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Abstract: Kiwifruit (Actinidia chinensis) is an important commercial crop in China, and the occurrence
of diseases may cause significant economic loss in its production. In the present study, a new pathogen
that causes brown leaf spot disease on kiwifruit was reported. The fungus was isolated from an
infected sample and identified as Fusarium graminearum based on morphological and molecular
evaluation. Koch’s postulates were confirmed when the pathogen was re-isolated from plants with
artificially induced symptoms and identified as F. graminearum. Based on the biological characteristics
of the pathogen, it was determined that: its optimal growth temperature was 25 ◦C; optimal pH was 7;
most suitable carbon source was soluble starch; most suitable nitrogen source was yeast powder; and
best photoperiod was 12 h light/12 h dark. Further investigations were conducted by determining
50% effective concentrations (EC50) of several active ingredients of biological fungicides against
F. graminearum. The results showed that among the studied fungicides, tetramycin and honokiol had
the highest antifungal activity against this pathogen. Our findings provide a scientific basis for the
prevention and treatment of brown leaf spot disease on kiwifruit.

Keywords: kiwifruit; brown leaf spot disease; Fusarium graminearum; biological characteristics; active
ingredients of biological fungicides

1. Introduction

Kiwifruit (Actinidia chinensis), a perennial deciduous woody liana, is native to China. In
recent years, it has become an important commercial crop and is widely cultivated in New
Zealand, Italy, China, and several other countries. It is favored by consumers worldwide
because it contains more key micronutrients, such as potassium, calcium, and folic acid,
than most other fruits [1]. According to the Chinese kiwifruit industry development
report in 2020, the planting area of kiwifruit in China was 290,700 hm2 by the end of 2019,
with the total output reaching 3,000,000 tons. Moreover, the area under plantation and
kiwifruit output in China still rank first in the world. With the increasing kiwifruit planting
area worldwide, fungal and bacterial diseases have been reported [2,3]. Fungal leaf spot
diseases have become an increasingly serious threat to kiwifruit production in open-field
orchards. Diseased plants are generally characterized by dark brown ring spots, grayish
brown ring spots, silvering gray leaf blight, zonate leaf blight, and angular leaf spots [4].
Different fungal species, such as Alternaria alternata, Nigrospora oryzae, Fusarium tricinctum,
Colletotrichum spp., Diaporthe spp., Phoma spp., and Epicoccum spp., have been reported as
leaf spot pathogens [4–7], which cause severe loss in yield in the kiwifruit industry.

Pathogens 2022, 11, 673. https://doi.org/10.3390/pathogens11060673 https://www.mdpi.com/journal/pathogens

https://doi.org/10.3390/pathogens11060673
https://doi.org/10.3390/pathogens11060673
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0001-7060-9610
https://doi.org/10.3390/pathogens11060673
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens11060673?type=check_update&version=1


Pathogens 2022, 11, 673 2 of 12

Fusarium graminearum (Teleomorph Gibberella zeae Schw. Petch.), which belongs to
ascomycetes, has been ranked fourth among the world’s top ten plant pathogenic fungi
in terms of scientific and economic importance [8]. In general, F. graminearum is a causal
pathogen of head blight or scab on barley (Hordeum), rice (Oryza), wheat (Triticum), and
maize (Zea) stalk rot, as well as of spoilage on water bamboo shoots [9,10]. Its spores spread
by wind or rain in the spring season and infect plants at optimal temperatures [11,12]. In
addition to limiting healthy crop development, F. graminearum produces a variety of myco-
toxins that pose safety risks to human and animal health [13]. Earlier studies have shown
that multiple factors, such as temperature, pH, light, carbon source, and nitrogen source,
have significant influences on pathogen growth and pathogenicity [14–17]. Therefore, it is
necessary to carry out a study of the biological characteristics of the pathogen to investigate
the suitable conditions for its occurrence and prevalence. Synthetic fungicides, such as
metconazole [18] and carbendazim [19], are commonly used to control F. graminearum
infection. However, biological control is becoming an important strategy in controlling
F. graminearum to ensure food safety [20].

In July 2019, typical brown leaf spots were observed in ‘Guichang’ kiwifruit orchards
(Actinidia deliciosa cv. ‘Guichang’) in Xifeng County, Guizhou Province, China. The disease
initially appeared as a few small brown spots in the early stage and gradually expanded
into larger lesions. The disease incidence rate in 16 kiwifruit orchards (20 hm2) was
21%, resulting in a large number of fallen leaves and approximately 9–16% of yield loss
per orchard. It was determined that F. graminearum was the causal agent of brown leaf
spot on kiwifruit in this planting area, and this was the first time that it was reported
in the area. The isolated pathogen was used for further investigations by exploring its
biological characteristics and determining its sensitivity to different active ingredients of
biological fungicides.

2. Results
2.1. Pathogenicity Test of the Isolated Strains

Typical brown leaf spots were observed in the ‘Guichang’ kiwifruit orchards in July
2019. They appeared as a few small brown spots in the early stage and gradually expanded
into larger lesions (Figure 1A,B). From the infected samples collected, a total of 37 fun-
gal isolates were obtained. A pathogenicity test was conducted on these isolates using
wounded and unwounded inoculation methods. The results showed that only isolate CY2
was pathogenic to kiwifruit. In the wounded inoculation method, the artificially inoculated
leaves showed similar brown spots as those in the orchard six days after inoculation with
isolate CY2 spore suspension, whereas the control inoculation did not show any brown
spots (Figure 1C). In the unwounded inoculation method, the artificially inoculated leaves
showed brown spots on the ninth day after inoculation with isolate CY2 spore suspension,
whereas the control inoculation did not show any brown spots (Figure 1D). A morphologi-
cally similar fungus was re-isolated from the lesions of the artificially inoculated leaves.
The results of the three trials were similar, which proved that the highly pathogenic isolate
CY2 caused brown leaf spot disease on kiwifruit.
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Figure 1. (A,B) Natural field symptoms of brown leaf spot on kiwifruit. (C) In the wounded
inoculation method, six days after inoculation with isolate CY2 spore suspension, the artificially
inoculated leaves showed brown spots similar to those observed in the orchard, while the control
inoculation did not show brown spots (white and red arrows indicate the sites of inoculation). The
experiment was repeated three times with similar results. (D) On the ninth day after inoculation
with isolate CY2 spore suspension, the artificially inoculated leaves showed brown spots, while no
symptoms were observed on the control inoculation (the dashed line indicates the major vein, white
and red arrows indicate different inoculation treatments). The experiment was repeated three times
with similar results.

2.2. Identification of Isolate CY2

After culturing at 25 ◦C for six days, the colony of the highly pathogenic isolate
CY2 grew rapidly on potato dextrose agar (PDA; Beijing Land Bridge Technology Co.,
Ltd., Beijing, China) and produced a large number of dense hyphae with red pigments
(Figure 2A,B), and the mycelium had branches and septa (Figure 2C). Macroconidia of
fungi cultured on carnation leaf-piece agar (CLA; 4 pieces of 5 mm long sterile carnation
leaves, 10 mL of 2% water agar) had 3–5 septa, which were slender, sickle-shaped to nearly
straight, with an average size of 26.4–56.7 × 3.3–7.5 µm (n = 50; Figure 2D). The isolate CY2
was identified as F. graminearum based on these morphological characteristics [10,21].

For molecular identification, different fragments of this isolate were amplified and se-
quences were deposited in GenBank. The sequence of the ITS region (MW871547) had 100%
identity to sequences of several species stored in GenBank, including F. graminearum. The
TEF-1α sequence (MW876479) was 100% homologous to that of F. graminearum (MN381089),
while the RPB2 sequence (MW876480) showed 99.89% similarity to that of F. graminearum
(MW233447). A phylogenetic tree was constructed using ITS, TEF1-α, and RPB2 gene
sequences of isolate CY2, along with a few reference isolates obtained from GenBank
(Table 1). It showed that isolate CY2 clustered together with other strains of F. graminearum
obtained from GenBank. Therefore, results of the molecular analysis supported our mor-
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phological identification, which demonstrated that the highly pathogenic isolate CY2 was
F. graminearum (Figure 2E).
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Figure 2. (A,B) Colony morphology of isolate CY2 on potato dextrose agar (PDA) after six days of
cultivation. (C) Mycelia of isolate CY2 on PDA, with branches and septa. (D) Macroconidia produced
on CLA with 5–6 septa. (E) The evolutionary history of the investigated Fusarium graminearum
isolate CY2 (indicated by bold letters) inferred by the neighbor-joining method (1000 bootstraps for
confidence level) based on the combined ITS, TEF-1α, and RPB2 genes.

Table 1. Reference isolates used in the present study and their GenBank accession numbers.

Species Culture Accession
GenBank Accession

ITS TEF-1α RPB2

Fusarium graminearum NRRL 31084 - MW233103 MW233447
Fusarium graminearum LC 13775 - MW620072 MW474597

Fusarium asiaticum NRRL 13818 - MW233069 MW233412
Fusarium acuminatum NRRL 54218 HM068326 HM068316 HM068336

Fusarium equiseti NRRL 26419 GQ505688 GQ505599 GQ505777
Fusarium equiseti NRRL 43636 GQ505752 GQ505663 GQ505841

Fusarium langsethiae NRRL 54940 - MW233138 MW233482
Fusarium langsethiae CBS 36236 - MW233114 MW233458

Fusarium duofalcatisporum NRRL 36401 - GQ505651 GQ505829
Fusarium duofalcatisporum NRRL 36448 GQ505741 GQ505652 GQ505830

Fusarium kyushuense NRRL 3509 NR152943 MW233056 MW233399
Fusarium kyushuense NRRL 6491 - MW233057 MW233400
Fusarium multiceps NRRL 43639 GQ505755 GQ505666 GQ505844
Fusarium gracilipes NRRL 43635 GQ505751 GQ505662 GQ505840

2.3. Biological Characteristics of Isolate CY2

After four days of culture at the temperature range of 10–30 ◦C, the colony diameter
was 16.75 mm at 10 ◦C, 18.08 mm at 15 ◦C, 27 mm at 20 ◦C, 54.08 mm at 25 ◦C, 46.67 mm at
28 ◦C, and 19.67 mm at 30 ◦C (Figure 3A). The results showed that 25 ◦C was the optimal
temperature for the growth of isolate CY2. Furthermore, the isolate grew at the range of
pH 5–10, and its growth ceased at pH 3–4. The mycelial growth peak appeared at pH 7 with
a colony diameter of 58.25 mm, showing that a moderate pH environment was optimal for
its growth (Figure 3B). Soluble starch (Sol) was the optimal carbon source and yeast powder
(Yea) was the optimal nitrogen source, as they resulted in the largest colony diameters
among the treatments (Figure 3C,D). Regarding the light requirements, isolate CY2 could
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grow in all light conditions, but a daily 12 h photoperiod was the most beneficial for its
growth (Figure 3E).
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Figure 3. Mycelial diameters under different (A) temperatures, (B) pH, (C) carbon sources,
(D) nitrogen sources, and (E) light time conditions. The diameters were determined after four
days of cultivation of F. graminearum isolate CY2. The error bar indicates standard deviations (SD),
each value is the mean ± SD of three replicates, and different lower-case letters represent significant
differences at the 5% level (p < 0.05).

2.4. Toxicity Effects of Several Active Ingredients of Biological Fungicides against
F. graminearum CY2

Screening active ingredients of biological fungicides against isolate CY2 is helpful
for developing environmentally safe alternatives for the control of F. graminearum. In the
present study, the sensitivity of isolate CY2 to five different active ingredients of biological
fungicides, including honokiol, matrine, tetramycin, citral, and baicalein, was determined
in vitro, (Figure 4 and Table 2). Positive slopes in the regression equations indicated a
positive correlation between concentration and growth inhibition and R2 values close to
1 indicated that all equations were reliable. Tetramycin had the lowest EC50 value of
4.02 ± 0.05 µg mL−1, followed by honokiol and matrine, with EC50 values of 9.26 ± 0.11
and 15.2 ± 0.31 µg mL−1, respectively. Citral and baicalein showed relatively weak in-
hibition effects, with EC50 values of 28.6 ± 0.99 and 47.3 ± 0.12 µg mL−1, respectively.
This indicated that tetramycin and honokiol had the highest antifungal activity against
F. graminearum, while baicalein had the lowest.
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Figure 4. (A) Mycelial growth inhibition of Fusarium graminearum isolate CY2 after the application of
different active ingredients of biological fungicides under a series of concentrations, with fungicide
free plates (CK) as the control. (B) EC50 value of different fungicides applied to isolate CY2. The error
bar indicates standard deviations (SD), each value is the mean ± SD of three replicates, and different
lower-case letters represent significant differences at the 5% level (p < 0.05).

Table 2. Toxicities of different active ingredients of biological fungicides against Fusarium gramin-
earum CY2.

Active Ingredients of
Biological Fungicides Regression Equation Determination

Coefficient (R2) EC50 (µg mL−1) 95% Confidence
Interval

98% Honokiol DP Y = 3.4834 + 1.5742x 0.9876 9.26 ± 0.11 7.97–10.60
98% Matrine DP Y = 3.1989 + 1.5251x 0.9831 15.2 ± 0.31 13.11–17.54

1.5% Tetramycin AS Y = 4.3763 + 1.0306x 0.9817 4.02 ± 0.05 3.10–5.23
97% Citral AS Y = 2.1413 + 1.974x 0.9825 28.6 ± 0.99 23.99–32.84

98% Baicalein DP Y = 2.457 + 1.5172x 0.9730 47.3 ± 0.12 39.31–57.23

Each value indicates the mean ± SD of three replicates; X and Y represent active ingredients of biological
fungicides concentration and growth inhibition rate, respectively.

3. Discussion

In the present study, although a total of 37 fungal isolates were obtained from the in-
fected kiwifruit samples with symptoms of brown leaf spot, only isolate CY2 was confirmed
to be a real pathogen based on Koch’s postulates [22]. Using wounded and unwounded
inoculation methods, we showed that the other isolates were not pathogenic to kiwifruit,
indicating they were probably saprophytic fungi on kiwifruit leaves. It is also possible
that some of these fungi are pathogens, but indoor conditions were not suitable for their
infection. Our morphological and molecular identification methods suggested that the
pathogenic isolate CY2 was F. graminearum. The infection of kiwifruit with Fusarium species
has led to concerning problems in its agricultural production [7,23–26]. However, this
is the first report of the pathogen F. graminearum causing brown leaf spot on kiwifruit.
High humidity is favorable to the distribution and survival of different pathogens, includ-
ing F. graminearum [27], which may be an important reason why isolate CY2 was highly
pathogenic to kiwifruit in the pathogenicity assays, as they were conducted under high
humidity conditions. F. graminearum produces both ascospores and macroconidia, which
can be transmitted by air, rain, and insects [11,28,29]. Most previous studies have used
macroconidia for inoculation, since they are more readily produced than ascospores [30–34].

To determine the conditions suitable for the occurrence of different pathogens, it
is essential to investigate their biological characteristics [35,36]. The findings of previous
studies on the biological characteristics of F. graminearum were similar to ours, indicating that the
optimal temperature for F. graminearum mycelial growth is 25 ◦C; optimal pH is 7; most suitable
nitrogen source is Yea; and most suitable photoperiod is 12 h light/12 h darkness [10,37].
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However, some findings of the present study differed from those of previous studies. For
example, a previous study found that the most suitable carbon source for F. graminearum
was glucose (Glu), while ours showed that it was Sol [10]. The differences in biological
characteristics may be caused by differences in strains and regions that were evaluated in
the study.

In recent years, food safety has become an important topic, and synthetic fungi-
cides have been shown to cause serious health problems in humans [38–40]. Moreover,
F. graminearum has developed resistance to synthetic fungicides, such as azoles and car-
bendazim, because of their long-term usage [41–45]. Therefore, it is of great significance
to develop active ingredients of biological fungicides to combat this critical pathogen.
In the present study, the sensitivity of F. graminearum CY2 to five active ingredients of
biological fungicides was determined, and we found that among them, tetramycin and
honokiol showed the highest inhibitory activities against this isolate. Tetramycin is a
polyene macrolide antibiotic produced by Streptomyces ahygroscopicus var. wuzhouensis, and
it has a strong antimicrobial effect and can enhance host disease resistance by inducing
the activity of defense enzymes [46]. Honokiol is a polyphenolic compound obtained
from Magnolia officinalis and can inhibit fungal mycelial growth by inducing apoptosis and
autophagy [47]. These two active ingredients of biological fungicides displayed excellent
inhibitory activities against F. graminearum isolate CY2 in vitro, suggesting that they are
potential environmentally safe fungicides for treating brown leaf spot disease caused by
F. graminearum in kiwifruit. However, their control efficacies against brown leaf spot disease
in the field should be further investigated. Specifically, their mechanisms of antifungal
action remain unknown and require further study.

4. Materials and Methods
4.1. Sampling, Isolation, and Purification

Leaf samples were collected from kiwifruit plants in the ‘Guichang’ kiwifruit or-
chards (Actinidia deliciosa cv. ‘Guichang’) in Xifeng County, Guizhou Province, China
(27◦3′15.74” N, 106◦31′13.9” E). Infected leaf tissue was cut into small pieces (5 mm × 5 mm),
and their surfaces were disinfected with 75% ethanol and washed with sterile distilled
water thrice. The cleaned tissue samples were dried on sterile absorbent paper and then
transferred onto PDA plates. The inoculated plates were incubated at 25 ◦C in a growth
chamber for four days. The emerging fungal hyphae were transferred to fresh PDA plates
for further culture. The obtained isolates were preserved in 20% (v/v) glycerin at −20 ◦C.

4.2. Pathogenicity Tests

Testing pathogenicity according to Koch’s postulates [48], the fungal isolates with var-
ious colony morphologies were cultivated on PDA (for most isolates) at 25 ◦C for six days.
For isolate CY2, the CLA Petri plate was used, as F. graminearum could easily produce
spores on this medium [21]. The conidia were detached using a sterilized glass sprayer,
and the conidial concentration was adjusted to 1 × 106 conidia mL−1 using a cytometer
(Solarbio Science and Technology Co., Ltd., Beijing, China). Healthy kiwifruit leaves (cv.
‘Guichang’) were surface disinfected in 0.1% NaOCl, washed with water, and air dried.
Two methods were used for inoculation: wounded and unwounded inoculation [23–25].
For wounded inoculation, kiwi leaves were pierced three times with a sterile needle, after
which the pierced sites were inoculated with 5 µL of spore suspension or the same amount
of sterile water (control). For unwounded inoculation, 500 µL of spore suspension was
evenly sprayed on healthy kiwi leaves on the right side of the major vein, and 500 µL of
sterile water was sprayed on the left side (control). All leaves with petioles were wrapped in
wet cotton to retain moisture. Three replicates of each treatment were performed to assess
the pathogenicity of each isolate, and the pathogenicity assay was repeated three times.
The artificially inoculated leaves were cultivated in a growth chamber at 25 ◦C with 90%
relative humidity and a light time of 12 h per day. The pathogen was re-isolated from the
lesion area of inoculated leaves that developed symptoms and identified morphologically.
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4.3. Morphological Characterization

The purified pathogenic fungus discs (d = 6 mm) were inoculated on PDA for mycelial
growth and on CLA for macroconidium production. After culturing at 25 ◦C for six days,
the culture characteristics of hyphae and macroconidia were observed and recorded using
a binocular microscope (Leica DM500, Leica Microsystems (Shanghai) Trading Co., Ltd.,
Shanghai, China).

4.4. DNA Extraction, PCR Amplification, Sequencing, and Phylogenetic Analysis

After the culture at 25 ◦C for six days, the mycelia were collected and freeze dried
in a vacuum freeze-dryer (LGJ-10E, Beijing Sihuan Scientific Instrument Factory Co.,
Ltd., Beijing, China). Genomic DNA was extracted using the Ezup Column Fungal Ge-
nomic DNA Extraction Kit (Sangon Bioengineering Ltd., Shanghai, China). The primers
ITS1/ITS4 [49], EF1-728F/EF1-986R [50], and RPB2-5F2/fRPB2-7cR [51,52] were used to
amplify the ribosomal DNA internal transcribed spacer (ITS) region, translation elongation
factor 1-alpha encoding gene (TEF-1α), and the second largest subunit of RNA polymerase
II encoding gene (RPB2) genes, respectively (Table 3). Polymerase chain reaction (PCR)
amplification was carried out in a Bio-Rad T100TM Thermal Cycler (Bio-Rad Laboratories
Co., Ltd., Shanghai, China) in a 20 µL reaction mixture comprising 10 µL of 2×Taq PCR
StarMix with a loading dye (Sangon, Inc., Shanghai, China), 1 µL of the DNA template,
1 µL of each primer, and 7 µL of ddH2O. The PCR conditions were as follows: initial
denaturation at 94 ◦C for 2 min, 35 cycles of amplification (denaturation at 94 ◦C for 30 s,
annealing at 60 ◦C for 30 s, and extension at 72 ◦C for 60 s), and a final extension at 72 ◦C
for 10 min. Sequencing of the PCR products was conducted by Sangon Bioengineering Ltd.
(Shanghai, China), and the BLAST network service was used to compare the sequences
with other sequences deposited in GenBank for similarity analysis.

Table 3. Primers used in the present study.

Target
Region/Gene Description Primer Sequence 5′→ 3′ Reference

ITS
Region with ribosomal RNA genes

and two internal transcribed spacers
ITS1 TCCGTAGGTGAACCTGCGG

[26]ITS4 TCCTCCGCTTATTGATATGC

TEF-1α Translation elongation factor 1-α gene EF1-728F CATCGAGAAGTTCGAGAAGG
[27]EF1-986R TACTTGAAGGAACCCTTACC

RPB2
Second largest subunit of RNA

polymerase II
fRPB2-7cR CCCATRGCTTGTYYRCCCAT [28]
RPB2-5F2 GGGGWGAYCAGAAGAAGGC [29]

Reference sequences of species closely related to the isolated pathogens were obtained
from GenBank for the construction of an ITS–TEF-1α–RPB2 phylogenetic tree. Multiple
sequence comparison by log expectation (MUSCLE) was used to perform sequence align-
ments. Phylogenetic relationships were determined by MEGA v7.0 (Mega Limited Inc.,
Auckland, New Zealand) using the neighbor-joining method (bootstrap analysis with
1000 replicates), and Fusarium acuminatum was used as an outgroup [53,54].

4.5. Biological Characteristics of Isolate CY2

The biological characteristics of the isolate were investigated, as described in previous
studies, by evaluating the effects of temperature, pH, carbon source, nitrogen source, and
light on the mycelial growth of the fungal pathogen [2,10,55]. The pathogen was cultured
on PDA medium in darkness at 10–30 ◦C to determine the optimum culture temperature
and at pH 3–10 to determine the optimal pH value. Czapek Dox agar (CDA; Beijing Land
Bridge Technology Co., Ltd., Beijing, China) containing equal carbon quantity of (Glu,
Sol, d-fructose (D-Fru), maltose (Mal), and lactose (Lac) instead of sucrose (Suc) was used
to determine the optimal carbon source, and the medium with no carbon source was
used as blank control (CK); and CDA containing equal nitrogen quantity of (NH4)2SO4,
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urea (Ure), Yea, peptone (Pep), and NH4Cl instead of NaNO3 were used to determine the
optimal nitrogen source, while the medium with no nitrogen source was used as blank
control (CK). The pathogen was cultured on PDA at a photoperiod of 24 h light, 24 h
darkness, or 12 h light/12 h darkness to determine the influence of light time on its growth.
For each evaluation, the pathogen was cultivated on PDA Petri dishes (d = 9 cm) before
transferring the mycelial discs (d = 6 mm) from fungal colonies to the center of the plates
with three replicates. Except for the temperature and light treatment, all other treatments
were cultured in darkness at 25 ◦C for four days, and colony diameter was measured in
two vertical directions.

4.6. In Vitro Toxicity Tests

In vitro toxicity of several active ingredients of biological fungicides against the isolate
CY2 was evaluated according to Xing’s method [56]. Active ingredients of biological
fungicides were dissolved in organic solvent N,N–dimethylformamide (DMF) to prepare
stock solutions, which were then diluted with water and added into the PDA medium to
obtain different concentrations (Table 4). Fungicide-free PDA was used as control. Mycelial
discs (d = 6 mm) from the periphery of the colonies were inoculated at the center of the
plate. After incubation at 25 ◦C for five days, mycelial diameters were measured in two
vertical directions. Three replicates were evaluated for each treatment, and one plate was
randomly selected from each treatment and photographed using a digital camera (ZV-1,
Sony Co., Ltd., Beijing, China). The growth inhibition rate was calculated according to the
following Formula (1):

Growth inhibition rate = 100% × (Dc − Dt)/(Dc − 6) (1)

where Dc is the diameter of the colony on the control plate, 6 mm is the diameter of
inoculated mycelial discs, and Dt is the diameter of the colony grown on plates with
different concentrations of active ingredients of biological fungicides. The growth inhibition
rate of each treatment concentration was converted into a probability value, and the
concentration was converted into a logarithmic value. The toxicity regression equation,
determination coefficient (R2), and EC50 values of each treatment were calculated using the
DPS data processing system [57].

Table 4. Concentration gradient of different active ingredients of biological fungicides used for
treating isolate CY2.

Active Ingredients of
Biological Fungicides Manufacturer

Concentration Gradient (µg mL−1)

T1 T2 T3 T4 T5

98% Honokiol DP Shanghai Macklin Biochemical
Co., Ltd., Shanghai, China 4 8 16 32 64

98% Matrine DP Aladdin Industrial Corporation,
Shanghai, China 4 8 16 32 64

1.5% Tetramycin AS Liaoning Wkioc Bioengineering
Co., Ltd., Shenyang, China 4 8 16 32 64

97% Citral AS Aladdin Industrial Corporation,
Shanghai, China 5 10 20 40 80

98% Baicalein DP Shanghai Macklin Biochemical
Co., Ltd., Shanghai, China 10 20 40 80 160

DP, dust powder; AS, aqueous solution.

4.7. Data Analysis

The data were analyzed using Microsoft Excel 2010 (Microsoft Inc., Redmond, WA,
USA) and visualized using Origin v7.0 (Origin Lab Corporation, Northampton, MA,
USA) [58]. One-way analysis of variance (ANOVA) was conducted with DPS v16.0 (Ruifeng
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Information Technology Co., Ltd., Zhejiang, China), and Duncan’s multi-range test was
used to determine statistical significance at p < 0.05 [57].

5. Conclusions

In this study, we aimed to determine the causal agent of brown leaf spot disease
observed in kiwifruit orchards in Guizhou. Based on Koch’s postulates, morphological
identification, and molecular characteristics, F. graminearum was identified as the fungal
pathogen causing this disease in kiwifruit. To the best of our knowledge, this is the first
study to report that brown leaf spot on kiwifruit was caused by F. graminearum. Furthermore,
the biological characteristics of F. graminearum CY2 were investigated, and the inhibitory
effects of several active ingredients of biological fungicides on its growth were evaluated.
Our findings are significant for the prevention and control of this important pathogen.
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