual
psychophysics, when using stimuli sampled from natural images, which are highly struc-
tured, many stimulus characteristics are correlated and can not be decoupled without
interfering with this “natural” structure.

In conclusion, L1-regularization in combination with a logistic regression was demon-
strated to be a powerful tool for the analysis of psychophysical data, in particular in
conditions where one wishes to simultaneously consider a large number of potential
stimulus features and corresponding predictors. It represents a �exible approach for re-
verse engineering the decision mechanism of individual observers from data obtained in
purely behavioral paradigms. �is enables experimenters to simultaneously test large sets
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of potential perceptual cues. It can be used in a broad spectrum of experimental settings,
includingmore complex tasks than the one examined in the present work. It is not limited
to auditory perception, but can also be applied in other modalities such as vision, as long
as the task at hand can be meaningfully described with a linear observer model. Even in
neurophysiology, it could serve as a modern and more �exible replacement for classical
reverse correlation procedures. I hope that the present work encourages the application
of this modern data analysis procedure in other �elds of experimental psychology and
opens up new opportunities for understanding and quantitatively explaining perceptual
processes.
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Appendix A

Setup, Headphones and

Calibration

�is chapter details the experimental setup used for collecting the auditory psychophysical

RME Fireface 400 external sound card.
�e display was covered with black
tape to not distract observers.

NAIM headphone ampli�er (top) with
external power supply (bottom) and
RCA signal input plugs.

A pair of Etymotic ER-2 in-ear head-
phones with black neck-strap and
two separate mono TRS connectors.
�e sound is generated inside the
black boxes and transmitted to the ear
through elastic plastic tubes.

data. Generally, such a setup consists of a device for generating and presenting sounds
and a response device for recording observer decisions. In addition, a monitor was
employed for displaying instruction and feedback.

A graphical overview over the experimental setup used in the present study is pro-
vided in Fig. A.1. Digital signal generation and output, as well as response registration and
feedback display were controlled from an Apple Mac Pro desktop computer running the
scienti�c computing so�wareMatlab (�eMathworks, Inc., 2010) with the Psychtoolbox-3
extension, a toolbox developed for precisely controlled presentation of both visual and
auditory stimuli as well as response recording (Kleiner et al., 2007).

�e digital sound signal was fed to an external Firewire sound card RME Fireface
400 (Audio AG, Germany) which converted the digital signal into an analog voltage
output at 96 kHz and with 24 bit precision. �e sound card has a speci�ed signal-to-noise
ratio of 110 dB. As an externally connected device it avoids any risk of electro-magnetic
interference from internal computer circuits. �is output signal was then ampli�ed in fan-
less and thus perfectly quiet headphone ampli�ers NAIM Headline (NAIM Audio Ltd.,
UK) with a strictly linear response curve. �eir output is able to drive low-impedance
headphones (< 10 Ω) as were used in the setup.

�e experiments were performed in a quiet laboratory roomwith thick black curtains
and black walls in order to minimize distraction for the listeners. �ey were seated at a
desk which was empty except for the response box and a visual display. Two observers
could perform the experiment in parallel in order to save experimental time. �ey were
sitting in separate compartments in the lab with curtains obstructing visual contact. Both
listeners were simultaneously but independently presented with the same stimuli while
individual responses were recorded. However, this procedure was only realized regularly
for two observers that were friends (“AB” and “AJ”). A�er attempts to combine other
listeners, they reported to prefer being alone in the laboratory because they felt distracted.
In pairs, listeners had to agree on the length of the pauses between blocks which seemed
to be more di�cult when observers were not acquainted.

Because experiments were not performed in a professional sound-insulated chamber,
special measures had to be taken to ensure that external noise that entered through the
walls or door did not e�ect data collection.

In particular, highly insulating in-ear headphones Etymotic ER-2 (Etymotic Research,
Inc., USA) were employed which provided a−30dB external sound attenuation according
to the manufacturer. In addition, sounds were presented at an average level of 70 dB
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Microphone
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Conditioning 

Amplifier

B&K Nexus 2690

calibration equipment

experimental setup 

LC Display

Response Box

Figure A.1: Schema of the technical setup that was installed for the experiment. �e
bottom part on the right was only used during calibration of the headphones and not
during the main experiment. �e items to which the study participants are directly
exposed are marked in gray.

SPL, far above the external sounds that might have reached the eardrum despite the
insulation. Extensive hearing tests (see Appendix B) demonstrated that threshold levels
in a wide range of frequencies did not di�er signi�cantly between the laboratory room
and a professional sound insulating chamber. In conclusion, the data are very unlikely to
be contaminated with in�uences from external noise sources.

Temporal measurements determined from the arrival of a USB signal to a computer,
such as the participants reaction time recorded from an ordinary USB response box,
are notoriously imprecise due to strong �uctuations in the latency inherent in the USB
interface protocol. To circumvent this problem, I used special hardware for recording
listener responses: the Response Time Box developed by Xiangrui Li.1 Just as an ordinary1 Department of Psychology,

University of Southern Cali-
fornia, xiangrui.li@usc.edu,
http://lobes.usc.edu/RTbox (last ac-
cessed on 06/29/12)

response box, the Response Time Box is connected via the USB interface. But instead
of relying on the arrival time of the USB signal at the computer, the Response Time
Box records high-precision response times internally whenever a button is pressed and
transmits those to the computer.2 At the beginning of an experimental session the internal2

�e developer claims to achieve a
precision of 0.5 ms (personal commu-
nication with Mario Kleiner).

clock of the device is precisely calibrated to be in sync with the clock of the presentation
computer, so that button presses on the response box can be precisely related to events of
stimulus presentation. �e Psychtoolbox-3 extension contains special functions to control
this particular device.

Visual informationwas provided on a standard desktop LC-display usingPsychtoolbox-

�e Response Time Box with four
buttons and USB connector (le�).

3 graphics functions, including general instructions at the beginning of the experiment
as well as feedback concerning the listener’s performance (see section 6.1.2 for details).

In an auditory experiment it is essential to know the quality, and in particular the
level of the sounds that are presented to the listener. �erefore, the employed headphones
as well as the entire signal generation and ampli�cation/attenuation chain need to be
precisely calibrated.

Although in theory one could rely on the speci�cation of the experimental devices to
estimate the relationship between the digital signal generated in the computer and the
strength of the acoustic signal entering the ear, this is di�cult or may even be impossible
in practice. In fact, already the digital-to-analog translation performed in the sound
card depends on a large number of potentially uncontrolled factors: the logical sound
driver, the state of the digital mixer and other settings on the sound card. In addition,
the subsequent stages of signal manipulation (preampli�er, attenuator) may not o�er
direct and explicit control over their input-output properties while the resulting signal
strength also depends on the usually unknown internal resistances of these devices.

�us, in order to reliably establish the relationship between digital signal input and
acoustic output, it is generally advisable to measure both values at the respective ends
of the signal processing chain while essentially ignoring the intermediate processes. In
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practice, thismeans that a calibrationmicrophonemeasures the output of the headphones
while the computer is con�gured to generate a signal at known RMS(root-mean-square)-
power.

A Brüel & Kjær 4220 pistonphone (top)
including a barometer (bottom) to
correct for deviations in sound level
and standard frequency due to the
ambient air pressure.

A G.R.A.S. RA0045 in-ear headphone
coupler connected to a B&K Falcon
2669microphone preampli�er (bot-
tom) is coupled to an Etymotic head-
phone (top, bottom le�).

A B&K Nexus 2690 conditioning
ampli�er with power supply.

Unfortunately, the same problem that applies to signal generation applies to the case
of signal recording, i.e., the output of the microphone can not be directly interpreted as
an absolute measure of sound level. �is ill-fated circle can be broken with a pistonphone,
a device that reliable generates a speci�ed sound level in a de�ned frequency range. First,
the recording chain including the microphone, its pre- and main ampli�er as well as
the A/D-converter are jointly calibrated by adjusting the so�ware used for recording
and measuring in such a way that it reproduces the speci�ed sound level while the
microphone is exposed to the active pistonphone.

In a next step, the microphone can then be coupled to the headphones in order to
determine the acoustic output with respect to the digital output signal from the sound
generation so�ware. Generally, this relationship has to be measured across the entire
range of frequencies using pure tones. Assuming a linear transduction in the signal chain,
the acoustic output for any kind of input signal can then be directly predicted from the
individual measurements. In case that the output of a headphone is not equal across the
range of frequencies used during experiments, the signal needs to be equalized, i.e., the
signal in di�erent frequency regions needs to be ampli�ed or attenuated to correct for
the variation in input-output transduction.

Ideally, a researcher in basic audition would like to control the signal that arrives at the
ear canal and ultimately the tympanic membrane. �erefore, the headphone-microphone
coupling represents a critical interface as it has to mimic the transfer function from the
headphones to the tympanic membrane. For on-ear headphones, so-called arti�cial ears
are commonly used for calibration, whose resonant properties resemble those of a human
ear. Similar devices consisting of metallic tubes can be used for in-ear headphones as
used in the present study (Etymotic ER-2).

In the present experimental setup, the recording chain consisted of aG.R.A.S. RA0045
(G.R.A.S. Sound&Vibration A/S, Denmark) in-ear headphone coupler-microphone, as
well as a B&K Falcon 2669microphone preampli�er and B&K Nexus 2690 conditioning
ampli�er (Brüel & Kjær A/S, Denmark). For sound recording the same sound card and
so�ware was used as for stimulus generation (RME Fireface 400 andMatlab including
the Psychtoolbox-extension).

A�er the recording chain was calibrated using a B&K 4220 pistonphone, both pairs of
headphones used in the experiment were calibrated by presenting pure tones at frequen-
cies ranging from 100 to 20, 000 Hz (see Fig. A.2). For each individual headphone the
sound level varied less than ±2.5 dB from 100− 1000 Hz.3 At the narrow frequency band

3
�ese values are slightly larger than
those indicated on the manufacturer
speci�cation sheet (Fig. A.3). �e
di�erence may be attributable to the
use of a “Zwislocki coupler” in those
measurements.

used in the main experiment (450 − 550 Hz), the variation amounted to less than ±1 dB.
Given these small deviations, I decided not to equalize the headphones across frequencies
during the experiments. Such a �ltering procedure would only have complicated the
stimulus presentation without any noticeable advantage. In any case the headphone
coupler merely mimics the resonant properties of an average human ear canal. Individual
physiological variations, which correspond to changes in the resonant properties and
thus, the e�ective transduction, most likely result in level deviations stronger than 1 dB.
�ese were not taken into account in the procedure discussed here. In theory, a more
precise calibration could be obtained by a sophisticated measurement of the sound level
inside the ear canal while headphones are inserted. However, studies such as the one
presented here do not commonly follow such a procedure—it is comparatively expensive
and does not provide any signi�cant bene�ts, unless the sound level needs to be deter-
mined very precisely. A�er all, it was necessary to merely con�rm that the overall sound
level presented to the listeners was in the appropriate range (within a few decibels) and
that there were no steep variations in signal transduction which may have qualitatively
altered the stimuli.
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FigureA.2: HeadphoneCalibration I. Sound levelsmeasured at the output of twoEtymotic
ER-2 headphone sets (HP1 and HP2, respectively) across frequencies from 100-5000 Hz.
�e gray shaded area represents the range of frequencies occurring in the main Tone-in-
Noise detection experiment.

Figure A.3: Headphone Calibration II. A sample manufacturer calibration chart for one
headphone. �ese speci�cation sheets are prepared during production and provided
with individual headphones. �e y-scale is much larger as compared to Fig. A.2.
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Across the four individual headphones (two le�/right pairs), the overall sound output
di�ered by 2 − 3 dB. As this was easy to correct by digitally scaling the overall stimulus
amplitude, the signal to individual headphones was adjusted so that each would produce
the same sound level at 500 Hz.
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Appendix B

Observer Hearing Test

Listeners in psychophysical experiments concerned with normal hearing abilities are
generally required to be tested for “normal hearing”. �e hearing threshold depends on
sound frequency. A listener is commonly considered to have “normal hearing” when her
threshold is no more than 10–20 dB above the average population hearing curve (Quigley
and Paul, 1984; Fastl and Zwicker, 2007; ANSI S3.6).

Before listeners started the main experiment, their hearing was measured in the
range of 100 Hz to 10 kHz in 20 logarithmic steps and in both ears consecutively. Pure
tones were presented as short beeps repeating at 20 Hz, to be more easily discernible
against spurious subjective auditory percepts. �e hearing threshold was measured in a
simpli�ed staircase procedure—listeners indicated by button press whether they heard
the tone. If they indicated to perceive it, the signal level was decreased by 3 dB, otherwise
increased by the same amount. A�er three reversals the step size was lowered to 1.5 dB,
and a�er another three reversals, the average level of the last two presentations was
determined as the hearing threshold. �e next frequency tested was randomly chosen
from the remaining values. �e same procedure was repeated for the frequency range of
the main experiment, 450–550 Hz in 10 logarithmic steps.

�e hearing test was performed in the hearing laboratory of my research group, a
quiet and darkened room, though without professional sound insulation, as well as a
large sound-insulated double-walled room manufactured by IAC (Industrial Acoustics
Company GmbH, Niederkrüchten, Germany) and located at the Institute of Biology of
the Humboldt University of Berlin, Germany. I did not �nd any systematic di�erences
between the two locations—the di�erence in measured thresholds averaged across fre-
quencies was smaller than 2 dB for all observers (on average 0.6 ± 1.1 dB)—except for
one subject reporting a monaural Tinnitus-like percept during the hearing test in our
lab (but not the main experiment), which appeared as a strong increase in threshold of
≈ 20 dB at 3 − 4 kHz.

In order to determine whether subjects exhibited normal hearing, I compared the
measured thresholds with a standard auditory threshold curve for insert earphones
combined with an occluded ear simulator (ANSI S3.6, Table 7). As depicted in Fig. B.1,
across frequencies all audiograms fell below a +15 dB limit (except for the “Tinnitus”-
anomaly). For the critical frequency range, 450–550 Hz, the audiograms fell within a
±10 dB range. Consequently, all observers were considered normal hearing and should
not have any di�culties in discriminating sounds presented at 70 dB SPL.
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Figure B.1: Hearing Test. Le�: Hearing thresholds with standard hearing curves (thick
gray line according to (ANSI S3.6, Table 7). Right: Audiograms (di�erence of individual
threshold to average population hearing threshold) for all listeners as measured in the
auditory lab (“Lab”, black) and sound-insulated chamber (“IAC”, gray). Results from the
le� and right ear are plotted in dashed and clean lines, respectively. �e dotted horizontal
line in the audiograms indicates the upper bound within which a listener was considered
as “hearing normally”. �e vertical lines in all plots designate the frequency region where
stimuli were presented in the main experiment.



Appendix C

Clipping of Random Noise

Signals

As a random statistical process, Gaussian noise generates values across an in�nite range,
even though results far beyond the standard error from the mean are very rare. On
the other hand, a digitally stored signal, as is used for computer-generated stimuli in a
perceptual experiment, can only represent a strictly limited range of values. In particular,

−limit 0 limit

A signal generated from a Gaussian
noise process always contains a certain
proportion of samples that cross any
�nite threshold (gray area).

the output to a D/A-converter—such as a sound or graphics card—only accepts a certain
maximum input value and all signals above are simply clipped at that ceiling.

As a result, a signal strictly generated as Gaussian noise is modi�ed through digital
representation and D/A-conversion. �e magnitude of these e�ects depends both on
the experimental system and the statistical properties of the stimuli. In the following,
I discuss the frequency at which a random signal is expected to be clipped because its
value lies beyond the threshold that the experimental system can represent.

�e percentage of samples of a normally distributed random signal that is clipped
corresponds to the surface of the Gaussian density function that extends beyond the
clipping threshold (see top side plot) and can be computed from the cumulative normal
distribution. In order to obtain a well-controlled signal with a small amount of clipped
samples, the sound level needs to be adjusted so that only a small percentage of sound
samples falls beyond the clipping limit. In general, a noise signal needs to be fainter than

A pure tone signal and a random
noise signal with equal average sound
level. �e pure tone never crosses the
threshold, unlike the noise signal.

a pure tone to be processed by the system without signi�cant distortion (see bottom side
plot).

In Fig. C.1, I plotted the relationship between the fraction of Gaussian noise samples
that cross the threshold and the sound level of the noise signal. �e sound level is speci�ed
as the level di�erence between the noise and the loudest stationary pure tone that can
be transmitted without clipping (a sine wave that oscillates between ±threshold). For
example, to have less than one in every thousand sound samples cross the threshold, the
level must be -10 dB below the pure tone. �ese “sound levels” only refer to the stimulus
as represented in the computer and sound card. A decrease in “digital” sound level can
be fully compensated by increasing, e.g., the overall gain of the sound card or headphone
ampli�er.

In a TiN detection experiment, both noise and signal+noise stimuli are presented,
the latter having higher amplitudes on average depending on signal level. On the other
hand, temporal windowing of stimuli (see Appendix D) reduces the risk of clipping. For
the present experiments, the level of the stimuli was adjusted so that none of the noise
stimuli showed any clipping. For the highest signal level employed (15 dB), i.e., the worst
condition in terms of clipping, about one in 2000 signal+noise stimuli exhibited clipping.
�is corresponds to less than one stimulus for every other experimental session or to less
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Figure C.1: Relationship between sound level and clipping. Depending on the overall
sound level, a certain amount of sound samples of Gaussian random noise is clipped. In
order to decrease the number of clipped samples (x-axis), the overall sound level of the
noise needs to be attenuated to be signi�cantly more faint than the loudest pure tone
that the system can process without clipping (y-axis).

than two out of the approximately 2500 signal+noise trials collected in each condition.
Neither should this in�uence observer behavior nor have any signi�cant in�uence on
analysis results. For lower signal levels, the clipping rate was even smaller.



Appendix D

Spectral Leakage and

Rise/Fall-Times

Generally, a Fourier transformation (FT) of �nite signals assumes cyclic boundary con-
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ditions, i.e., the signal is expected to repeat at in�nity. �e FT of a pure tone has a
single peak only in the case of a tone being presented forever. �e FT of a pure tone of
limited duration contains additional components that spread laterally to both sides of
the frequency of the tone, and are stronger for shorter tones.

Short duration signals, such as presented duringmany auditory experiments, result in
such “spectral leakage” especially when rectangular on/o�-gating functions are employed.
�e resulting signal contains frequency components that are di�erent from the pure
tones the signal was originally composed o�.

�e resulting FT can be derived by transforming the unit rectangle. �e FT of the
unit rectangle corresponds to a sinc-function sinc(x) = sin(πx)/(πx), which has long
tails. Consequently, the FT of a pure tone gated with a unit rectangle function has long
tails as well. Following the “uncertainty principle”, the length of the signal is inversely
proportional to the width of the leakage in the frequency domain (Hartmann, 1998, chap.
8).

In practice, with temporally �nite stimuli, the e�ect of spectral leakage can never be
entirely avoided. In addition, technical equipment such as D/A converters, ampli�ers and
headphones may contribute to this e�ect, e.g., by introducing nonlinear transformations.
However, the use of slowly raising on- and o�-ramps at the beginning and end of the
sound signal can signi�cantly reduce spectral spread. �e experimenter needs to �nd a
good trade-o� for the length of the ramp: longer ramps decrease spread but also shorten
the steady-state portion of the signal.

�e stimuli used in the present study had a length of 200 ms and a spectral width of
100 Hz. For signal windowing I relied on a standard cosine-squared gating function (or
“Hann window”):

w = 1 − cos2 πt =
1

2
(1 − cos 2πt) (D.1)

which was modi�ed to contain a centered steady state portion. As the optimal trade-o�,
a rise/fall-time of 1⁄4of the stimulus length, or 50 ms, was chosen resulting in a 100 ms
steady-state length. As can be derived from the graph in Fig. D.1 (white dashed line), the
spectral leakage extends about 25 Hz beyond the original signal (corresponding to �ve
Fourier bins). Outside, the spectral side lobes are attenuated by -50 dB or below and are
very unlikely to interfere with the observers perception.
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Figure D.1: Spectral properties of a �nite signal gated with amodi�edHann window. Le�:
Sample temporal envelope of a pure tone signal gated with a modi�ed Hann window of
1⁄10of the signal length (top) and corresponding frequency spectrum on a decibel scale
(bottom). Right: Fourier spectrum (x-axis and color) of a signal gated with modi�ed
Hann windows of di�erent widths (y-axis). �e black line represents the sample signal on
the le� (and the third plot in the margin on the previous page), the white line represents
the Hann window width used in the experiments (as depicted in the fourth plot in
the margin of the previous page). �e frequency is represented as the Fourier bin. To
determine the respective frequency, the bin has to be divided by the overall length of
the signal (e.g., for a 200 ms signal each Fourier bin has a width of 5 Hz and bin #10
corresponds to 50 Hz.). �e rise/fall-time of the Hann window is given as a number
relative to the overall signal length. A window of length 0.5 corresponds to a signal where
the rise- and fall-time jointly span the entire signal length and there is no steady-state
portion.



Appendix E

Digital Filters

�e strategy of some of the arti�cial observers described in section 5.1.1 depends on
digital �lters in the spectral as well as the envelope-spectral domain. A precise de�nition
of these frequency �lters is provided in the present section.

In general, digital �lters can be used to remove certain portions of the spectrum of a
time-dependent signal. Ordinary �lters are linear, i.e., di�erent frequency components do
not interact, and time-invariant, i.e., response properties are constant and independent
of the input signal. Since �ltering is simply described by a multiplication in the frequency
domain, the general �ltering procedure usually follows these steps (Hartmann, 1998):

1. Transform the signal from a time to a frequency representation using Fourier
transformation.

2. In Fourier space, �lter the signal by multiplying the individual components with a
�lter function H(s), where s represents the complex frequency variable: s = i f .

3. Transform the �ltered signal back to the time domain with the inverse Fourier
transform.

In the following, the simplest and most common second order �lters are de�ned
(Hartmann, 1998).

E.1 Band-Pass Filter

�e simplest band-pass �lter is characterized by a gain, a center frequency and a width.
Its transfer function—which determines the change in amplitude (factor ∣H∣) and phase
(angle∠(H)) of the individual frequency components—can be characterized as

H(s) = KWs

s2 +Ws + F20
=

KWi f

− f 2 +Wi f + F20
=

Ki f F0/Q
− f 2 + i f F0/Q + F20 (E.1a)

∣H∣ = KW f√(F20 − f 2)2 +W 2 f 2
(E.1b)

∠(H) = tan−1
F20 − f

2

W f
(E.1c)

with K = gain, W = bandwidth, F0 = center frequency. �e quality factor is de�ned
as Q = F0/W . �e rise time tR , the time the response takes to go from 10% to 90%, is
directly related to the bandwidthW :WtR = 0.7.
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E.2 Low-Pass Filter

A low-pass �lter removes high frequencies from a signal and has the following transfer
function:

H(s) = K(s/Fc)2 + 2s/Fc + 1 =
K

1 − ( f /Fc)2 +√2i f /Fc (E.2a)

∣H∣ = K√
1 + ( f /Fc)4 (E.2b)

∠(H) = tan−1
√
2 f /Fc( f /Fc)2 − 1 (E.2c)

with K = gain, Fc = cut-o� frequency and quality factor of Q = 1/√2. �e asymptotic
gain amounts to −12dB/octave.
E.3 High-Pass Filter

A high-pass �lter removes low frequencies from a signal and has the following transfer
function:

H(s) = K(Fc/s)2 +√2Fc/s + 1 =
K

1 − (Fc/ f )2 −√2iFc/ f (E.3a)

∣H∣ = K√
1 + (Fc/ f )4 (E.3b)

∠(H) = tan−1
√
2Fc/ f(Fc/ f )2 − 1 (E.3c)

with K = gain, Fc = cut-o� frequency and quality factor set to Q = 1/√2, while the
asymptotic gain is again −12dB/octave. �e cut-o� frequency Fc or bandwidth W
correspond to −3dB in power, thus 1/2 in power or 1/√2 in amplitude.



Appendix F

Rescaling of Weights to Linear

Filters

I intend to interpret the weights from the linear model that refer to spectral predictors
as a �lter that the observer relies on when making a decision. As a preprocessing step,
individual predictors had been standardized, i.e., they were individually scaled. �e
model weights refer to these scaled inputs. In contrast, the observer �lters are applied in
the original non-scaled input domain. In order to be interpreted as �lter gains, the model
weights therefore need to be rescaled to the range of the original (unscaled) predictors.
�is section provides a derivation of the scaling that must be applied to the predictor
weights.

An observer with a linear �lter decision mechanism is described as

Oobs =
pred .

∑
i

f i p̃ i + f0 (F.1)

with �lter f⃗ , bias f0, and non-normalized predictor p. A�er model �tting, the linear
model output to an individual input sample p is computed as

Omode l =
pred .

∑
i

w i p i + b (F.2)

with predictor weight w⃗, bias b and the individual normalized predictor sample p i .

p i =
p̃ i− < p̃ i >

σ(p̃ i) (F.3)

where mean and standard deviation are determined over a su�ciently large input data
set, so that < p i >= 0 and σ(p i) = 1 over the presented samples and for all predictors p i .

As a simpli�cation, I omitted here the logistic function that maps the linear decision
variable to the response probability. Nevertheless, I was able to identify the decision
mechanism of the linear model with an observer employing a linear �lter. �us, the
output of both must be equal Oobs = Omode l :

∑
i

f i p̃ i + f0 = ∑
i

w i p i + b (F.4a)

= ∑
i

p̃ i− < p̃ i >

σ(p̃ i) w i + b (F.4b)

= ∑
i

[ w i
σ(p̃ i)] p̃ i + (−∑i

< p̃ i >

σ(p̃ i)w i + b) (F.4c)
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In principle, the p̃ i ’s can have any value, therefore each individual summand inside
the �rst sum (in square brackets) must be equal to the corresponding f i . Similarly, the
second term in round brackets must be equal to f0. Consequently, the necessary rescaling
of the model weights to observer �lters can be directly derived.

f i =
w i

σ(p̃ i) (F.5)

while the bias corresponds to

f0 = b −∑
i

< p̃ i >

σ(p̃ i)w i . (F.6)

�e ensemble of �lter components f i then represents the �lter that is supposedly
applied by the observer to the original non-scaled predictor.



Appendix G

Observer Consistency and

Predictability

As discussed in section 2.5, in order to interpret the predictive power of an observermodel,
the reliability of the observer needed to be taken into account. Essentially, the limited
reliability of the listener sets a strict upper bound for any model to predict the behavior.
In the following, I attempt to derive this upper bound regarding both model-observer
agreement as well as model likelihood.

G.1 UpperBound forModel-ObserverAgreementDepend-

ing on Observer Consistency

Given observer consistency measured in two-pass experiment, there exists a maximum
“percent agreement” (between observer and model) that the best model can achieve, as
derived in the Appendix of Neri and Levi (2006). However, there is an even simpler
way of establishing the relationship between model-observer agreement and observer
consistency.

As the �rst step, I consider one stimulus for which the observer has a certain prob-
ability p̃yes of responding “Yes”. If this stimulus is presented twice, then the expected
consistency regarding this stimulus is identical with the probability that the observer
gives two identical responses:
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sistency C and model-observer agree-
ment p̃agree . Given observer consis-
tency, no model can reliably achieve a
prediction agreement above the black
curve.

C = p̃2yes±
Two Yes-responses

+ p̃2no°
Two No-responses

(G.1a)

= p̃2yes + (1 − p̃yes)2 (G.1b)

= 1 + 2(p̃2yes − p̃yes) (G.1c)

A perfectly �tted binary model always gives the answer with a higher associated
probability. For the sake of simplicity, I assume that p̃yes > 0.5 (otherwise p̃yes could
be replaced with p̃no = 1 − p̃yes), then the model always responds “Yes”. �is response
necessarily agrees with the observer with probability p̃agree = p̃yes . With these results,
the relationship between observer consistency C and model-observer agreement p̃agree
can be directly derived:

p̃agree =
1

2
+

√
C

2
−
1

4
(G.2)
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Every imperfect model achieves an agreement below this upper bound while the
results of a perfect model precisely follow the bound.

G.2 Upper Bound for Model Likelihood

In the following, I attempt to establish a similar bound for the likelihood that a model can
achieve. Likelihood and percent agreement are tightly related. While percent agreement
simply compares the binary responses of the observer with the binary responses of the
model, likelihood takes the probability into account, with which the model predicts a cer-
tain outcome, usually ranging from 0% (always “No”) to 100% (always “Yes”). Predicting
the correct/wrong response with large con�dence is rewarded/punished more strongly,
than uncertain predictions closer to 50%. In general, it is a more sensitive measure for
the quality of the model. It is preferably used during cross-validation as it varies less
across di�erent subsets of the data. Being a graded measure, it allows a more �ne grained
model comparison: models that achieve the same percent agreement score, may still
di�er signi�cantly in terms of the likelihood.

In order to �nd the maximum achievable likelihood given a measured consistency, I
use the Lagrange method. �e log-likelihood is to be maximized, assuming a di�erent
value of p for each trial:

L =
k

∑
i=1

r i log p̃ i + (1 − r i) log(1 − p̃ i) (G.3)

�e consistency results in a constraint:

C =
1

k

k

∑
i=1

p̃2i + (1 − p̃ i)2 (G.4)

�e Lagrangian needs to be extremized:

Λ = L + λC (G.5)

Setting the derivative for p̃ i to zero

∂ p̃ iΛ = 0 (G.6)

leads to a set of equations, each of which depend on each p̃ i separately, i.e., there are no
interdependencies for the di�erent p̃ i ’s. �us, instead of using a probability p̃ i for each
trial, only one p can be used, which applies for the Yes-trials as well as the No-trials with
1 − p. �en, the log-likelihood and consistency become

L = ny log p + nn log p = k log p (G.7)

C = p2 + (1 − p)2 (G.8)

�e derivative of the Lagrangian

Λ = k log p + λ(p2 + (1 − p)2) (G.9)

simpli�es to

∂pΛ =
k

p
+ λ(4p − 2) (G.10)

Setting the derivative to zero results in the quadratic form

p2 −
p

2
+
k

4λ
= 0 (G.11)
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which is solved by

p =
1

4
±

√
1

16
−
k

4λ
(G.12)

�ese p’s are entered into the constraint function to

C =
3

4
−
k

2λ
∓

√
1

16
−
k

4λ
(G.13)

�is equation can be solved for the Lagrange multiplier λ/k
λ

k
=

1 − 2c ∓
√
2c2 − 1

2(c − 1)(2c − 1) = −1 ∓ 1/
√
2c − 1

2(c − 1) (G.14)

�is multiplier is entered into the quadratic equation for p, which then gives rise to the
probability of responses that is consistent with the constraint and leads to the maximum
likelihood

Lmax = k log p̃max . (G.15)

In fact, it su�ces to only consider the λ/k and p with the +-sign, they give the maximum
likelihood that conforms with the consistency.

However, these theoretical results have no true relevance in practice. When generating
arbitrary data with randomly sampled p’s for each trial, the likelihood that the best
predicting model achieves is indeed bounded by the computed maximum, but the values
are mostly distributed in an area far away from the bound. �is is because the maximum
bound is only achieved when all p’s are equal in all the trials, which in practice never
happens. When there are very few trials, i.e., with a small k around 2–16, the upper
bound is more o�en reached by the data, but with larger k’s, it merely is a theoretical, but
not a practical limit.

G.3 Expected Value and Variance of Model Likelihood

I continue by computing the expected value (and the variance) of the likelihood distri-
bution given a �xed number of trials k and consistency C, assuming the ideal model,
which predicts the correct p’s and the constraint derived from the consistency, is known.
First, X and Y (the number of Yes- and No-responses) are assumed to be binomially
distributed:

X ∼ Binom(ny , p) and Y ∼ Binom(nn , 1 − p)
Now I compute how o�en Yes- or No-responses are again observed for previous Yes-

or No-trials during the second round, the test set. �e corresponding likelihood amounts
to:

L = X log p´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Yes-responses in Yes-trials

+ (nn − Y) log p´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Yes-responses in No-trials

+ (ny − X) log(1 − p)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
No-responses in Yes-trials

+ Y log(1 − p)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
No-responses in No-trials

(G.16a)

= ∥nn + X − Y∥ log p + ∥ny − (X − Y)∥ log(1 − p) (G.16b)

= nn log p + ny log(1 − p) + (X − Y)∥log p − log(1 − p)∥ (G.16c)

�e expected value of the likelihood is

E(L) = ∥E(X) −E(Y) + nn∥ log p + ∥E(Y) −E(X) + ny∥ log(1 − p) (G.17)
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With k = ny + nn , E(X) = ny p and E(Y) = nn(1 − p), I arrive at the simple form

E(L) = kp log p + k(1 − p) log(1 − p) (G.18)

�e variance is more complicated, and is derived from:

V(L) = E(L2) −E(L)2 (G.19)

For this, one would need to know E(X2) and E(Y 2). For the binomially distributed
variable X it is true that

V(X) = ny p(1 − p) (G.20)

On the other hand, it is also known that

V(X) = E(X2) −E(X)2 (G.21a)

= E(X2) − n2y p2 (G.21b)

From that, I obtain:

E(X2) = ny p + ny p
2(ny − 1) (G.22)

E(Y 2) = nn(1 − p) + nn(1 − p)2(nn − 1) (G.23)

In addition, there are cross terms, which easily decompose into E(XY) = E(X)E(Y),
since X and Y are independent. In the following, I focus on L2, with Z = X − Y for
simpli�cation

L2 = ∥(nn + Z) log p + (ny − Z) log(1 − p)∥2 (G.24a)

= ∥nn log p + ny log(1 − p)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
a

+Z(log p − log(1 − p)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
b

)∥2 (G.24b)

= a2 + b2Z2
+ 2abZ (G.24c)

With E(Z) = E(X) −E(Y) and E(Z2) = E(X2) +E(Y 2) − 2E(X)E(Y) I obtain
E(L2) = a2 + b2∥E(X2) +E(Y 2) − 2E(X)E(Y)∥ + 2ab∥E(X) −E(Y)∥ (G.25)

and a�er including all that is known about E(X), E(X2) etc., I arrive at
E(L2) = (nn + ny)∥(nn(p − 1) + ny(p − 1) − p∥(p − 1) log2(1 − p)

−2(nn + ny − 1)(p − 1)p log(1 − p) log p
+p∥1 + (nn + ny − 1)p∥ log2 p) (G.26)

which can be further simpli�ed using k = ny + nn

E(L2) = k∥(p − 1)∥(p − 1)(k − 1) − 1∥ log2(1 − p)
+p∥p(k − 1) + 1∥ log2 p − 2p(p − 1)(k − 1) log p log(1 − p)∥ (G.27)

To make it a little more clear, with p̂ = 1 − p this can be written as

E(L2) = k∥p̂∥p̂(k − 1) + 1∥ log2 p̂ + p∥p(k − 1) + 1∥ log2 p
+2pp̂(k − 1) log p log p̂∥

Now, together with E(L) (Eq. G.18), I know all ingredients for V(L) (Eq. G.19).
I computed both the expected value as well as the variance of the distribution of L
that is achieved under the assumption of one �xed p- and (1 − p)-value for Yes- and
No-responses, respectively. When comparing these values to simulated data sampled
with di�erent trial numbers, it is found the more trials there are the more the empirical
distribution deviates. �e reason is, that in reality, p �uctuates from trial to trial a�ecting
the likelihood L accordingly—the more trials there are, the more the p varies.
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G.4 Conclusion

Unfortunately, as long as the distribution of the probability p across trials is unknown,
there is no way to make a precise prediction about the distribution of the likelihood
L. Consistency only provides some vague idea of the range of the probabilities p, and
dictates a strict upper bound for L. One option to circumvent this obstacle would be
to assume a β-distribution for p and compute its parameters from response bias and
consistency. Unfortunately, the distribution of p is likely to be more complex. �us, in
order to make reliable predictions about L, one would need to learn the true distribution
by presenting each stimulus a number of times. But at that point, the task of �nding the
maximum likelihood that the best model could achieve becomes rather uninteresting—
instead, one would evaluate the quality of the model by directly comparing the measured
and predicted probabilities.
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