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Abstract
Limit cycle oscillations occur in a wide range of

electrical, mechanical, and aerospace applications. In
this paper we present a method for constructing sys-
tem models that are able to reproduce a periodic sig-
nal as a limiting trajectory. Our approach is based on
continuous-time modeling of a scalar nth-order system
whose dynamics are represented as a map of integrals
and derivatives of the available signal. The method is
demonstrated on the classical Van der Pol oscillator and
a nonlinear oscillator with piecewise linear damping.
1 Introduction

Roughly speaking, a limit cycle is a stable, sus-
tained oscillation occurring in a self-excited or self-
oscillating system [1, 17]. This behavior is of interest for
two distinct reasons. First, although sustained oscilla-
tions can occur in linear systems such as the Lyapunov
stable system

q̈(t) + q(t) = 0, (1.1)
this oscillation is not stable in the sense that a small
perturbation can cause the oscillation to grow or decay.
Furthermore, the system

q̇(t) + q(t) = sin t (1.2)
can experience sustained oscillations due to time-
dependent forcing, while the system

q̈(t) + (sin ωt)q(t) = 0 (1.3)
can possess sustained oscillation through parametric ex-
citation. In contrast, limit cycle oscillations can occur
in systems that have no time dependence in terms of
either an exogenous input or internal dynamics.

Clearly, systems with limit cycles must have a source
of energy to possess sustained oscillations, and this source
of energy may appear in the form of a constant input.
For example, the scalar system

q̇(t) = α, (1.4)
y(t) = sin q(t), (1.5)

with constant input α possesses the limiting periodic
solution y(t) = sin[αt+q(0)]. In this case the periodicity
is due to the nonlinear output map rather than nonlinear
dynamics per se. However, like the system (1.1), this
system lacks structural stability. Of greater interest is
the classical Van der Pol oscillator with dynamics

q̈(t) + (q2(t) − 1)q̇(t) + q(t) = 0 (1.6)
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which is autonomous and whose limit cycle is robust to
perturbations in the damping and stiffness terms.

Limit cycles arise in a wide range of applications.
Van der Pol himself analyzed the self-excited oscilla-
tions of the positive feedback amplifier, an invention of
extreme technological importance. Furthermore, limit
cycle dynamics occur in mechanical systems with au-
toparametric vibrations, such as the rotational dynamics
of unbalanced rigid and flexible rotors [14, 15, 23]. Addi-
tional applications include acoustic-combustion dynam-
ics where heat release excites acoustic dynamics [13, 18,
21] as well as fluid-structure interaction, which can give
rise to the instability known as flutter [2, 3, 8, 10, 12, 19,
22]. An interesting application of limit cycle dynamics
is the artificial generation of musical instrument sounds
[7, 16]. Identification of limit cycle dynamics has been
studied in [5].

The mathematics of limit cycle dynamics were first
studied by Poincare in the 1880’s. The difficulty of the
problem is suggested by Hilbert’s 16th problem which
concerned the maximum number of limit cycles of pla-
nar systems with quadratic dynamics. While existence
and properties of limit cycles in planar systems remains
a research problem of intense current interest [24], the
study of limit cycles in higher dimensions is largely un-
studied, presumably due to the difficulty of the prob-
lem as well as the emphasis on chaotic motion which
can occur in dimension 3 or higher. Likewise, there has
been little study of limit cycles in discrete-time systems,
where chaos can occur in first-order systems.

Despite these difficulties there is intense interest
in constructing systems to reproduce limit cycle behav-
ior. One of the prime motivations for this interest is the
potential usefulness in using the model to understand
the internal dynamics of complex systems. For exam-
ple, models are constructed in [11] to reproduce the dy-
namics of a heart as measured by an electrocardiogram.
In the systems literature the limit cycle identification
problem is a blind nonlinear identification problem [21],
whereas in the physics and mathematics literature this
is a problem of vector field reconstruction or restoration
[4, 9, 11].

In the present paper we extend the method of [11]
by constructing a nonlinear system to reproduce a pe-
riodic signal as a limiting trajectory. Our approach is
based on continuous-time modeling of a scalar nth-order
system whose dynamics are represented as a polynomial
map of integrals and derivatives of the available signal.
Least-squares methods are then used to determine the
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unknown coefficients. The method is demonstrated on
the classical Van der Pol oscillator as well as a nonlinear
oscillator with piecewise linear damping.
2 Problem Formulation

We begin with periodic scalar output data collected
from a system with a limit cycle and no observed input.
We use a single period of data for our identification.
Explicitly, we are given a function y(t) defined for ti ≤
t ≤ tf . The goal is to construct a system whose output
ŷ(t) converges to y(t) as t → ∞. Since phase is not of
concern to us, it suffices to perform the identification
such that, for a specified ε > 0, there exists α ∈ [0, T ],
T = tf − ti, such that

lim
k→∞

sup
t∈[0,T ]

|ŷ(t + kT + α) − y(t)| < ε, (2.1)

where k denotes a positive integer.
If we look for continuous-time systems with non-

linear output equations we can proceed as follows. We
write the differential equation for the elliptical limit cy-
cle [20]

ẋ1 = x2 (2.2)

ẋ2 = λa2x2 − λ

ω2
x3

2 − λx2
1x2 − ω2x1 (2.3)

with λ = a = ω = 1. x1 converges to a sinusoidal output
with amplitude a and frequency ω. λ determines the
speed of convergence. We re-scale time and append an
output equation to obtain

ẋ1 =
2π

T
x2 (2.4)

ẋ2 =
2π

T

(
x2 − x3

2 − x2
1x2 − x1

)
(2.5)

ŷ = h(
T

2π
(∠(x2 + ix1) + π)). (2.6)

While the above approach can reproduce arbitrary
limit cycles to within a phase shift, it provides no useful
information about the dynamics of the original system.
Hence we limit ourselves to systems with linear output
equations. Assuming that y is differentiable, a simple
candidate for this approach is

˙̂y = ẏ(rem(t, T )). (2.7)
which integrates to

ŷ = y(rem(t, T )) + c, (2.8)
where rem(t, T ) gives the remainder of t/T and c is cho-
sen by the user. Now the phase of the limit cycle is
correct, but there is an offset error determined by c.
This system doesn’t tell us anything about the under-
lying dynamics of the original system. Therefore, we
restrict our attention to time-invariant continuous-time
systems with linear output equations.

If the solution to a second order continuous-time
system remains bounded, then either the solution ap-
proaches an equilibrium, or the solution approaches a
limit cycle. There are no chaotic solutions in the two-
dimensional case [6]. On the other hand, higher dimen-

sional systems may be chaotic. Thus, if the order of
the system is unknown, it makes sense to first identify a
two-dimensional model, and resort to higher order mod-
els only if this fails.

We consider systems of the form
y(n) = F (y(n−1), . . . , ẏ, y,

∫
y, · · · y(−m)), (2.9)

where

F (y(n−1), . . . , ẏ, y,
∫

y, . . . , y(−m))

=
N∑

i=1

cifi(y(n−1), . . . , ẏ, y,
∫

y, . . . , y(−m)) = cTf,

(2.10)

f
�
=

[
f1 · · · fN

]T : R
m+n → R

N , fi : R
m+n → R,

F : R
m+n → R, and f1, . . . , fN is a linearly independent

set of known basis functions with unknown coefficients
c

�
=

[
c1 · · · cN

]T. In particular we want to consider
second-order systems of the form (2.9).

To obtain an estimate ĉ of c we minimize the L2

norm cost function

J(c) =
∥∥∥y(n) − cTf

∥∥∥2

2
=

∫ tf

ti

(
y(n) − cTf

)2

dt. (2.11)

The derivative of J is given by
∂J

∂c
= −2

∫ tf

ti

(
y(n) − cTf

)
f dt

= 2
∫ tf

ti

ffTc − y(n)f dt

= 2
(∫ tf

ti

ffT dt c −
∫ tf

ti

y(n)f dt

)
, (2.12)

so the minimizer of J is given by

ĉ =
(∫ tf

ti

ffT dt

)−1 ∫ tf

ti

y(n)f dt, (2.13)

where the inverse of the matrix
∫ tf

ti
ffT dt exists because

the basis functions are assumed to be linearly indepen-
dent.
3 Van der Pol Oscillator

We consider the Van der Pol oscillator
q̈ = −ω2q + εω(1 − µ2q2)q̇, (3.1)

where ω = ε = µ = 1. We investigate how the choice
of the measured signal affects the performance of the
method. For both choices of measurement (y = q and
y = q̇) we consider different combinations of integration
and differentiation.
3.1 Measure y = q

We take y(t) = q(t) as our measurement and collect
one period of data after the output has converged to the
limit cycle, see Figure 2.
3.1.1 Differentiate Twice

We differentiate y twice to obtain ẏ and ÿ. We
select all polynomials up to cubic order in y and ẏ for
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our linearly independent basis functions,

f =
[
1 y ẏ y2 ẏ2 yẏ y2ẏ yẏ2 y3 ẏ3

]T
. (3.2)

Equation (2.13) then yields

ĉ =
(∫ tf

ti

ffT dt

)−1 ∫ tf

ti

ÿf dt

=
[
0 −1.00 1.00 0 0 0 −1.00 0 0 0

]T
. (3.3)

The error in the estimate of c is

ec =
‖ĉ − c‖
‖c‖ ,= 0.0007. (3.4)

and the error in the limit cycle is

eq =

√√√√
∫ tf

ti
(ŷ − y)2 dt∫ tf

ti
y2 dt

= 0.0013. (3.5)

3.1.2 Integrate Once and Differentiate Once
Now we integrate the measurement y(t) = q(t)

once and differentiate it once to obtain the three neces-
sary signals, instead of differentiating it twice as above.
We select all polynomials up to cubic order in

∫
y and

y for our linearly independent basis functions,

f = [ 1
∫

y y (
∫

y)2

y2
∫

yy (
∫

y)2y
∫

yy2 (
∫

y)3 y3 ]T. (3.6)
Equation (2.13) then yields

ĉ =
(∫ tf

ti

ffT dt

)−1 ∫ tf

ti

ẏf dt

=
[
0.33 −1.00 1.00 0 0 0 0 0 0 −0.33

]T
. (3.7)

This is roughly

ÿ =
1
3
− y + ẏ − 1

3
ẏ3, (3.8)

which can be differentiated to obtain
...
y = −ẏ + ÿ − ẏ2ÿ, (3.9)

z̈ = −z + ż − z2ż, (3.10)
identifying z = ẏ. Hence we have obtained the original
differential equation.

The error in the limit cycle is

eq =

√√√√
∫ tf

ti
(ŷ − y)2 dt∫ tf

ti
y2 dt

= 0.0001. (3.11)

3.1.3 Integrate Twice

Now we integrate the measurement y = q twice to
obtain the three necessary signals. We select all polyno-
mials up to cubic order in

∫
y and

∫ ∫
y for our linearly

independent basis functions,

f = [ 1
∫ ∫

y
∫

y (
∫ ∫

y)2 (
∫

y)2
∫ ∫

y
∫

y

(
∫ ∫

y)2
∫

y
∫ ∫

y(
∫

y)2 (
∫ ∫

y)3 (
∫

y)3 ]T. (3.12)
Unfortunately, this set of basis functions is linearly de-
pendent. We only discover this when checking the rank
of

∫ tf

ti
ffT dt.

3.2 Measure y = q̇

92 93 94 95 96 97 98
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Figure 1: Measurement y = q̇ over one period

We take y(t) = q̇(t) as our measurement and collect
one period of data after the output has converged to the
limit cycle, see Figure 1.
3.2.1 Differentiate Twice

We differentiate y twice to obtain ẏ and ÿ. We
select all polynomials up to cubic order in y and ẏ for
our linearly independent basis functions (3.2). Equation
(2.13) then yields

ĉ =
(∫ tf

ti

ffT dt

)−1 ∫ tf

ti

ÿf dt

=
[
0 4.19 −3.48 0 0 0 0.96 0.19 −1.38 0.13

]T
. (3.13)

The error in the limit cycle is

eq =

√√√√
∫ tf

ti
(ŷ − y)2 dt∫ tf

ti
y2 dt

= 1.5731. (3.14)

We note that the identification model can not capture
the true dynamics. On the other hand, the identified
model does have a limit cycle. However, for this ex-
ample, the limit cycle of the identified model does not
approximate the measured limit cycle well.
3.3 Adding Disturbances

One way to perturb this continuous time system is
to degrade the accuracy of the initial solution, the data.
We perform the numerical integration in the simulation
with only two digits of accuracy and obtain one period
of the limit cycle, here compared to the high-accuracy
(twenty digits of accuracy) “true” data, see Figure 2.
The error introduced is

eapprox =

√√√√
∫ tf

ti
(y − ytrue)2 dt∫ tf

ti
y2
true dt

= 0.03857. (3.15)

We then differentiate the low-accuracy data twice and
identify a model using the basis functions (3.2). We
obtain an estimate of the model given by

ĉ =
(∫ tf

ti

ffT dt

)−1 ∫ tf

ti

ÿf dt

=
[
0 −1.03 0.85 0 0 0 −0.90 0.02 0.01 0

]T
. (3.16)
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Figure 2: y and ytrue
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Figure 3: y and ŷ

This differs from the true coefficients by

ec =
‖ĉ − c‖
‖c‖ = 0.1060, (3.17)

about 10%.
We compare the limit cycle of the identified model

to the measured degraded limit cycle, see Figure 3. The
error in the limit cycle is

eq =

√√√√
∫ tf

ti
(ŷ − y)2 dt∫ tf

ti
y2 dt

= 0.006396 (3.18)

still very good. With the degraded initial data, the al-
gorithm produced a system with a limit cycle matching
the degraded signal well.

A second source of error occurs when we approxi-
mate the data with trigonometric functions, as in

y(t) = a1+
M∑
i=1

a2i sin
(

2πi

T
t

)
+a2i+1 cos

(
2πi

T
t

)
. (3.19)

The derivatives of y are given by

y(n)(t) =
M∑
i=1

(
2πi

T

)n

(−1)n(n−1)/2

×
(

a2i sin
(

2πi

T
t

)
+ (−1)na2i+1 cos

(
2πi

T
t

))
. (3.20)

We compare the original data to it’s trigonometric ap-
proximation with M = 3, see Figure 4. The error intro-
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Figure 4: y and ytrue
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Figure 5: y and ŷ for the Trigonometric Approximation
Example

duced is

etrig =

√√√√
∫ tf

ti
(y − ytrue)2 dt∫ tf

ti
y2
true dt

= 0.02429. (3.21)

We differentiate the trigonometric function y twice and
identify a model using the basis functions (3.2). We
obtain an estimate of the model given by

ĉ =
(∫ tf

ti

ffT dt

)−1 ∫ tf

ti

ÿf dt

=
[
0 2.15 5.63 0 0 0 −1.85 0.08 −0.84 −0.95

]T
. (3.22)

This differs from the true coefficients by

ec =
‖ĉ − c‖
‖c‖ = 3.3493, (3.23)

about 335%!
We compare the limit cycle of the identified model

to the measured limit cycle, see Figure 5. The error in
the limit cycle is

eq =

√√√√
∫ tf

ti
(ŷ − y)2 dt∫ tf

ti
y2 dt

= 0.04718, (3.24)

still very good. Although the initial data was degraded
by approximating it with only a few sinusoids, the al-
gorithm produced a system with a limit cycle matching
the trigonometric signal well.
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Figure 6: Piecewise Linear Limit Cycle and the Identi-
fied Limit Cycle
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Figure 7: Piecewise Linear Damping Function and the
Identified Polynomial Damping Function

4 Piecewise Linear Damping
Here we examine the system

q̈ = −q + ζ(q̇) − q2q̇, (4.1)
where ζ : R → R is the piecewise linear function shown
in Figure 7. Note that we recover the Van Der Pol equa-
tion if ζ(q̇) = q̇. We measure y(t) = q(t), see Figure 6,
and use (3.2) as our basis functions. We recover

ĉ =
(∫ tf

ti

ffT dt

)−1 ∫ tf

ti

ÿf dt = [1.51 −0.42

2.71 −0.36 0.48 0.57 −1.13 −0.05 0.02 −0.11]T. (4.2)
We compare the limit cycle of identified model to the
measured limit cycle in Figure 6. The identified model
has a limit cycle with a slightly longer period. The error
in the limit cycle is

eq =

√√√√
∫ tf

ti
(ŷ − y)2 dt∫ tf

ti
y2 dt

= 0.0986. (4.3)

We compare ζ(q̇) to ζ̂(q̇) = ĉ1 + ĉ3q̇ + ĉ5q̇
2 + ĉ10q̇

3 in
Figure 7.

Next we use
f =

[
1 y ẏ ẏ2 y2ẏ ẏ3

]T (4.4)
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Figure 8: Piecewise Linear Limit Cycle and the Identi-
fied Limit Cycle
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Figure 9: Piecewise Linear Damping Function and the
Identified Polynomial Damping Function

as our basis functions. We recover

ĉ =
(∫ tf

ti

ffT dt

)−1 ∫ tf

ti

ÿf dt

=
[−0.03 −0.82 2.24 0.76 −0.99 −0.13

]
. (4.5)

We compare the limit cycle of identified model to the
measured limit cycle in Figure 8. The identified model
has a limit cycle with a slightly longer period. The error
in the limit cycle is

eq =

√√√√
∫ tf

ti
(ŷ − y)2 dt∫ tf

ti
y2 dt

= 0.0409 (4.6)

We compare ζ(q̇) to ζ̂(q̇) = ĉ1 + ĉ3q̇ + ĉ4q̇
2 + ĉ6q̇

3 in
Figure 9. The method seems to perform well even when
the true dynamics cannot be represented by the basis
functions well.
5 Conclusion

We developed a method for identifying systems with
limit cycles. We use one period of data to identify the
limit cycle dynamics. Our approach is to identify a con-
tinuous time model whose dynamics are functions of the
measured signal, derivatives of the measured signal, and
integrals of the measured signal. We demonstrated the
method on the Van Der Pol oscillator, as well as an
oscillator with a piecewise linear term. We considered
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perturbations of the original data by reducing numerical
accuracy, and by approximating the data with trigono-
metric functions. We found that the performance of
the method depends on whether the original differential
equation can be modeled using the proposed structure.
We also found that the method does not critically de-
pend on the basis functions used to approximate the sys-
tem dynamics. Future work will focus on methods for
basis function selection and experimental applications.
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