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ABSTRACT 

Proteus mirabilis, a gram negative bacterium, represents a common cause of 

complicated urinary tract infections (UTIs) in catheterized patients or those with 

functional or anatomical abnormalities of the urinary tract.  To systematically identify 

surface-exposed antigens, proteins in the outer membrane fraction of bacteria were 

separated by 2D gel electrophoresis and subjected to Western blotting with sera from 

mice experimentally infected with P. mirabilis.  Proteins recognized by sera were 

identified by mass spectrometry.  Thirty-seven antigens (including 24 outer membrane 

proteins) to which a humoral response had been mounted were identified; these antigens 

are presumably expressed during infection and therefore represent potential virulence 

factors.  Six representative antigens were selected for further study.  Of these antigens, 

three played no apparent role in pathogenesis, as strains with isogenic mutations were not 

attenuated in the mouse model of ascending UTI: a putative secreted 5’-nucleotidase 

(PMI0047), RafY (PMI0288), and FadL (PMI1810).  However, two putative iron 

acquisition proteins, PMI0842 and PMI2596, both contribute to fitness in the urinary 

tract.  The sixth antigen, ZnuB (PMI1150), was annotated as the inner membrane 

component of the high affinity zinc (Zn2+) transport system ZnuACB.  Components of 

this system have been shown to contribute to virulence in other pathogens; therefore, the 

role of ZnuACB in P. mirabilis was investigated by constructing a strain with an 

insertionally interrupted copy of znuC.  The znuC::kan mutant was more sensitive to zinc 

limitation than wild type, was outcompeted by wild type in minimal medium, displayed 



xi 

reduced swimming and swarming motility, and produced less flaA transcript and flagellin 

protein. Production of flagellin and swarming motility were restored by complementation 

with znuCB in trans.  Swarming motility was also restored by the addition of Zn2+ to agar 

prior to inoculation.  ZnuC offers a competitive advantage during urinary tract infection.  

Since we demonstrated a role for PMI0842, PMI2596, and ZnuC in UTI, we hypothesize 

that there is limited iron and zinc present in the urinary tract and that P. mirabilis must 

scavenge these ions to colonize and persist in the host. 
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CHAPTER I. Introduction 

Proteus mirabilis, a causative agent of complicated urinary tract infections 

General introduction to P. mirabilis 

Proteus mirabilis is a motile, Gram negative bacterium.  The genus Proteus is a 

member of the family Enterobacteriaecae (178, 179).  The first description of Proteus 

bacteria was made in 1885 by Hauser, who named them for the character in Homer’s 

Odyssey who ‘has the power of assuming different shapes to escape being questioned’ 

(81).  This name is most likely in reference to the most distinguishing characteristic of 

Proteus species, swarming motility.  Swarming motility is a specialized form of motility 

which involves the differentiation of bacterial cells into elongated forms that become 

covered with flagella; the cells then migrate across surfaces en masse.  This characteristic 

behavior is described in more detail below.  There are currently four recognized species 

of Proteus: P. mirabilis, P. penneri, P. vulgaris, and P. myxofaciens (179).  These 

Proteus species are widely disseminated in the environment and are found in soil and 

water samples.   

Three of the four species (all except P. myxofaciens) are also associated with 

opportunistic human infections.  Of these three, P. mirabilis is most often isolated from 

infections; it is hypothesized that the reason may be a higher carriage rate of P. mirabilis 

in human intestines.  P. mirabilis has been isolated from the respiratory tract, eyes, ears, 

throat, skin, and burns and is speculated to be a possible cause of gastroenteritis (41, 90, 
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178, 189).  P. mirabilis is also a major cause of complicated urinary tract infection (UTI).  

In addition to its role as an opportunistic pathogen, there also appears to be a connection 

between infection with P. mirabilis and rheumatoid arthritis (54, 55, 184); it is proposed 

that subclinical urinary tract infection with P. mirabilis may lead to the development of 

cross-reactive antibodies.   

Complicated UTI 

 As briefly mentioned above, P. mirabilis is a major causative agent of 

complicated UTI.  Perhaps it is not surprising, given its identity as an opportunistic 

pathogen, that P. mirabilis is rarely associated with UTI in patients that are otherwise 

considered healthy; these types of infections, often referred to as community-acquired or 

uncomplicated UTIs, are caused by Escherichia coli in the vast majority of cases (204, 

242).  Instead, P. mirabilis is associated with complicated UTIs that occur in patients 

who have functional or anatomical abnormalities in the urinary tract or are undergoing 

catheterization (243, 244).  Catheter-associated UTIs are the most common type of 

nosocomial infection, totaling over one million cases annually (225).  Although 

complicated UTIs are often polymicrobial, P. mirabilis has been documented in as many 

as 44% of cases (244).  Other bacterial species commonly detected in polymicrobial UTIs 

include E. coli, Klebsiella pneumoniae, Providencia stuartii, and Morganella morganii, 

as well as the other Proteus species P. penneri and P. vulgaris (149).  Another important 

distinction between uropathogenic E. coli (UPEC) and P. mirabilis, besides the types of 

UTIs they cause, is that UPEC are a very specific subset of E. coli; however, it appears 

that all strains of P. mirabilis, regardless of isolate origin, are capable of causing UTI 

(176, 216). 
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UTIs typically occur in an ascending fashion.  Bacteria colonize the periurethral 

area and gain access to the bladder through the urethra; in catheterized patients, 

colonization of the catheter provides direct access to the bladder.  Once bladder 

colonization has occurred, bacteria can ascend the ureters to gain access to the kidneys.  

From there, the infection may spread into the bloodstream.  Proteus UTIs are typically 

persistent infections that are difficult to treat (189).  Complications of these infections 

include the development of bacteriuria, urinary tract obstruction, and the formation of 

bladder and kidney stones (209, 241, 244).  In catheterized patients, P. mirabilis UTI can 

lead to catheter encrustation, which can subsequently result in obstruction of the flow of 

urine through the catheter.  Once the infection has reached the kidneys, severe 

histological damage can occur.  These infections, if left untreated, can result in sepsis 

(246). 

 The serious complications that can result from and the public health impact of P. 

mirabilis UTIs have resulted in vigorous research into the bacterial virulence factors that 

contribute to this disease (45, 90, 189).  P. mirabilis HI4320 is a prototypical UTI isolate 

that was recovered from the urine of an elderly female nursing home patient with an 

indwelling catheter (149); recently, this strain was sequenced and annotated, which 

provided new insight into putative virulence factors encoded by this species (174).  The 

development of a vaccine against P. mirabilis is also an active area of research.  There is 

a defined population that would benefit from its development, namely, patients with 

known abnormalities of the urinary tract or those at the onset of long-term 
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catheterization.  Considering the difficulty in treating these infections once they occur, a 

vaccine could have a major impact on patient care.   

  

Swarming motility 

As alluded to above, perhaps the most distinctive characteristic of P. mirabilis 

(and other Proteus species) is swarming motility.  Swarming motility, simply defined, is 

“the movement of highly elongated and flagellated swarm cells across the surface of a 

solid medium in periodic cycles of movement and consolidation” (250).  Considering the 

fact that this specialized form of motility was first reported by Hauser in 1885 (81), and 

has therefore been the subject of research for almost 125 years, our understanding of this 

behavior is still relatively poor. 

P. mirabilis cultured in broth (referred to as vegetative swimmer cells) are 

typically 1-2 μm long; after inoculation onto solid agar medium, the cells undergo a 

drastic morphological change and they increase to 20-80 μm in length.  As the shorter 

cells elongate, there is a corresponding increase in the number of flagella per cell; short 

cells typically have 1-10 flagella, but the number of flagella present on the elongated 

cells has been estimated to be between 500-5,000 (85).  In addition, the rate of DNA 

replication remains constant even though septation is inhibited (69); thus, swarmer cells 

are polyploid. These morphological changes are referred to as the process of 

differentiation; differentiation is required for swarming motility.  Swarming is typically 

thought about in terms of three stages: differentiation into swarmer cells, the migration of 

swarmer cells across a surface, and de-differentiation (or consolidation, the return to 

shorter cells).  In addition, it is possible that recognition of an environmental cue is 



5 

necessary to begin differentiation.  A defect at any stage of this process could result in 

either abnormal or a complete lack of swarming. 

It is important to distinguish between swimming motility and swarming motility.  

Although both are forms of flagellar-mediated motility, they are quite different from each 

other.  Swimming motility is thought of as an individual endeavor, while swarming 

requires movement of a group of bacteria (80).  Individual swarmer cells do not have the 

ability to swarm by themselves (34).  Proteus swarming is also different from the 

swarming motility observed in other types of bacteria; Proteus swarming seems to be 

uniquely regulated in temporal cycles (8).  This temporal regulation is easily observed by 

monitoring swarming motility over the surface of agar plates, and is the cause of the 

characteristic bulls-eye pattern of swarming colonies.  

Although early reports hypothesized that the formation of swarm cells was a 

response to the deterioration of nutritional conditions (akin to a stress response (152, 

191)), it is now generally accepted as a normal part of the life cycle of P. mirabilis.  Early 

reports also suggested that swarming was a negative chemotactic response (129), but later 

reports refuted those claims (249).  Although the cues that initiate swarming are not 

completely understood, the inhibition of flagellar rotation and sensing of glutamine play a 

role (8, 9, 27, 30). 

One of the reasons that swarming behavior is not better understood probably 

stems from that fact that much of what is known has been deduced from identifying 

strains with mutations that affect swarmer cell differentiation and migration (26-28, 30, 

185).  Swarming is a complex process that is apparently affected by many genes.  Thus, it 

has not been easy to identify a common thread between many of these mutations.  
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Combining these vast amounts of data in a meaningful way has been challenging, and 

swarming motility is still an active area of research. 

Pathogenesis during UTI 

Discovery of much of the information in the following section has been made 

possible by the availability of a mouse model for ascending urinary tract infection.  Most 

of this work was carried out using a modification of the protocol designed by Hagberg 

and colleagues (75).  This procedure involves the sedation and temporary catheterization 

of mice; the inoculum is delivered through the catheter and introduced directly into the 

bladder.  In general, most studies from our lab have utilized CBA/J mice; others have 

used BALB/c mice.  This mouse model has been extremely valuable, especially since it 

recapitulates many important aspects of human infection.  Bladders and kidneys of mice 

can be colonized.  P. mirabilis can also spread from the tissues of the urinary tract to 

cause a systemic infection, as assessed by enumerating bacteria present in the spleen 

following transurethral inoculation.  Additionally, stone formation in the urinary tract 

occurs, which is a hallmark of infection with P. mirabilis in human patients.  In addition 

to an animal model, in vitro cell culture systems have also been utilized to characterize 

various virulence factors.  Importantly, P. mirabilis is amenable to genetic manipulation; 

although not as straightforward as in E. coli, the generation of isogenic mutations is 

possible.   

Flagella-mediated motility 

When the annotation of the P. mirabilis HI4320 genome was completed, perhaps 

one of the most surprising findings was that all flagellum-related genes are located 

together within a single locus, which is highly unusual (174).  Another interesting feature 
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is the copy of multiple genes encoding flagellin, flaA and flaB, which are located in direct 

proximity to each other (29).  Normally, the flaA allele is expressed while flaB is silent 

(25).  However, these genes can recombine, resulting in the formation of antigenically 

distinct flagella (25, 160).  Considering that flagellin is strongly antigenic, it has been 

postulated that this recombination could contribute to immune evasion during infection. 

The regulation of flagella-mediated motility in P. mirabilis appears to be similar 

to that in E. coli.  That is, there appears to be a hierarchy of regulation composed of three 

classes (42, 217).  Class I is comprised of FlhDC, the “master regulators” of flagellar 

motility.  The FlhDC complex activates expression of Class II genes, which encode 

proteins necessary for basal body and hook formation, as well as FliA.  Production of 

FliA, a transcription factor, results in the expression of the Class III genes, including 

flagellin. 

The contribution of swarming motility to virulence of P. mirabilis remains a topic 

of great debate in the field (6, 7, 92, 143, 260).  Interestingly, it appears that the 

expression of at least some virulence genes seems to be higher in swarmer cells than 

vegetative cells (10, 62, 239).  However, in vivo, it appears that swarmer cells are in the 

minority (92, 257).  It has been well documented that P. mirabilis can swarm across the 

surface of urinary catheters (102, 154, 194); therefore, it seems likely that this 

morphotype is encountered during human infection, at the very least during early stages. 

 It is difficult to apply classical genetic methods to distinguish between the 

contributions of swimming and swarming motility in vivo, since both types of motility are 

flagella-mediated.  It is clear, however, that the production of flagella contributes to 

pathogenesis.  A nonmotile mutant lacking flagella was generated by interrupting flaD, 
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which encodes the flagellar cap protein; this mutant synthesizes wild-type levels of FlaA 

but cannot assemble flagella (143).  The FlaD- strain was significantly impaired in its 

ability to infect mice; this strain was recovered in numbers approximately 100-fold lower 

than the control strain (143).  However, flagella do not appear to be absolutely necessary 

for infection, as a P. mirabilis strain lacking flagella has been isolated from a human UTI 

patient (260). 

Fimbriae 

A role for fimbriae in P. mirabilis pathogenesis was suggested 35 years ago when 

microscopic evaluation of renal tissue from infected rats revealed the presence of piliated 

bacteria (212).  The strain of P. mirabilis used in the study was isolated from a patient 

experiencing UTI and produced two distinct types of fimbriae; one was 4 nm thick and 

the other was 7 nm thick (212).  These fimbriae could be selected for based on culture 

technique; bacteria cultured to enrich for the 7 nm fimbria were more virulent in the rat 

model than bacteria cultured to enrich for the 4 nm think fimbria (212). 

Historically, fimbriae of P. mirabilis were characterized by their 

hemagglutination (HA) properties and fell into two classes based on this activity: 

mannose-resistant/Proteus-like (MR/P) and mannose-resistant/Klebsiella-like (MR/K).  

As the names imply, HA activity of both types of fimbriae was resistant to mannose (i.e., 

addition of mannose did not inhibit HA); fimbriae with MR/P activity resulted in 

agglutination of fresh (but not tannin-treated) erythrocytes, while fimbriae with MR/K 

activity resulted in agglutination of tannic acid-treated (but not fresh) erythrocytes. MR/K 

HA activity appeared to be associated with thin fimbriae (approximately 4-5 nm wide), 

and MR/P HA activity was associated with thicker fimbriae (7-8 nm wide) (167).  A 
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collection of P. mirabilis strains was assessed for MR/P and MR/K HA activity; 100% of 

strains displayed both types of activity (1, 167).  MR/P activity resulted in agglutination 

of erythrocytes from a broad spectrum of species; the majority of strains were able to 

agglutinate fowl, guinea pig, horse, sheep, and human erythrocytes (1, 167).  The MR/P 

HA activity has been associated with the MR/P fimbriae encoded by P. mirabilis 

(discussed in detail below), while the fimbria(e) responsible for MR/K HA activity 

remains unclear.  

Recently, the sequencing and annotation of P. mirabilis strain HI4320 revealed that a 

plethora of putative fimbriae are encoded in the genome; there are 17 chaperone-usher 

fimbrial operons and 13 additional orphan fimbrial genes (not associated with a complete 

operon) (174).  Given that P. mirabilis can express more than one type of fimbriae at the 

same time (1, 21, 112, 144, 167, 212) and the large number of putative fimbriae encoded 

in the genome of at least one uropathogenic isolate (174), work characterizing P. 

mirabilis fimbriae must be performed with carefully designed controls.  

To date, only five of these fimbriae have been characterized experimentally: 

mannose-resistant/Proteus-like (MR/P), uroepithelial cell adhesin (UCA, also called NAF 

for nonagglutinating fimbriae), ambient temperature fimbriae (ATF), Proteus mirabilis 

fimbriae (PMF), and Proteus mirabilis P-like fimbriae (PMP).  These fimbriae are 

described in greater detail below.   

MR/P 

As described above, mannose-resistant/Proteus-like (MR/P) HA activity and 

associated fimbriae were first described and assessed in P. mirabilis by hemagglutination 

and microscopy (1, 167, 212).  The fimbria associated with this activity was identified 
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and named the MR/P fimbria (21).  Genes responsible for production of MR/P fimbriae 

are contained within two divergently transcribed segments, mrpABCDEFGHJ and mrpI 

(23).   

Structural components of the fimbria are encoded on the mrpABCDEFGHJ 

transcript: MrpA is the major pilin (22, 23); MrpB is the fimbrial terminator (122); MrpE, 

MrpF, and MrpG are predicted to be minor pilins (23); and MrpH is the tip adhesin (119).  

MrpC and MrpD are the putative usher and chaperone, respectively, that aid in assembly 

and secretion of the fimbria (23).  MrpJ, a regulatory protein that is not a structural 

component of the fimbriae (119), is described in more detail in the next section of this 

chapter (Reciprocal regulation of adherence and motility, below).  MrpI is a recombinase 

that regulates expression of MR/P fimbriae.  Downstream of mrpA, there is a putative 

stem-loop structure that is hypothesized to function as a transcriptional terminator or 

attenuator (22, 23); this structure would allow for production of greater amounts of MrpA 

(the major structural subunit) relative to the other proteins (including the minor subunits) 

that are encoded downstream on the same transcript. 

As described above, mrpI and mrpABCDEFGHJ are divergently transcribed (23).  

Promoter sequences have only been found upstream of mrpI and mrpA, suggesting that 

genes mrpABCDEFGHJ are located on one transcript (23).  The intergenic region 

between mrpI and mrpA contains an invertible element flanked by inverted repeats (255).  

This invertible element contains a canonical σ70 promoter that, when in the proper 

orientation, drives expression of mrpA (255).  MrpI is the recombinase that controls 

switching of the invertible element (255).  MrpI mediates bi-directional switching; that is, 

MrpI can change the promoter position both from ON to OFF (thereby shutting off 
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expression of MR/P fimbriae) and also from OFF to ON (thereby turning on fimbrial 

expression) (255).  Furthermore, MrpI is the sole recombinase that performs these 

functions; an isogenic null mutant is incapable of changing promoter orientation (121).  

In contrast to mrpA, expression of mrpI is independent of invertible element orientation 

(255).  The development of a PCR-based screen that differentiates between MR/P ON 

and MR/P OFF bacteria within a given population has proven a valuable tool for studying 

MR/P fimbrial expression and regulation (255).  In addition, generation of the mrpI null 

mutant (which, again, is incapable of mediating switching of the invertible element) 

allowed the isolation of strains that had the promoter permanently in either the ON or the 

OFF position (the “locked on” or L-ON strain and the “locked off” or L-OFF strain, 

respectively) (121). 

Strains of P. mirabilis with mutations in mrpA, mrpB, mrpG, and mrpH have 

contributed to understanding of the function of MR/P fimbriae and the roles of these 

individual components.  MrpA, MrpG, and MrpH are required for the formation of 

fimbriae on the surface of the bacterial cell (21, 119, 125, 259).  Perhaps it is not 

surprising, then, that most of these proteins are also required for MR/P HA activity (21, 

119, 125, 259).  MrpH, the tip adhesin, functions as the hemagglutinin (119); site-

directed mutants of MrpH in lacking N-terminal cysteine residues (C66S and C128S), 

when expressed in E. coli, allowed formation of fimbriae but lacked HA activity (119).  

However, MrpH may not be the only source of MR/P HA activity in P. mirabilis; the 

MrpH mutant retained limited HA activity (119).  In contrast, the MrpG mutant (which 

does not assemble fimbriae) lacked detectable HA activity (125).  The reason for this 

discrepancy is unclear.  The MrpB mutant produced significantly longer fimbriae than 
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wild type, yet displayed reduced HA activity (122); it was hypothesized that the longer 

fimbriae were more fragile and more prone to being sheared off the surface during 

sample preparation, resulting in the loss of the hemagglutinin (MrpH) (122).   In addition, 

wild-type bacteria that overexpressed MrpB had significantly shorter fimbriae than wild 

type (122).  These phenotypes are consistent with a role of MrpB as a fimbrial terminator 

protein, meaning that when MrpB is inserted into growing fimbriae, subunit addition is 

terminated.   

MrpA mutants retained normal urease production, hemolytic activity, and 

adherence to exfoliated uroepithelial cells collected from healthy human volunteers (21, 

259).  However, adherence of an MrpA mutant to T24/83 (derived from a human bladder 

carcinoma) and HEp-2 (human laryngeal carcinoma) cells cultured in vitro was 

diminished significantly when compared with the adherence of wild type (188, 259).  

MrpA mutants retained normal swarming activity (21, 259), as did the L-ON strain (93).  

However, the L-OFF strain swarmed significantly more than both wild-type and L-ON 

strains (93). 

MR/P fimbriae have also been implicated in autoaggregation (119, 188) and 

biofilm formation (93, 188).  The L-ON strain developed mature biofilms faster than the 

wild-type and L-OFF strains (93).  However, the ability to regulate MR/P expression is 

important in biofilm formation as well, since both L-ON and L-OFF strains ultimately 

produced thinner biofilms than the wild-type strain (93). 

Initial studies revealed that sera from infected mice reacted strongly to MR/P 

fimbrial preparations, which indicates these fimbriae are expressed in vivo (20).  The 

expression of MR/P fimbriae appears to be highly induced during infection (121, 255).  
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Culture under oxygen limitation in vitro induces MR/P expression (111). Since the 

urinary tract is proposed to be oxygen-limited (215), this condition could contribute to the 

upregulation of MR/P fimbriae observed in vivo.  Many of the mutants described above 

have been assessed in the mouse model of UTI.  The MrpA mutant of strain HI4320 was 

able to colonize mice, but was recovered in statistically significantly lower numbers than 

the wild-type strain from urine, bladders, and kidneys of infected mice (21).  Therefore, 

MrpA is not absolutely required for infection, but contributes significantly to the ability 

of P. mirabilis to colonize the host.  This mutant also resulted in significantly less severe 

renal damage than the wild-type strain, although this phenotype could be a function of the 

reduced colonization observed during infection (21).  Not surprisingly, an MrpA mutant 

in another strain (Pr2921) was also outcompeted by wild type in the urinary tract during 

cochallenge and was significantly less infectious than wild type in an intravenous 

infection model (259).  The MrpG mutant colonized mice significantly less than the wild-

type strain (as assessed by quantitative culture of urine, bladders, and kidneys of infected 

mice) (125).  The MrpH mutant colonized infected mice just as well as the wild-type 

strain during independent challenge but was outcompeted by wild type in urine, bladders, 

and kidneys during cochallenge (119); these data suggest MrpH is not required for 

colonization but contributes to the fitness of P. mirabilis during infection.  It is interesting 

that the MrpH mutant was able to colonize mice just as well as wild type while MrpA and 

MprG mutants were not; these mutants all lack fimbriae on the surface (21, 119, 125, 

259), so the reason for this phenotypic difference is not clear.   

The L-ON and L-OFF mutants have also been utilized to assess the importance of 

MR/P fimbriae in vivo.  There is no difference in colonization levels of L-ON, L-OFF, 
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and the wild-type strain during independent challenge (121).  The L-OFF data correlate 

with MrpH mutant independent challenge data; that is, both experiments suggest that 

MR/P fimbriae are not required for infection. However, during cochallenge, L-OFF was 

significantly outcompeted by the wild-type strain in urine, bladders, and kidneys of 

infected mice (121), suggesting that MR/P fimbriae do, in fact, contribute a competitive 

advantage to P. mirabilis during infection.  In another cochallenge experiment, the L-ON 

strain significantly outcompeted the L-OFF strain in bladders (but not kidneys) of 

infected mice (121).  The L-ON strain also significantly outcompeted the wild-type strain 

in bladders (but not kidneys) during cochallenge (121).  This particular result is 

somewhat surprising, considering that MR/P fimbriae are thought to be highly expressed 

in vivo by wild type (121, 255).  Bacteria used for inoculation were cultured under 

conditions in which the wild-type cells would not have been synthesizing MR/P fimbriae 

(121); since the L-ON strain constitutively expresses MR/P fimbriae, perhaps the 

difference in MR/P expression at the time of inoculation was sufficient to affect the 

outcome of infection. 

Despite differences in bladder colonization during infection, at least one study 

found that expression of MR/P fimbriae does not offer a quantitative advantage in 

adherence to bladder tissue in vivo (93).  However, the presence of MR/P fimbriae may 

lead to qualitative changes in tissue binding; the L-ON strain was observed to adhere 

predominately to uroepithelial cells while the L-OFF strain adhered to lamina propria in 

areas where bladder cells had sloughed off, exposing layers which are not routinely 

exposed (93).  MR/P fimbriae have also been proposed to facilitate binding to renal 

epithelium (199). 
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The mrp operon appears to be present in all isolates of P. mirabilis (23, 188).  

Additionally, MrpA from two clinical isolates were 100% identical, suggesting that the 

genes encoding MR/P fimbriae may be highly conserved (22, 259).  The genome 

sequence of strain HI4320 revealed the presence of a second mrp operon, termed mrp’, 

immediately adjacent to mrpI (174). The mrp’ operon is 66.7% identical to the mrp 

operon at the nucleotide level (174).  However, there does not appear to be an invertible 

element in the promoter region of mrp’, suggesting this operon is not subject to 

regulation by MrpI (174).  Interestingly, there are also two copies of mrpA in P. mirabilis 

Pr990 (259).  The presence of more than one copy of the mrp operon (or at least mrpA, in 

the case of Pr990) in two clinical isolates of P. mirabilis, suggests this phenomenon could 

warrant further study.  Zunino et al. speculated about the possibility of rearrangement of 

the two mrpA alleles (similar to what has been documented for flagellin genes flaA and 

flaB) (259); however, this hypothesis has not been experimentally evaluated.  

Furthermore, it has not yet been determined if the mrp’ operon is expressed, results in 

production of fimbriae, or affects any aspect of P. mirabilis pathogenesis.   

UCA (NAF) 

Uroepithelial cell adhesin (UCA) was initially discovered in a uropathogenic 

isolate of P. mirabilis (strain HU1069) during a screen designed to identify outer 

membrane proteins that facilitated binding to uroepithelial cells (251).  The identified 

UCA protein – the major structural subunit later designated UcaA – was purified to 

homogeneity for characterization; the purified protein retained the ability to bind to 

uroepithelial cells and, additionally, organized into long, flexible filaments with a 

diameter of 4 to 6 nm, consistent with the appearance of fimbriae (251).   
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N-terminal sequencing was performed on purified UCA.  The sequence of the 

first 25 amino acids of the UCA protein displayed more similarity to the K99 pilus of E. 

coli (which mediates binding to intestinal epithelium) than to adhesins from 

uropathogenic E. coli (251).  Subsequent determination of the sequence of the ucaA gene 

revealed that UcaA has the highest similarity to F17 and F111 fimbriae from bovine 

enterotoxigenic E. coli (33, 46). These findings led to postulation that UCA may function 

as a primary adhesin for P. mirabilis in the intestinal tract, although this hypothesis has 

not been experimentally tested (46, 251).  

UCA fimbriae have since been renamed nonagglutinating fimbriae (NAF) to 

distinguish them from other P. mirabilis fimbriae that contribute to adherence (228).  

(Here, the two terms are used interchangeably based on their use in original literature 

since there is a lack of consensus in the field and both names are still employed.)  Tolson 

and colleagues confirmed that what they designated the NAF subunit was identical to the 

previously identified UCA subunit based on N-terminal sequencing (228).  Pre-

incubation with monoclonal antibodies specific for NAF significantly reduced binding of 

P. mirabilis to HEp-2 and uroepithelial cells in vitro, providing additional evidence of a 

role for NAF in adherence to host cells (112, 228, 229). 

A survey of a small collection of P. mirabilis strains revealed that all isolates 

produced UcaA (228).  This conclusion was based on production of a protein of similar 

molecular weight to UcaA following the same purification technique used to isolate 

UcaA; protein bands were confirmed to be identical (or highly similar) to UcaA by N-

terminal sequencing (228).  UcaA was also purified from two P. mirabilis strains isolated 

from canine urine (33); N-terminal sequencing of UcaA from these canine isolates 
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revealed it as identical to that of the human isolate previously sequenced (33, 63, 251).  

UcaA appears to be present in 85-92% of P. mirabilis canine isolates (33, 63). 

The binding properties of NAF were investigated further by using a thin layer 

chromatography approach to screen for NAF binding to a panel of commonly occurring 

glycolipid families that have been shown to mediate binding of other bacterial species 

(113).  Purified NAF bound to asialo-GM1, asialo-GM2, and lactosyl ceramide (113).  

Binding to each glycolipid was concentration-dependent and was inhibited by treatment 

with monoclonal antibodies directed at NAF (113).  In addition, binding of P. mirabilis to 

Madin-Darby canine kidney (MDCK) cells cultured in vitro was inhibited by treating the 

kidney cells with an antibody directed against asialo-GM1 (113).  However, no asialo-

GM1 has been detected in MDCK cells (113, 166); therefore, the anti-asialo-GM1 

antibody must be cross reactive with another glycolipid on the cell surface of MDCK 

cells.  Interestingly, binding of P. mirabilis was not completely blocked by treatment with 

either anti-NAF or anti-asialo-GM1 antibodies, suggesting other bacterial adhesins and 

host cell factors, respectively, are likely involved in the binding process.   

Indeed, galectin-3 is an additional host factor to which NAF can bind (14).  

Galectin-3 was identified from and detected at the surface of MDCK cells, and galectin-3 

purified from MDCK cells bound to purified NAF in vitro (14).  Additionally, pre-

treatment with an anti-galectin-3 antibody partially inhibited P. mirabilis binding to 

MDCK cells (14); therefore, binding of P. mirabilis to MDCK cells can be mediated 

through galectin-3.  

UCA/NAF fimbriae do not appear to be responsible for the MR/K hemagglutinin 

activity of P. mirabilis; no hemagglutination was detected in P. mirabilis cultured for 
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optimal UCA/NAF expression or in E. coli expressing NAF during gain of function 

studies (46, 228, 251).  Given data supporting a role for these fimbriae in adherence to 

host cells, it is surprising that their role in virulence has not been assessed.  No such 

experiments have been reported to date, despite the availability of an animal model for P. 

mirabilis UTI.    

ATF 

Ambient temperature fimbriae (ATF) were named because they are expressed 

optimally during static culture in Luria broth at 23˚C (136).   They are also expressed, to 

a lesser degree, during static and aerated culture in Luria broth at 37˚C, but not during 

culture in minimal medium, on agar plates, or at higher temperatures (such as 42˚C) 

(136).  Expression of ATF does not correlate with hemagglutination (136, 258).  A small 

collection of both clinical and non-clinical isolates have been screened for production of 

ATF; all strains tested positive (136, 137, 258). Original sequencing of the fimbrial gene 

cluster revealed the presence of only three genes: atfA (encoding a structural subunit), 

atfB (encoding a chaperone), and atfC (encoding a molecular usher) (137). However, the 

complete genome sequence of P. mirabilis HI4320 corrected an artifact of earlier cloning 

efforts and revealed the presence of an additional three genes in the operon.  The 

complete gene cluster is now known to consist of atfABCDEJ (174).   

A clinical isolate of P. mirabilis was used to generate an isogenic allelic 

replacement mutant that was incapable of producing ATF (258).  The mutant maintained 

normal growth rate, hemolysis, urease activity, swarming motility, and hemagglutination 

properties (258). This mutant was also assessed in a mouse model of UTI.  No significant 

difference in the colonization levels of the mutant and parent strain were observed during 
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either independent or cochallenge (258).  Therefore, ATF do not appear to significantly 

contribute to the ability of P. mirabilis to colonize the urinary tract during experimental 

infection.  Perhaps these results are not surprising, given the temperature regulation 

observed for ATF.  It has been postulated that these fimbriae may play a role for 

adherence or survival of P. mirabilis outside the host. 

PMF 

Proteus mirabilis fimbriae (PMF) were identified from a crude fimbrial 

preparation of P. mirabilis strain HI4320 (19).  Sequencing of the locus revealed the 

presence of five genes that appear to be contained in one operon: pmfA (the major 

structural subunit), pmfC (a putative usher), pmfD (a putative chaperone), pmfE (a 

putative minor subunit), and pmfF (the putative tip adhesin) (139).  PMF appear to be 

widely distributed in both clinical and non-clinical isolates; either the pmfA gene or PmfA 

protein could be detected in every strain analyzed (19, 261).   

 Isogenic PmfA- mutants were constructed in two parent strains: HI4320 and 

Pr2921, another clinical isolate from a UTI patient (138, 261).  Both PmfA- strains 

retained urease and hemolytic activity as well as normal swarming motility (138, 261).  

In addition, PMF are not responsible for the MR/K HA activity of P. mirabilis since 

PmfA- HI4320 retained it (138).  PmfA- HI4320 adhered to exfoliated uroepithelial cells 

isolated from the urine of healthy human donors to the same degree as wild-type HI4320 

(138).  In contrast, PmfA- Pr2921 adhered significantly less than its parent strain to both 

exfoliated uroepithelial cells collected from urine and a cell line derived from a human 

bladder carcinoma (T24/83) cultured in vitro (261).  The reason for this discrepancy in 

the role of PMF in adherence of the two isolates is not clear; perhaps strain Pr2921 lacks 
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other adhesins encoded by HI4320 and PMF consequently play a greater role in 

adherence of Pr2921 than HI4320. 

 During experimental UTI in a mouse model, PmfA- P. mirabilis HI4320 

colonized the bladders of mice at levels statistically significantly lower than the wild-type 

strain (138); in contrast, kidney colonization was not affected by mutating pmfA.  These 

data suggest that PMF may bind to receptors on the bladder epithelium in vivo but that 

perhaps other adhesins may be more important in adherence to renal tissue.  PmfA- and 

wild-type Pr2921 were mixed together and used to infect mice in a cochallege 

experiment, which can be more sensitive at detecting subtle differences in fitness during 

infection.  The PmfA- strain was outcompeted by the wild-type strain, to a statistically 

significant level, in both bladders and kidneys of infected mice (261).  Again, it is 

unknown if a difference in the adhesins encoded by HI4320 and Pr2921 is responsible for 

the difference in kidney colonization.  Perhaps PmfA- HI4320 would also be 

outcompeted in the kidney during cochallenge; this experiment has not been reported in 

the literature.  Additionally, when mice were infected intravenously by tail vein injection, 

the PmfA- strain was recovered from kidneys of infected mice significantly less than the 

wild-type strain (261).  However, bacteria in the bloodstream were not quantified at the 

time of sacrifice, so it is unclear if the PmfA- strain was attenuated for growth or survival 

in the bloodstream or specifically in its ability to gain access to or colonize the kidneys. 

PMP 

Proteus mirabilis P-like fimbriae were identified from a canine UTI-associated 

strain of P. mirabilis (33).  The pmpA gene was found in 24 of 26 P. mirabilis strains 

tested for its presence.  Most of these strains were isolated from canine urine or feces 
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(33).  The genome sequence of strain HI4320 revealed that pmpA is also present in this 

clinical isolate from a human patient (174).  Furthermore, the genome sequence revealed 

that pmpA is contained in a cluster of genes with other putative fimbrial proteins, 

including a chaperone and an usher (174).  However, the prevalence of these genes in 

additional human isolates is currently unknown.  In addition, the contribution of PMP to 

adherence or virulence has not been assessed. 

Reciprocal regulation of adherence and motility 

 Sequencing of the entire MR/P fimbrial operon revealed the presence of the mrpJ 

gene (119).  The 107-amino acid protein encoded by this gene, MrpJ, was predicted to be 

a transcriptional regulator based on its sequence (119).  The presence of a transcriptional 

regulator following structural genes within a fimbrial gene cluster is not a common 

occurrence; thus, the function of MrpJ was investigated. 

 Interestingly, a strain of P. mirabilis HI4320 overexpressing MrpJ from a plasmid 

displayed reduced swimming and swarming motility compared to both the wild-type 

strain and a vector control (124).  Elevated expression of MrpJ coincided with reduced 

expression of FlaA (flagellin, the major subunit of the flagellum) and reduced production 

of flagella, as assessed by Western blot and electron microscopy, respectively (124).  

Since MrpJ contains a putative helix-turn-helix domain, it was hypothesized that MrpJ 

reduces motility by acting at the transcriptional level, perhaps by downregulating 

expression of flagellin.  Indeed, overexpression of MrpJ resulted in a reduction in flaA 

transcript (124).  Furthermore, overexpression of MrpJ also resulted in reduced 

transcription of flhDC, the so-called master regulators of the flagellar cascade (124).  

These data suggest that MrpJ acts either directly on flhDC or a target upstream of flhDC.  



22 

Based on the results of electrophoretic mobility shift assays, MrpJ binds the flhDC 

promoter (172).  

 The genome sequence of P. mirabilis HI4320 revealed the presence of 14 MrpJ 

paralogues (174).  Like mrpJ, 10 of these paralogues appear to be encoded within 

fimbrial operons; the remaining four are orphan genes (174).  Alignment of the sequences 

of MrpJ and paralogues resulted in the identification of a conserved sequence: 

SQQQFSRYE (172).  To investigate the importance of these conserved residues, a site-

directed mutagenesis approach was undertaken; each of these residues in MrpJ was 

replaced with an alanine (172).  All mutations within the conserved amino acids (with the 

exception of one) resulted in a loss of activity, which led to an increase in motility 

compared to wild-type MrpJ (172). Therefore, most of the residues in the conserved 

sequence contribute to the repression of motility.  In light of the common features shared 

by MrpJ and its paralogues, the effect of each of the paralogues on motility was 

investigated.  Similar to MrpJ, most of the paralogues, when overexpressed, led to a 

reduction in the production of FlaA and a repression of motility (172).  In addition, at 

least one paralogue, UcaA, binds to the flhDC promoter, suggesting this activity may be a 

common mechanism shared by at least some MrpJ paralogues (172).   

 Since expression of MrpJ, a protein encoded in a fimbrial operon, represses 

motility, this protein represents a means of coordinating regulation of two seemingly 

opposing aspects of pathogenesis: adherence and motility.  To investigate if this function 

is important during infection, a strain lacking MrpJ (ΔmrpJ) was generated and assessed 

for virulence in the mouse model of ascending UTI (124).  Following cochallenge, ΔmrpJ 

was recovered in significantly lower numbers than the wild-type strain from bladders and 
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kidneys of infected mice (124).  Thus, MrpJ offers a competitive advantage during 

infection.  However, it is difficult to confidently interpret the data in that way for two 

reasons.  First, ΔmrpJ had increased production of flagella, which could elicit a stronger 

host response (124).  It is unclear if this would contribute to the out-competition observed 

in vivo; since the wild-type and ΔmrpJ strains were present together, they presumably 

were exposed to the same host response during infection, but this possibility cannot be 

ruled out.  Second, MrpA levels were reduced in ΔmrpJ (124).  The reason for this 

reduction is unclear; the mutation should not have a polar effect on MrpA expression 

(since MrpJ is downstream of MrpA), and experimental data confirmed that MrpJ 

expression does not affect transcription of the mrp operon (124).  It is possible that 

deletion of mrpJ affects the stability of the mrpABCDEFGHJ transcript, but this 

hypothesis has not been experimentally tested.  Regardless of the reason for it, lower 

levels of MrpA complicates the interpretation of the ΔmrpJ infection data since MrpA 

contributes to virulence (21, 259).   

 Again, as stated above, the coordinated regulation of adherence and motility may 

be important to pathogenesis; both aspects of pathogenesis are important during infection 

but have seemingly opposing functions.  Perhaps it is not surprising, then, that there are 

other examples of coordinated expression of motility and adherence in bacteria.  In 

Bordetella pertussis, the two component system BvgAS represses the flagellar regulon 

and activates transcription of adhesin genes (3).  In Vibrio cholerae, mutations that affect 

motility directly feed back into the ToxR regulatory system and alter expression of the 

toxin co-regulated pilus (66).  In uropathogenic E. coli, the PapX protein appears to 

function in much the same ways as MrpJ functions in P. mirabilis; PapX is encoded at 
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the end of the P fimbrial operon and represses motility by affecting the transcription of 

flhD (213).  In fact, PapX acts as a functional homologue of MrpJ in P. mirabilis; 

expression of PapX in P. mirabilis resulted in decreased motility (124).  Considering the 

high number of fimbriae encoded by P. mirabilis, it is not surprising that there are so 

many MrpJ paralogues in this strain (174).  Teasing apart the function of each one may 

be difficult since they could possibly have overlapping or redundant function, and the 

exact function and mode of action of each paralogue has yet to be elucidated.   

Toxins 

Two toxins encoded by P. mirabilis, HpmA and Pta, have been characterized and 

are described below.  In addition to HpmA and Pta, activity of the enzyme urease also 

contributes to tissue damage in vivo; urease is discussed in greater detail later in this 

chapter. 

Hemolysin 

Based on surveys of clinical isolates, 94-100% of P. mirabilis strains produce 

hemolytic activity (106, 207, 224).  However, P. mirabilis strains lack the calcium-

dependent hemolysin encoded by hlyA in E. coli and hlyA homologs in P. vulgaris and  

M. morganii (106, 248).   The hemolytic activity encoded by P. mirabilis is calcium-

independent and the protein responsible for this activity was named HpmA (for 

hemolysin of Proteus mirabilis) (106, 248).  While initial reports identified this 

hemolytic activity as cell-associated (106, 207), later studies detected activity in cell-free 

preparations (207, 248); culture preparation and instability of secreted HpmA protein 

were proposed as reasons for this discrepancy.  The genes encoding HpmB and HpmA 

are cotranscribed, and the promoter region of hpmBA contains a putative Fur-binding site 
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(236). However, expression of hpmBA does not appear to be affected by iron limitation 

(S. Himpsl and H.L.T. Mobley, unpublished data).  HpmB is required for the secretion 

and activation of HpmA (236).   

In addition to its hemolytic activity, HpmA also demonstrates cytotoxic activities 

against African green monkey kidney cells and human B-cell lymphomas, monocytes, 

bladder epithelium, and renal proximal tubular epithelial cells cultured in vitro (4, 145, 

223).  Interestingly, although hemolytic activity was detected in the supernatant, 

cytotoxic activity was only observed with total cell culture (not cell-free supernatant) 

(223).  A strain of P. mirabilis with an interrupted copy of hpmA displayed neither the 

hemolytic nor the cytotoxic activity that was observed with the parent strain (223); these 

results suggest that the production of HpmA is required for both activities. 

Fifty strains of P. mirabilis with a range of hemolytic activity were each injected 

intravenously into mice; a highly significant correlation between hemolytic titer and LD50 

was observed (175).  Additionally, an HpmA- mutant of P. mirabilis had a significantly 

higher LD50 than its parent strain when injected intravenously (223).  However, in a 

mouse model of ascending urinary tract infection, there was no difference between the 

strains in terms of colonization or renal tissue damage (4, 143, 223). 

Proteus toxic agglutinin 

The recently described Proteus toxic agglutinin (Pta), an autotransporter with 

subtilisin-like serine protease activity, remains anchored at the bacterial surface (5).  Pta 

is one of six putative autotransporters encoded in the genome of P. mirabilis strain 

HI4320 (174).  It was identified as an outer membrane protein that reacts with sera from 

infected mice (165); see Chapter II.  Similar to the widespread distribution of hemolysin, 
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pta was detected in every fecal and UTI isolate tested; however, expression of pta was 

detected only in urinary isolates (4). 

Pta mediates autoagglutination of bacteria as well as toxicity against human 

bladder and kidney cells cultured in vitro (4, 5).  Generally, secreted autotransporters 

have cytotoxic properties while membrane-bound autotransporters mediate adhesion or 

aggregation; Pta is the first characterized autotransporter to date that remains membrane-

bound and exhibits both activities.  Cytotoxicity, but not autoagglutination, requires 

serine protease activity (5).  Pta is most active at alkaline pH (5), which is logical since 

the activity of the bacterial enzyme urease results in a local increase in urine pH during 

infection.  Indeed, both transcription and protein levels of Pta are increased when bacteria 

are cultured in alkaline conditions (5).  Temperature also affects transcript and protein 

level; culture at 37°C resulted in optimal levels of Pta (5).  The addition of calcium, but 

not iron or magnesium, to the culture medium increased transcription of pta and possibly 

the stability of Pta. 

HpmA and Pta both contribute to tissue damage observed in the bladder during 

experimental infection of mice, while renal damage appears to be mediated solely by Pta 

(4).  In contrast to HpmA, Pta contributes to the ability of P. mirabilis to colonize the 

urinary tract; a strain with an interrupted copy of this gene was outcompeted by the wild-

type strain during cochallenge and colonized the bladder, kidneys, and spleen at numbers 

significantly less than wild type during independent challenge (4, 5).   

Urease 

 A major complicating factor associated with UTI caused by P. mirabilis is 

urolithiasis, or the formation of stones within the urinary tract.  Stone production is a 
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result of the action of the bacterial enzyme urease.  Urease catalyzes the hydrolysis of 

urea, liberating ammonia and carbon dioxide and increasing the pH of urine (141, 146, 

147).  As a result of the pH increase, normally soluble minerals precipitate, namely 

magnesium ammonium phosphate and calcium phosphate, leading to the formation of 

struvite and apatite crystals (72, 141, 146).  Bacteria can be found within the matrix of 

the stones, where they are thought to be shielded from the effects of antibiotics and 

immunoglobulins (126).  In addition, stones can obstruct the flow of urine, cause damage 

to host tissues, and serve as a nidus for other bacterial species to establish UTI.   

 The urease enzyme is a 250 kDa multimeric nickel metalloenzyme that is 

produced in the cytoplasm of bacteria (100, 148).  The genes encoding P. mirabilis 

urease are ureDABCEFG (100, 101, 218).  The active enzyme is a trimer of trimers, 

denoted (UreABC)3, which is activated upon the insertion of nickel ions (147).  UreC 

contains the nickel metallocenter (147).  UreD, UreE, UreF, and UreG are accessory 

proteins that contribute to assembly of the active complex and insertion of the nickel ion 

into the metallocenter (147, 169).  Mutation of ureD, ureE, or ureG resulted in 

production of an inactive enzyme lacking nickel ions (147, 169, 218); in contrast, 

mutation of ureF resulted in production of a functional enzyme, but with decreased 

activity (147).  However, the exact mechanism of assembly is still unknown (147).  The 

Km value of the urease enzyme has been determined to be in the range of 13-60 mM urea; 

urea is present in human urine at concentrations up to 500 mM (37, 99). Despite such a 

high Km, the enzyme is saturated with substrate in urine and operates at VMAX. 

 Two regulators of urease transcription have been characterized: UreR and H-NS 

(histone-like nucleoid structuring protein).  UreR is a member of the AraC family of 
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transcriptional regulators and contains both DNA- and urea-binding domains (162).  The 

ureR gene is transcribed in the opposite direction of ureDABCEFG; UreR binds the 

promoters of ureR and ureD (47, 88, 226).  Transcription of the structural genes of urease 

is urea-inducible (47, 88).  However, UreR can bind even in the absence of urea (albeit 

with less affinity than in the presence of urea), suggesting that P. mirabilis is poised for a 

rapid response upon sensing of urea (47, 226).  Whereas UreR acts as a positive regulator 

of urease activity and stimulates expression of the urease genes in the presence of urea, 

H-NS is a negative regulator that represses ureR transcription (44, 183).  H-NS binds to 

the poly(A) tracts located in the intergenic region between ureR and ureD and induces a 

bend in the DNA that inhibits transcription of ureR (183).  Interestingly, UreR and H-NS 

can displace each other from the target DNA under specific conditions (183). 

 A strain lacking urease was constructed and assessed in the murine model of 

ascending UTI (98).  This mutant (containing an interruption in ureC) was negative for 

urease activity and colonized mice significantly less than the wild-type strain (97, 98).  In 

addition, infection with the urease-negative strain resulted in less severe renal damage 

(97).  Not surprisingly, no bladder or kidney stones were observed in mice infected with 

the urease-negative strain (97, 126). Given the complications that can arise from stone 

formation in vivo, it is not surprising that the enzyme responsible (urease) is considered a 

virulence factor. 

Metal acquisition 

Iron 

Members of the family Enterobacteriaceae, to which Proteus belongs, typically 

produce siderophores of the catecholate, hydroxamate, and/or ferrioxamine type; 
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however, Proteus species do not produce any of these types of siderophores (59, 140).  In 

contrast, P. mirabilis produces α-hydroxyisovaleric acid, which has been suggested to 

function in iron acquisition (59), although the importance of this compound in iron 

acquisition is debated in the field.  P. mirabilis can also utilize a number of α-keto acids 

as siderophores (53).  The production of α-keto acids results from the deamination of 

amino acids.  It has long been recognized that Proteus species are capable of this type of 

reaction (83).  However, a gene responsible for this activity, named aad for amino acid 

deaminase, was only identified and sequenced relatively recently (140).   

Surprisingly, the expression of aad is not under the regulation of the ferric uptake 

repressor Fur and is not affected by iron concentration (140); it was suggested by the 

authors that perhaps iron acquisition is not the only role of Aad.  Although only six 

strains were analyzed, 100% of these P. mirabilis strains appeared to encode aad (140).  

Attempts to construct a strain of P. mirabilis lacking a function copy of aad were 

unsuccessful; since these attempts were made using methods previously reliable for 

mutant construction in P. mirabilis, it was hypothesized that Aad may be required for 

viability in P. mirabilis (140).  Therefore, the role of this amino acid deaminase in 

virulence, or even its unequivocal role in iron uptake, has not been determined.   

P. mirabilis can also utilize heme and hemin as iron sources (181).  One outer 

membrane protein responsible for heme utilization, HmuR2, has been identified and 

offers a competitive advantage during ascending UTI in the mouse model (127).  

However, HmuR2 is not absolutely required for virulence since a strain lacking HmuR2 

was able to colonize mice (127); this result is not unexpected, as many pathogens encode 

multiple iron acquisition systems (some of which are redundant) since iron is such an 
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important nutrient.  P. mirabilis cannot utilize transferrin or lactoferrin as iron sources 

(181). 

The genome sequence of P. mirabilis HI4320 revealed the presence of a large 

number of proteins which may play a role in iron acquisition (174).  P. mirabilis encodes 

two seemingly complete siderophore synthesis operons.   The presence of these operons 

was surprising, given the previously accepted findings that P. mirabilis does not produce 

siderophores.  Current research in our lab is investigating the function of these operons; 

careful re-examination of siderophore synthesis has revealed that P. mirabilis does, in 

fact, produce siderophores (S. Himpsl and H. Mobley, unpublished data).  The structure 

of these siderophores is under investigation.  Additionally, signature-tagged mutagenesis 

studies identified several proteins that are implicated in iron uptake based on homology 

(38, 84); however, the function of most of these proteins remains unconfirmed.   

Zinc 

Much like iron, zinc is a required nutrient that is toxic at high levels.  Therefore, 

its level must be carefully controlled (35).  This control occurs mainly via the regulation 

and activity of import and export systems (79).  Environmental conditions likely fall into 

one of three categories: limited zinc, excess zinc, and an intermediate level of zinc which 

is neither toxic nor limiting.  Bacteria have transporters to deal with each of these 

scenarios; as zinc is assumed to be limited in the host, only zinc uptake systems will be 

addressed here (133, 254). 

In E. coli, the acquisition of zinc under limiting conditions is achieved through the 

high-affinity zinc transport system ZnuACB (171).  ZnuA is a periplasmic binding 

protein, ZnuB is an inner membrane protein, and ZnuC is a cytoplasmic ATPase.  These 
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proteins are only produced under zinc limitation; their expression is under control of the 

zinc uptake repressor (Zur), which binds to the promoter region of znuACB and represses 

transcription when sufficient zinc is present in the cell (170). 

When the cell encounters an environment with an intermediate level of zinc, it 

requires neither high-affinity importers nor exporters.  Instead, zinc homeostasis is 

maintained through the function of low-affinity transporters.  ZupT, the best 

characterized of these low-affinity transporters, has broad metal specificity; unlike 

ZnuACB, which is regulated by Zur, ZupT is expressed constitutively at low levels (70, 

71).  In addition to ZupT, zinc may be brought into the cell by other transporters; these 

transporters include PitA, an organic phosphate transporter, and CitM, a citrate 

transporter, in E. coli and Bacillus subtilis, respectively (24, 107). 

Given that zinc is assumed to be limited in the host, it is perhaps not surprising 

that in recent years, zinc uptake systems have been shown to contribute to the virulence 

of many different pathogens (15, 40, 50, 67, 105, 117, 253).  Of particular interest, UPEC 

requires the ZnuACB zinc transport system to attain maximal colonization of the urinary 

tract (196).  These results suggest that perhaps the urinary tract may be zinc-limited and 

that zinc acquisition may also be important for colonization of the urinary tract by other 

pathogens, including P. mirabilis.  However, neither low- nor high-affinity zinc transport 

has been characterized in P. mirabilis to date; this topic will be addressed in Chapter III. 

ZapA 

P. mirabilis displays IgA protease activity.  Of P. mirabilis clinical isolates that 

have been assessed, 100% were positive for IgA protease activity (130, 205).  During 

initial characterization of this activity, cleavage of IgA resulted in a different pattern from 
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that observed with bacterial pathogens such as Neisseria gonorrhoeae, Haemophilus 

influenzae, and Streptococcus pneumoniae that encode a similar activity (205).  Proteases 

from these other species cleave the heavy chain of human IgA1 at a conserved stretch of 

amino acids in the hinge region; this region is absent in IgA2, which is resistant to 

cleavage by IgA proteases (103, 104, 158, 182).  The IgA protease activity of P. mirabilis 

was correlated with production of an approximately 50-55 kDa protein (131, 132).  

Activity of this protein was optimal at pH 8 (131), inhibited by EDTA and other metal 

chelators (130-132, 205, 245), and stimulated by the addition of Mg2+ or Ca2+ ions (245).  

In addition, the activity of this protein (initially found to degrade IgA1) was eventually 

expanded to include a broad range of host proteins, including serum and secretory IgA 

(human and mouse), IgG, mouse IgA, secretory component, gelatin, casein, actin, β-

tubulin, fibronectin, collagen, laminin, complement proteins (C1q and C3), β-insulin, and 

antimicrobial peptides LL-37 and human β-defensin 1 (17, 31, 130-132, 203, 208, 245).  

The protein displays no clear preference for a particular amino acid residue but activity is 

enhanced if the target protein is partially or fully denatured (31). 

The protease activity was mapped to a locus termed zapA (245).  Eventually, 

sequencing of the surrounding area of the genome revealed four additional genes: one 

upstream (zapE) and three downstream (zapB, zapC, and zapD) of zapA; all genes are 

transcribed in the same direction (239, 245).  Based on homology, ZapA appears to be a 

zinc metalloprotease that belongs to the serralysin family of proteases (245).  ZapA has 

several characteristics of this protein family, including putative zinc-binding residues, a 

calcium-binding region, and a C-terminal secretion signal (245). ZapE, located upstream 

of ZapA, also appears to be a metalloprotease which shares many properties with ZapA 
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but seems to be missing an identifiable signal sequence (239).  The activity of ZapE has 

not been characterized to date.  ZapBCD are similar to components of ABC transport 

systems and may function in the secretion of ZapA (239).  Although this particular 

hypothesis has not been tested, transposon mutants with insertions in two of these genes 

lacked IgA protease activity (245).  Interestingly, the genome sequence of P. mirabilis 

HI4320 revealed the presence of three additional copies of zapE directly upstream of the 

originally identified copy (174); it is unclear if these additional copies are present in other 

strains of P. mirabilis or what their function might be. 

Historically, it has been difficult to assess the contribution of IgA proteases to 

virulence of bacterial pathogens since most of these enzymes have a very specific activity 

that is limited to human (or closely related primate) IgA molecules.  It has, however, been 

postulated that IgA proteases are associated with virulence since non-pathogenic species 

appear to lack this activity (157). However, ZapA is active against mouse IgA (245). A 

ZapA- strain of P. mirabilis was generated to assess the contribution of ZapA to virulence 

using the mouse model of ascending UTI (239).  ZapA- P. mirabilis lost IgA protease 

activity but retained normal urease production, hemolytic activity, swarmer cell 

differentiation, production of flagella, swarming motility, and biofilm formation (180, 

239).  This strain was recovered from the urine, bladders, and kidneys of experimentally 

infected mice in statistically significantly lower numbers than the wild-type strain (239).  

These results were the first demonstration that IgA proteases are, in fact, virulence 

factors.  Interestingly, this ZapA- mutant was also attenuated in a rat model of prostatitis 

(180).  These results suggest that the advantage offered by ZapA is not isolated to the 

urinary tract and may affect infection of other body sites as well.  Isolates of M. morganii 
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and P. stuartii, two other pathogens commonly present with P. mirabilis during 

polymicrobial complicated UTI, lack IgA protease activity (206); it is interesting to 

consider that perhaps these species benefit in vivo from the ZapA activity provided by P. 

mirabilis.  To that point, there is indirect evidence for the production and activity of 

ZapA in vivo during UTI in human patients (131, 208). 

Type III secretion system 

The genome sequence of P. mirabilis HI4320 encodes a seemingly intact type III 

secretion system (T3SS) (174).  T3SSs are specialized bacterial secretion systems that 

secrete effector proteins directly into the cytosol of host cells; T3SSs have been identified 

as virulence factors in a number of pathogenic bacteria, notably Salmonella, Shigella, and 

some diarrheagenic E. coli (43).  For this reason, the role of the P. mirabilis T3SS during 

experimental UTI was investigated.  Twenty-four genes, including all of the components 

necessary for needle complex assembly and two putative effector proteins, are contained 

in a contiguous 22-kb region (173, 174).  These sequences have a lower GC content than 

the surrounding HI4320 genome (30.7% compared to 38.9%), suggesting they may have 

been acquired by horizontal gene transfer (173).  Importantly, these open reading frames 

all appear to be intact (with no discernible deletions or premature stop codons).  To assess 

the potential contribution of this T3SS during infection, a mutant was constructed with an 

insertional mutation in a putative ATPase (spa47); this gene was chosen because it has 

been shown to be essential for the function of T3SSs in other organisms.  Surprisingly, 

this mutant infected mice as effectively as the wild-type strain (173).  Therefore, this 

T3SS does not appear to function or contribute to disease during experimental UTI.  

Pearson and Mobley postulated that perhaps the T3SS could function in the 
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gastrointestinal tract or other environments where P. mirabilis is found, but this 

hypothesis has not yet been experimentally tested.  Alternatively, although not observed 

during experimental murine infection, the system could be active during human UTI. 

Treatment and Prevention 

More than five million patients receive urinary catheters each year (134); every 

single one is at risk for infection.  Even patients undergoing short-term catheterization (< 

7 days) have a 10-50% risk of experiencing bacteriuria; if a patient requires long-term 

catheterization, the percent who will experience infection approaches 100% (77, 156).  

Unfortunately, there are currently no effective methods for preventing these infections; at 

best, the onset of infection can be delayed (231).  Methods for delaying the onset of 

complicated catheter-associated UTIs caused by P. mirabilis, and subsequent methods for 

treatment of these infections, have recently been thoroughly reviewed (90); a brief 

overview is presented here.   

 Although it seems fairly obvious, the first step in preventing catheter-associated 

UTIs is limiting the use of urinary catheters.  These devices are overused; it has been 

estimated that as many as 21-38% of catheters are placed in the absence of justifiable 

indication (91, 159, 197).  Once catheters are in place, optimal conditions for the 

prevention of infection include emptying drainage bags every 4-6 hours and changing the 

catheter every 8-10 days (161).  Prompt removal of catheters once they are no longer 

medically necessary is crucial to infection prevention (134). 

 There has been much interest in the field in employing catheters made of or 

coated with various materials to reduce colonization of the catheter.  However, to date, no 

single biosurface developed can effectively prevent colonization (52, 134, 221, 235).  
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There are extensive reports in the literature about using antibiotics and antiseptics 

(including silver compounds and triclosan) to coat catheters (90); however, results are 

conflicting, and no consensus has been reached.  Results from in vitro experiments 

demonstrated that P. mirabilis rapidly blocked catheters coated with silver alloys and 

nitrofurazone (153, 155).  The relatively new idea of using the catheter balloon (rather 

than the surface of the catheter) as a reservoir for antimicrobial compounds is promising; 

after seven days, catheters inflated with triclosan showed minimal encrustation and still 

drained freely while water-inflated controls were blocked within 24 hours (220).  This 

treatment could potentially expand the lifespan of catheters in patients.  There has also 

been interest in the use of probiotics to inhibit colonization by pathogenic strains.  

Results from both in vitro and in vivo studies suggest that colonization with 

nonpathogenic strains of E. coli can prevent the colonization of catheters by 

uropathogenic strains (48, 87, 186, 232-234). 

 Interestingly, about 90% of bacteriuria cases associated with catheterization are 

asymptomatic (225).  Generally, treatment of asymptomatic bacteriuria with antibiotics is 

discouraged due to concern about the emergence of antibiotic resistance.  However, there 

is still debate among clinicians about this matter since asymptomatic bacteriuria may 

progress to more a serious illness if left untreated.  Regardless, once an infection is 

confirmed (normally through determination of bacterial cell and blood cell counts in 

urine), the catheter is removed (if possible) and antibiotic treatment commences (90). 

 If UTI results in the development of urinary stones, treatment is further 

complicated; P. mirabilis can be located in the matrix of the stone, where it is believed 

that bacteria are shielded from the action of antibiotics and factors of the host immune 
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response, including immunoglobulins (126).  In addition, urinary stones are also thought 

to serve as a reservoir for bacteria that can rapidly colonize replacement catheters (195).  

Sometimes, surgery is recommended for removal of stones (90). 

Due to the serious sequelae that can result from UTI with P. mirabilis, and the 

difficulties associated with treatment, the development of a prophylactic vaccine against 

P. mirabilis is an active area of research.  Previous vaccine efforts are described below. 

Vaccine Development against P. mirabilis 

 As with efforts for vaccination against many bacterial pathogens, immunizations 

began with crude preparations and moved toward more focused and pure antigens, based 

on what has been successful.   In general, that will be the order in which previous vaccine 

efforts are presented here. 

 Infection does not significantly protect against re-infection (94).  Vaccinated (or, 

in this case, re-infected) mice were not protected from death (94).  In surviving mice, 

modest protection (with respect to levels of bacteria recovered from infected mice) was 

observed in urine and bladders (94).  The protection in kidneys was statistically 

significant compared to control animals (94).  However, kidneys were still colonized in 

the immunized mice; therefore, the protection observed in the kidneys, while statistically 

significant, may not be biologically significant.  These mice generated antibody 

responses to a MR/P fimbriae, PMF, and flagella, as well as “numerous other, 

unidentified surface antigens” (94).  However, there was no correlation between serum 

IgG and IgM levels and protection.  There was a trend toward elevated serum IgA levels 

and protection, but this correlation was not significant, perhaps because only a small 

number of mice developed significant IgA levels (94).  Similar to immunization with live 
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bacteria, immunization with heat-killed bacteria offers little protection (123).  Formalin-

killed bacteria, however, when administered either through the subcutaneous or intranasal 

routes, significantly protected mice from subsequent transurethral challenge (120). 

 The antibody response to outer membrane proteins (OMPs) after experimental 

infection was assessed.  Only 15% of mice elicited specific IgM to OMPs, while 68% of 

mice developed OMP-specific IgG from 3-28 days post-infection (142).  If antibody 

response analysis was delayed until 14 days post-infection, the percentage of mice that 

developed OMP-specific IgG rose to 87% (142).  Antibodies appeared to be primarily 

directed towards the major OMP complex (142); this result was not surprising given that 

patients experiencing UTI produce antibodies against the major OMP complex of 

infecting bacteria (78, 163, 164, 198).  Due to the production of OMP-specific antibodies 

during infection, an outer membrane preparation was used to immunize mice 

intramuscularly.  Two weeks after vaccination, mice were challenged transurethrally 

(142).  The OMP vaccine significantly protected mice from death, renal colonization, and 

renal damage compared to PBS controls (142).  However, IgG levels did not correlate 

with protection.  The possibility that protection observed with the OMP vaccine was due 

to LPS contamination of outer membrane preparations was addressed by vaccinating 

mice with an LPS preparation.  In contrast to the OMP vaccine, immunization with LPS 

did not result in protection (despite the production of high levels of specific LPS 

antibodies) (142).  Interestingly, preliminary data suggested that vaccination with OMPs 

enhanced clearance of three out of four heterologous strains (142).  From this finding, we 

learned that cross-protection is possible with an OMP vaccination, but that not all 
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heterologous strains were affected; therefore it may be important to specifically target 

conserved OMP proteins. 

 The bulk of P. mirabilis vaccination studies have used vaccines targeting fimbrial 

proteins.  Infected mice generate a strong antibody response to MR/P fimbriae following 

infection (20, 94).  Peritoneal immunization with purified fimbrial preparations protected 

mice from transurethral challenge with both homologous and heterologous strains (115).  

An independent study determined that, although the antibody response generated by 

vaccination with purified fimbriae was not as robust as that generated after whole cell 

immunization, intranasal or transurethral immunization with purified fimbriae resulted in 

a significant reduction in bladder and kidney colonization in infected mice (120). 

 Vaccination with purified structural subunits of various fimbriae was performed; 

immunization with MrpA, UcaA, or PmfA offered some degree of protection (177).  

Mice vaccinated with MrpA via the subcutaneous route had reduced kidney colonization 

after transurethral challenge; bladder colonization was not affected (177).  Immunization 

with UcaA did not protect mice from ascending UTI (177).  These antigens were also 

assessed for protection in an intravenous (i.v.) injection model.  (Although mice were 

infected i.v., infection was assessed by quantifying bacteria in bladders and kidneys; it 

should be noted that blood was never cultured, so the effect of vaccination on bacterial 

load in the bloodstream is unclear.)  Mice immunized with either MrpA or UcaA prior to 

i.v. infection had reduced colonization in their bladders and kidneys (177).  Immunization 

with PmfA did not result in protection from infection in either model (i.v. or transurethral 

infection), despite production of antibodies in the urine (177).   Vaccination with each 

subunit resulted in the production of specific serum IgG response, but there was no 
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correlation between antibody levels and protection from infection (177).  None of the 

tested animals, regardless of antigen or route used, developed significant serum or urine 

IgA production (177).  These antigens (MrpA, UcaA, and PmfA) were also tested using 

intranasal and transurethral immunizations (201).  Overall, intranasal immunization 

resulted in broader antibody production and led to greater protection than transurethral 

immunization (201).  However, again, there was no significant association between 

protection and antibody production, in either serum or urine (201). 

 More recently, a new platform for the MrpA vaccine was introduced.  The food-

grade lactic acid bacterium Lactococcus lactis was used as a vehicle for antigen delivery 

(200).  Two forms of MrpA were expressed in L. lactis: secreted and cell-wall-anchored 

(200).  Following intranasal immunization with MrpA-expressing L. lactis, mice were 

infected transurethrally, and the levels of colonization of bladders and kidneys were 

compared to control groups receiving either PBS or L. lactis not expressing MrpA (200).  

Mice that received cell-wall-anchored MrpA had increased levels of serum IgA (which 

was significant when compared to PBS, but not L. lactis, controls).  Mice that were 

vaccinated with L. lactis expressing secreted MrpA produced increased levels of serum 

IgG (but again, only compared to PBS, and not L. lactis, controls).  None of the mice 

produced significant levels of IgA or IgG in urine following immunization.  Mice that 

received the secreted form of MrpA were significantly protected from kidney 

colonization compared to mice immunized with the L. lactis control.  However, no 

protection was observed in the bladders of these mice.  There was no correlation between 

protection and antibody production.  Although immunization with L. lactis expressing 

MrpA resulted in some kidney protection, vaccination did not lead to the generation of 
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detectable levels of mucosal antibodies (200).  It is interesting to note that, in this study, 

intranasal immunization with MrpA-expressing L. lactis did not result in bladder 

protection (200), while earlier work by the same group showed that intranasal 

immunization with MrpA significantly protected mice from bladder infection (201).  This 

difference highlights the important impact that route, platform, and adjuvant can have on 

the efficacy of a vaccine, even when targeting the same antigen. 

 All vaccines described above targeting MR/P fimbriae were aimed at the major 

structural subunit, MrpA.  MrpH, the tip adhesin, has also been a focus of vaccine efforts.  

These experiments, described below, all used antigens administered via the intranasal 

route; the intranasal route was chosen over other tested routes (subcutaneous, 

transurethral, and oral) because it offered the most consistent protection in initial testing 

and was the only route of immunization that resulted in the production of antibodies in 

urine and the bladder (120).  Others have also suggested that intranasal immunization 

induces antibodies at mucosal surfaces, including the urogenital tract (238).  Mature 

MrpH cross-linked to the adjuvant cholera toxin, when administered intranasally, resulted 

in significantly lower kidney colonization following transurethral challenge, compared to 

control animals; although there was a trend towards lower bladder colonization, this 

difference was not significant (120).  In response to this vaccination, there were 

significant increases in IgG observed in serum, bladder, and kidneys and significant 

increases in IgA in serum and kidneys (120).  It is interesting to note that IgA was 

produced more highly in kidneys (which were protected) than in bladders (which were 

not); the authors suggested that perhaps these data may indicate a correlation between 

IgA production and protection (120).  Next, an N-terminal truncation of MrpH 
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(containing the receptor-binding domain) was assessed using the same model described 

above for mature MrpH.  This N-terminal truncation of MrpH, when chemically cross-

linked to the adjuvant cholera toxin and administered intranasally, significantly protected 

mice from both bladder (P = 0.002) and kidney (P < 0.0001) infection compared to mice 

receiving control (cholera toxin only) immunization (120).  Protection was also observed 

when MrpH was translationally fused to cholera toxin (as opposed to chemical cross-

linking) (118).  This translational fusion approach is interesting since it results in the 

production of one molecule that contains both antigen and adjuvant; bypassing the 

chemical cross-link step may result in a more uniform antigen preparation.   

 Arguably, the most successful vaccines to date have targeted two components of 

MR/P fimbriae: MrpA and MrpH.  While there is considerable evidence that MR/P 

fimbriae are expressed in vivo (20, 121, 255) and are conserved (22, 23, 120, 188, 259), it 

is important to remember that this fimbria is capable of undergoing phase variation (255).  

This knowledge is critical when considering vaccine design, as it is easy to imagine that 

bacteria could potentially escape the immune response by down-regulating the targeted 

antigen.  MR/P fimbriae contribute to infection (21, 119, 121, 125, 259); however, they 

are not essential for colonization.  Bacteria not expressing MR/P fimbriae still bind to 

bladder tissue in vivo (93).  An MrpA mutant, although recovered in significantly lower 

numbers than the wild-type strain, still colonized mice (21).  There was not a significant 

difference in the level of colonization resulting from infection with an MrpH mutant and 

the wild-type strain (119).  In addition, there was no difference between infection with 

the MR/P L-OFF strain (incapable of producing MR/P fimbriae) and the wild-type strain 

during independent challenge (121).  However,  MR/P L-OFF was outcompeted by the 
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wild-type strain during cochallenge, suggesting that MR/P fimbriae normally offer a 

competitive advantage during infection (121).   

Targeting these antigens (MrpA or MrpH) by vaccination could introduce a new 

selective pressure in the urinary tract – this time, against (rather than for) expression of 

MR/P fimbriae.  Although vaccination with either MrpA or MrpH significantly protected 

mice from subsequent transurethral infection, none of these vaccines resulted in 

sterilizing immunity; that is, there were still mice in each group that were infected (118, 

120, 177, 200, 201).  It would be very interesting to examine the MR/P expression profile 

in bacteria isolated from the non-protected mice; if these bacteria were predominately 

MR/P OFF, it is possible that they were able to escape the immune response directed 

towards MR/P fimbrial subunits induced by vaccination.  The PCR-based invertible 

element has already been used to assess MR/P expression in vivo (121, 255), validating 

this approach.  In any case, mice were not completely protected after any vaccination 

attempted to date; the identification of additional antigens to include in a potentially 

multivalent vaccine is a valid goal. 
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CHAPTER II. Outer Membrane Antigens of the Uropathogen Proteus mirabilis 

Recognized by the Humoral Response during Experimental Murine Urinary Tract 

Infection 

Abstract 

Proteus mirabilis, a gram-negative bacterium, is a frequent cause of complicated 

urinary tract infections in those with functional or anatomical abnormalities or those 

subject to long-term catheterization. To systematically identify surface-exposed antigens 

as potential vaccine candidates, proteins in the outer membrane fraction of bacteria were 

separated by 2D gel electrophoresis and subjected to Western blotting with sera from 

mice experimentally infected with P. mirabilis.  Protein spots reactive with sera were 

identified by mass spectrometry, which, in conjunction with the newly completed 

genome sequence of P. mirabilis HI4320, was used to identify surface-exposed antigens.  

Culture conditions that may mimic in vivo conditions more closely than Luria broth 

(culture in human urine, iron-limitation, and osmotic stress) were also used.  Thirty-seven 

antigens, to which a humoral response had been mounted, including 24 outer membrane 

proteins, were identified.  These antigens are presumably expressed during urinary tract 

infection.  Protein targets that are both actively required for virulence and antigenic may 

serve as protective antigens for vaccination; thus, five representative antigens were 

selected for use in virulence studies.  Strains of P. mirabilis with mutations in three of 

these genes (PMI0047, rafY, fadL) were not attenuated in the murine model of urinary 

tract infection.  Putative iron acquisition proteins PMI0842 and PMI2596, however, both 

contribute to fitness in the urinary tract and thus emerge as vaccine candidates. 
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Introduction 

Proteus mirabilis, a Gram-negative bacterium, is among the most prevalent 

isolates from individuals suffering from complicated urinary tract infections (cUTIs) 

(244).  cUTIs affect patients whose urinary tracts are affected by long-term 

catheterization or functional or anatomic abnormalities and occur via the ascending route 

(18).  Consequences of P. mirabilis cUTIs include catheter encrustation, formation of 

urinary stones (urolithiasis), renal scarring, and progression to bacteremia (149).  

Catheter encrustation caused by these infections can block the flow of urine through the 

catheter.  In addition to the possibility of causing permanent renal damage, the formation 

of stones, due to the action of the bacterial enzyme urease, may also make infections 

difficult to clear due to the presence of bacteria within the stones, where P. mirabilis may 

be shielded from the action of antibiotics (126).   

Catheter-associated cUTIs are the most commonly-occurring nosocomial 

infection, with  more than one million cases documented each year in the United States 

(225).  Prevention of P. mirabilis-caused cUTIs would improve patient care and quality 

of life and reduce the substantial economic burden associated with their care.  Since 

infection does not appear to fully protect against re-infection (94), a vaccine is a logical 

goal for several reasons.  First, patients with known urinary tract abnormalities and 

patients at the onset of long-term catheterization could be specifically targeted for 

vaccination due to the high incidence of cUTIs in these populations.  Second, P. mirabilis 

infections are very difficult to clear due to the presence of bacteria within the urinary 

stones (126).  Third, based on studies of the urease and mrpH genes, there is evidence 
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that virulence factor genes are well conserved among different strains of P. mirabilis, 

which supports the notion of a cross-protective vaccine (120, 144). 

 Immunization with heat-killed bacterial preparations or prior infection offers little 

protection (94, 123).  Purified fimbrial preparations, however, protect mice from 

subsequent transurethral challenge (115, 120).  Three different structural fimbrial proteins 

have also been used in vaccine studies, with varying degrees of success: MrpA, UcaA, 

and PmfA (177).  In a recent study, one of these structural proteins, MrpA, was expressed 

in the food-grade bacterium Lactococcus lactis (200).  Mice were intranasally immunized 

with L. lactis expressing MrpA prior to transurethral challenge and had significantly 

lower bacterial colonization in the kidneys as compared to controls.  An outer membrane 

vaccine significantly protected mice from death, renal colonization, and renal damage 

(142).  One of the most promising vaccines to date consists of the N-terminal domain of 

MrpH (the tip adhesin of the MR/P fimbria) fused to domains of cholera toxin (118).  A 

translational fusion of MrpH and the cholera toxin A2 subunit was coexpressed with the 

cholera toxin B subunit; the vector used for vaccine expression replaced the toxic A1 

subunit of cholera toxin MrpH (76).  The result of expression of these genes is the 

spontaneous assembly of a single chimeric protein that contains both antigen (MrpH) and 

adjuvant (cholera toxin), which mediates highly effective delivery to the systemic and 

mucosal immune systems (58).  Although this vaccine was able to protect mice from 

infection, we have concerns about the efficacy of a vaccine solely targeting this adhesin 

since the mrp operon is capable of undergoing phase variation (255).  For this reason, we 

believe it prudent to identify additional antigens for inclusion in a multivalent vaccine.  

 In this study, we used an immunoproteomic approach to identify additional 
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surface-exposed antigens of P. mirabilis.  Fractions enriched for outer membrane proteins 

were isolated from bacterial cells and proteins were separated by two-dimensional gel 

electrophoresis.  Immunoreactive proteins, identified by Western blot using sera from 

mice with experimental P. mirabilis UTI, were submitted for mass spectrometry analysis.  

Using the recently completed genome sequence (174), this study identified 37 

immunoreactive antigens, including 24 outer membrane proteins.  Five antigens were 

assessed for their role in virulence in the murine model of ascending UTI. 
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Materials and methods  

Strain and culture conditions. 

P. mirabilis HI4320 was originally cultured from the urine of a catheterized 

nursing home patient with bacteriuria (149).  Luria broth (LB) (per liter, 10 g tryptone, 5 

g yeast extract, and 0.5 g NaCl) and non-swarming agar (per liter, 10 g tryptone, 5 g yeast 

extract, 0.5 g NaCl, and 15 g agar) were used to culture bacteria.  Minimal medium [per 

liter, 200 ml 5X M9 salts (64 g Na2HPO4�7H2O, 15 g KH2PO4, 2.5 g NaCl, 5 g NH4Cl 

per liter), 2 ml 1 M MgSO4, 20 ml 20% glucose, 100 μL CaCl2] was inoculated with a 

1:100 dilution of P. mirabilis cultured overnight in LB.  Iron-limitation was achieved by 

addition of 15 μM desferoxamine (M. Pearson and H. Mobley, unpublished data) to LB 

cultures. Osmotic stress was induced by addition of 0.3 M NaCl to LB or minimal 

medium (11).  Urine was collected from three healthy human donors, pooled, filter-

sterilized, and stored at -20ºC until use.  All cultures were incubated at 37ºC with aeration 

(200 rpm) unless otherwise noted.   

Isolation of outer membranes.   

A modification of the method of Piccini et al. (181) was used for isolation of 

outer membranes.  Bacteria were harvested by centrifugation (10,000 x g, 15 min, 4ºC) 

and washed twice in 10 mM HEPES, pH 7.4.  Cells were lysed by two passes through a 

French pressure cell (American Instrument Company, Travenol Laboratories Inc, Silver 

Spring, Maryland) at 20,000 psi.  Intact bacteria were cleared by centrifugation (10,000 x 

g, 15 min, 4ºC).  Supernatants were centrifuged to pellet membranes from the lysate 

(90,000 x g, 45 min, 4ºC).  Membrane pellets were resuspended in 10 mM HEPES (pH 
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7.4), 10 mM MgCl2, 2% Triton X-100.  Following an hour-long incubation at 37ºC, 

Triton X-100-insoluble fractions (enriched for outer membrane proteins) were collected 

by centrifugation (90,000 x g, 45 min, 4ºC).  Pellets were washed in 10 mM HEPES (pH 

7.4), 10 mM MgCl2, 2% Triton X-100. The resulting outer membrane-enriched pellets 

were resuspended in isoelectric focusing (IEF) solution (defined below).  Protein was 

quantified by using 2D Quant Kit (Amersham Biosciences).   

Two-dimensional gel electrophoresis.  

The method of Molloy et al. (150) was adapted.  A 17 cm pH 4-7 ReadyStrip IPG 

Strip (BioRad) was rehydrated for 16-24 hours with 350 μL of IEF solution (7 M urea, 2 

M thiourea, 1% amidosulfobetaine-14, 40 mM tris, 2 mM tributylphosphine, and 0.5% 

biolytes 3-10) containing outer membrane protein.  Isoelectric focusing was conducted 

under the following conditions in a Protean IEF Cell (BioRad): 250 V for 20 min, 10,000 

V for 2.5 hours, and 10,000 V for 40,000 V-hours.  Prior to the second dimension, strips 

were equilibrated for 20 min at room temperature by rocking in a solution of 0.15 M 

bisTris/0.1 M HCl, 6 M urea, 2% SDS (w/v), 20% glycerol (v/v), 5 mM TBP, and 2.5% 

acrylamide (w/v).  Samples were run on 10% polyacrylamide gels, as described 

previously (150). Cathode buffer contained 0.2 M taurine, 25 mM tris, 0.1 % SDS (w/v) 

and anode buffer contained 0.384 M glycine, 50 mM tris, 0.1 % SDS.  Gels were run at a 

constant current of 50 mA at room temperature until completion and then stained for 24 

hours in colloidal Coomassie G-250 (151).  Unstained Precision Plus Protein Standards 

(BioRad) were used as molecular weight standards.  Proteins corresponding to 

immunoreactive spots on Western blots (described below) were cut from gels using a 

clean razor blade and submitted for mass spectrometry analysis. 
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Serum. 

During a previous study, sera were obtained from mice 42 days after experimental 

urinary tract infection by P. mirabilis (94).  In this report, we used pre-immune sera and 

post-rechallenge sera from those studies.  Sera from 20 of the mice were individually 

screened for reactivity to P. mirabilis proteins by Western blot (details below).  The five 

sera with the strongest reaction to P. mirabilis lysate were pooled in equal amounts and 

used in all further studies. 

Western blot. 

Proteins were transferred to Immobilon-P PVDF membrane (Millipore) for one 

hour at 400 mA at 4ºC.  After transfer, membranes were blocked with 5% milk in TBS-T 

(0.05% Tween, 100mM tris (pH 7.5), 9% NaCl).  Membranes were incubated, shaking at 

room temperature, with sera diluted in TBS-T.  After one 15-minute wash and three five-

minute washes in TBS-T, secondary antibody was applied to the membrane.  Goat anti-

mouse IgG conjugated to horseradish peroxidase (1:100,000 dilution in TBS-T) was 

applied for 45 minutes with shaking at room temperature. Precision StrepTactin-HRP 

Conjugate (BioRad), used for ladder detection, was added to the secondary antibody 

incubation. The wash procedure was repeated and detection was performed with 

Amersham ECL Plus Western Blotting Detection System (GE Healthcare), following the 

protocol recommended by the manufacturer.  To screen sera from individual mice, a 

1:1000 dilution was used.  After sera were combined, a 1:10,000 dilution of the pooled 

sera were used in all further experiments. 
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Mass spectrometry.   

Proteins were identified either by peptide mass fingerprinting (PMF) or tandem 

mass spectrometry (MS/MS).  PMF was performed by the University of Michigan 

Protein Structure Facility. Samples were digested with trypsin using the Millipore 

Montage system, co-crystallized with alpha-cyano-hydroxy-cinnamic acid (1:1 

sample:CHCA), and analyzed via MALDI-TOF MS.  Protein Prospector software 

(http://prospector.ucsf.edu), along with the preliminary genome annotation (174), was 

used to identify proteins in PMF samples. MS/MS and analysis was performed by the 

Michigan Proteomics Consortium, as described by the protocols available on their 

website (http://www.proteomeconsortium.org/protocols.html).  Briefly, samples were 

digested with trypsin and spectra were acquired by using 4700 Proteomics Analyzer 

(Applied Biosystems). The eight most intense peaks in each spectrum were selected for 

MS/MS.  Ion scores are available on request. 

Construction of mutants. 

Insertional mutants were constructed using the TargeTron system (Sigma), as 

described by Pearson and Mobley (173).  Briefly, genes were disrupted by insertion of an 

intron (containing a kanamycin resistance gene) which was targeted specifically to each 

gene of interest by using a set of three primers (IBS, EBS1d, and EBS2; listed in Table 1) 

in a mutagenic PCR.  This mutated region of the intron was ligated into the vector 

pACD4K-C.  Resultant plasmids were sequenced to confirm proper re-targeting of the 

intron.  Correctly re-targeted plasmids were electroporated into electrocompetent P. 

mirabilis HI4320 containing the helper plasmid pAR1219 (49).  Transformants were 
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selected on agar containing kanamycin and screened by PCR for an insertion in the 

appropriate gene, using the screening primers listed in Table 1. 

CBA/J mouse model of urinary tract infection. 

Cochallenge and independent challenges of female CBA/J mice were carried out 

as previously described using a modified Hagberg protocol (75, 95).  Because bacteria 

are introduced via a catheter and because P. mirabilis urease catalyzes crystal and larger 

stone formation, this can be classified as a model of complicated urinary tract infection.  

Briefly, single colonies were picked from a fresh plate and used to start overnight 

cultures in LB.  On the day of inoculation, cultures were diluted with LB to an OD600 of 

approximately 0.2.  For independent challenges, mice were inoculated transurethrally 

with 50 μl (containing approximately 107 CFU).  For cochallenge experiments, the dilute 

wild-type and mutant cultures were pooled in a 1:1 ratio and mice were inoculated with 

50 μl of this mixture (containing a total of approximately 107 CFU).  After seven days, 

urine was collected, mice were euthanized, and their bladders, kidneys, and spleens were 

harvested asceptically and transferred to sterile tubes containing phosphate buffered 

saline (0.138M NaCl, 0.0027M KCl, pH 7.4).  Tissues were homogenized (Omni TH 

Homogenizer, Omni International) and plated on agar plates using a spiral plater 

(Autoplate 4000, Spiral Biotech).  For independent challenges, all samples were plated on 

LB agar.  For cochallenges, all samples were plated on both LB agar plates and LB agar 

plates containing 25 μM kanamycin.  Since the mutant strain carries a kanamycin 

resistance gene, the colony counts from the kanamycin plates represent mutant bacteria 

only; LB agar plates allow the growth of both mutant and wild-type colonies. Statistical 
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significance for independent and cochallenge experiments was assessed by using the 

Mann-Whitney test and Wilcoxin matched pairs test, respectively. 
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Results 

Mice with experimental P. mirabilis urinary tract infections have varied antibody 

responses.  

In our previous study, mice were transurethrally infected with 2 x 108 CFU P. 

mirabilis HI4320 and, four weeks later, treated with antibiotics to clear the infection.  

The same mice were challenged one week later with 2 x 107 CFU. Sera were collected 

seven days after re-infection (42 days after the initial infection) (94).  In the present 

study, sera from 20 of these mice were individually screened for reactivity to P. mirabilis 

proteins.  Proteins in a P. mirabilis HI4320 cell lysate were separated by SDS-PAGE, 

transferred to a PVDF membrane, and screened by Western blot with a 1:1000 dilution of 

sera from individual mice.  Pre-immune sera were also screened by Western blot at a 

1:1000 dilution.  All post-infection sera were reactive, but showed some diversity in 

antigen recognition, which may reflect differences in the severity of the individual 

infections.  Equal volumes of the five most strongly-reacting sera were pooled and used 

for all further Western blot analyses (Fig. 1).  The five corresponding pre-immune sera 

were also pooled for use as a control. 

Sera from infected mice recognize outer membrane antigens.  

P. mirabilis was cultured in LB with aeration at 37ºC and fractions enriched for 

outer membranes were isolated by differential centrifugation and detergent solubilization.  

Proteins in the outer membrane-enriched fractions were separated by two-dimensional gel 

electrophoresis (Fig. 2A).  Proteins were screened by Western blot using the pooled sera 
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Figure 1. Western blots of P. mirabilis HI4320 lysate reacting with sera from mice 

experimentally infected with P. mirabilis HI4320.  

 (A) Western blots of P. mirabilis lysate probed with sera from infected mice.  Each strip 
represents serum from one mouse.  The five strips shown are the five most strongly 
reacting sera.  (B)  Pooled pre- and post-immune sera reacting with western blots of P. 

mirabilis lysate. 

A B
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Figure 2.  Sera from infected mice recognize outer membrane antigens. 

(A) Coomassie-stained 2D gel loaded with 300 mg of Triton X100-insoluble outer 
membrane-enriched protein from P. mirabilis HI4320 cultured in LB.  Antigenic proteins 
are labeled.  Boxed region shows area of gel that corresponds to western blot shown in 
(B).   pH gradient ranged from four to seven, left to right. Marker sizes are shown on the 
left in kilodaltons.  (B) Western blot of a 2D gel performed with a 1:10,000 dilution of 
pooled sera from infected mice (shown in Figure 1B).  Numbers designate proteins 
labeled in (A).  White (negative) spots that are visible were most likely due to an 
overabundance of protein and high antibody concentration, as suggested by the 
manufacturer of the detection system used (see Materials and Methods).  Proteins that 
reacted with sera were cut from a duplicate gel and identified by mass spectrometry.  
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at a dilution of 1:10,000 (Fig 2B).  Antigens that reacted with sera were excised from a 

duplicate Coomassie-stained gel and identified by mass spectrometry.   

Proteins expressed in vivo are not necessarily expressed in rich culture medium.  

To identify antigens that may not be expressed in LB, we used additional culture 

conditions that may more closely mimic in vivo conditions during urinary tract infection.  

For example, P. mirabilis was cultured in pooled human urine and also in minimal 

medium.  Since these media are presumably more nutrient-limited than LB, bacteria may 

require synthesis of additional proteins for growth that may not be required during 

growth in LB.  The production of these additional proteins increases the number of 

potential antigens screened.  A study of the transcriptome of uropathogenic Escherichia 

coli (UPEC) during mouse infection suggested that the urinary tract is iron-limited and of 

high osmolarity (215).  Therefore, we also isolated protein from P. mirabilis HI4320 

cultured in media that mimic these conditions by using LB containing 15 μM 

desferoxamine (an iron chelator) and 0.3 M sodium chloride, respectively.   The use of 

these culture conditions enabled the identification of nine additional antigens that were 

not expressed in LB, including four outer membrane proteins that appear to be related to 

iron acquisition (PMI0409, HmuR2, IreA, and PMI2596).   

In total, 37 P. mirabilis immunoreactive antigens were identified.  Twenty-four 

antigens are predicted to reside in the outer membrane (Table 2).  An additional 13 

proteins, not predicted to be present in the outer membrane, were also identified as 

immunoreactive antigens (Table 3).
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Selection of potential vaccine candidates. 

For the present study, five representative antigens were chosen for analysis.  We 

chose at least one antigen per category listed in Table 2, with the exception of 

lipoproteins, motility, and toxins.  We did not pursue these three classes of proteins for 

specific reasons.  Lipoproteins are generally on the inner leaflet of the outer membrane 

and may not, therefore, be exposed to the surface.  There are two copies of the gene 

encoding flagellin that can recombine to form antigenically distinct flagella (25, 29, 160).  

Since the flagella formed by this recombination event are antigenically distinct, a vaccine 

employing FlaA as a protective antigen may not be able to target bacterial cells 

expressing recombinant flagellin.  One of the toxins found in this screen, Pta (Proteus 

toxic agglutinin), recently identified as an autotransporter that is both a cytotoxin and an 

agglutinin (5), was assessed as a vaccine candidate in a separate study (4).  We 

specifically chose FadL and RafY for further study because structures of similar proteins 

have been solved and reveal the presence of extracellular loops (61, 202, 237).  If these 

proteins in P. mirabilis have similar structures, these extracellular loops could be 

accessible to the immune system during infection.  We also chose to study two putative 

outer membrane iron receptors, PMI0842 and PMI2596. The urinary tract is an iron-

limited environment, and another uropathogen (UPEC) upregulates a number of antigenic 

iron acquisition outer membrane proteins during growth in urine (13, 74, 215).  

Additionally, the use of iron receptors as protective antigens against E. coli, Haemophilus 

influenzae, and Haemophilus ducreyi infections demonstrate that iron receptors can be 

used successfully in vaccines (2, 193, 247).  We also investigated the role of one of the 

antigens not predicted to be in the outer membrane, PMI0047.  Although this protein is 

not an ideal vaccine candidate (since it is not predicted to be surface-exposed), it was 
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recognized by sera from infected mice.  Thus, it is produced during urinary tract infection 

of mice and could have a role in pathogenesis. 

Two outer membrane antigens involved in iron acquisition contribute to P. mirabilis 

virulence in the urinary tract. 

We reasoned that if a protein target is both antigenic and actively required for 

colonization, it would be more likely to successfully serve as a protective antigen for 

vaccination. For example, if a surface protein is being used as a protective antigen, any 

bacterium that attempts to escape the host immune response by down-regulating this 

protein would be less likely to persist in the host if the protein is required for 

colonization.  To determine contribution to virulence, we investigated the role of five 

representative antigens (described above) in colonization of the murine urinary tract.  

Isogenic insertional mutations were constructed in the genes encoding each of the 

potential vaccine candidates.  Genes were disrupted by the insertion of an intron carrying 

a kanamycin resistance gene, using the method of Pearson and Mobley (173).  All 

mutations were confirmed by PCR.  Growth of each mutant was tested independently in 

LB; none of the mutants had in vitro growth rates significantly different from the wild-

type strain.   

 Mutants were tested in the murine model of ascending urinary tract infection by 

co-challenge with wild-type P. mirabilis.  Mutant and wild-type bacteria were mixed in a 

1:1 ratio. This suspension was used to inoculate mice transurethrally at a total inoculum 

of 2 x 107 CFU per mouse.  After seven days, urine was collected and mice were 

euthanized.  Urine, bladders, kidneys, and spleens (as an indicator of systemic infection) 

were quantitatively cultured to determine levels of colonization by both wild-type and 

mutant strains.  Based on data from the co-challenge experiments, PMI0047 (secreted 5’ 
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nucleotidase), RafY, and FadL do not appear to contribute to colonization of the urinary 

tract (Table 4). Mutant strains, interrupted in genes encoding these proteins, colonized the 

urinary tract in numbers similar to the wild-type strain.  Two outer membrane iron 

receptors do, however, contribute to colonization of the urinary tract by P. mirabilis (Fig. 

3).  PMI0842::kan was outcompeted by wild type at statistically significant levels in both 

the bladder and kidneys (p < 0.05 for both tissues, Fig. 3A).  Also in cochallenge, 

PMI2596::kan was recovered from kidneys in significantly lower numbers than wild type 

(p < 0.05, Fig. 3C).  As a control, in vitro cocultures were performed, in which the mutant 

and wild-type strains were mixed in a 1:1 ratio and used to inoculate culture medium.  

Neither mutant was outcompeted by the wild-type strain (Fig. 4).  Thus, the mutants 

retained wild-type growth rates in vitro and likely were not outcompeted in vivo due to an 

in vitro growth defect. 

 Due to the striking phenotype of these mutants (particularly PMI0842::kan) in 

cochallenge, each mutant was tested for virulence in independent challenges.  While 

cochallenges are more sensitive at detecting differences between mutant and wild-type 

strains because the strains are put into direct competition for niches and nutrients, they 

cannot conclusively reveal that a putative virulence factor is required for infection.  Thus, 

mice were transurethrally inoculated with either the wild-type or mutant strain at a dose 

of 1 x 107 CFU per mouse.  After seven days, urine, bladders, kidneys, and spleens were 

quantitatively cultured to determine the level of bacterial colonization.  Independent 

challenge data show that PMI0842 is required for maximal colonization of the urinary 

tract (Fig. 3A).  Although this mutant was able to colonize mice, PMI0842::kan was 

found in significantly lower numbers as compared to wild type in both the bladders and
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Figure 3. Putative iron acquisition outer membrane proteins contribute to P. 

mirabilis HI4320 virulence in the murine model of urinary tract infection. 

Each triangle represents an individual mouse.  Bars represent medians.  Points at 100 
cfu/g of tissue represent samples at or below the limit of detection.  (A) PMI0842::kan 
and wild type independent challenge.   (B) PMI0842::kan cochallenge (C) PMI2596::kan 
and wild type independent challenge (D) PMI2596::kan cochallenge.  *, p < 0.05; **, p < 
0.05 
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Figure 4.  PMI0842::kan and PMI2596::kan are each maintained during a seven-

day coculture with wild type. 

Cultures were inoculated with approximately equal amounts of wild-type and mutant 
strains.  At indicated time points, samples were taken for plating and the culture was 
repassaged (1:100) into fresh medium.  (A) Wild type and PMI0842::kan coculture in 
LB. Filled symbols, wild type; open symbols, PMI0842::kan. (B) Wild type and 
PMI2596::kan coculture in LB.  Filled symbols, wild type; open symbols, PMI2596::kan. 
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kidneys of infected mice (p < 0.05 and p < 0.01, respectively).  In contrast, although 

PMI2596::kan was outcompeted in cochallenge experiments (Fig. 3D), in independent 

challenge experiments it colonized mice in similar numbers as the wild-type strain (Fig. 

3C).  
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Discussion 

This is the first study to identify immunoreactive outer membrane antigens of P. 

mirabilis using an immunoproteomics approach.  Here, we identified 37 antigens that 

reacted with sera from mice experimentally infected in the urinary tract with P. mirabilis.  

Based on their annotation or homology to other proteins, 24 of these proteins are 

predicted to reside in the outer membrane.  These proteins are attractive as potential 

vaccine candidates since they are expressed in vivo, antigenic, and exposed on the surface 

of the bacterium (and thus to the immune system).   Five representative antigens were 

selected for further study: PMI0047, RafY, PMI0842, FadL, and PMI2596.  Two of these 

proteins, both putative outer membrane iron receptors (PMI0842 and PMI2596), 

contribute to the fitness of P. mirabilis in the urinary tract.  From this study, PMI0842 

and PMI2596 emerge as potential vaccine candidates, since each protein both contributes 

to pathogenesis and is antigenic. PMI0047, RafY, and FadL do not appear to directly 

contribute to P. mirabilis HI4320 virulence in the urinary tract, as strains with 

insertionally interrupted copies of these genes colonized the urinary tract of mice in 

numbers similar to that of wild-type bacteria. 

This study identified five predicted porins as immunogenic: OmpA, OmpF, 

OmpW, PMI1017, and RafY.  OmpA, OmpF, and OmpW are major outer membrane 

proteins.  PMI1017 appears to be a member of the OprD porin family based on homology 

to other family members.  RafY is a predicted glycoporin, a family of proteins that 

typically allow passage of sugars across the bacterial outer membrane.  Other well-known 

glycoporins include LamB (maltoporin) and ScrY (sucrose porin).  In E. coli, RafY 

allows growth on raffinose but was later shown to be a general diffusion pore rather than 
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a carbohydrate-specific one (16).  The role of RafY in P. mirabilis has not yet been 

determined.  The structures of LamB from E. coli and ScrY from Salmonella 

typhimurium have been solved (61, 202). Both proteins contain extracellular loops which 

are surface-exposed.  If the protein structure of P. mirabilis RafY is similar to other 

glycoporins, it may also have surface-exposed extracellular loops and therefore be an 

attractive candidate for inclusion in vaccine studies. 

Four lipoproteins were identified: Pal, DapX, YfgL, and YeaY.  Lipoproteins are 

typically found on the inner leaflet of the outer membrane.  Two of these lipoproteins 

(DapX, which belongs to NlpB family, and YfgL) are involved in a complex with outer 

membrane protein YaeT, which was also identified as an antigen in this study. Although 

the complex is conserved in gram negative bacteria, DapX/NlpB and YfgL are not 

essential for growth of E. coli (36, 56, 190, 252).  Peptidoglycan-associated lipoprotein 

(Pal) is released during gram-negative sepsis and mediates inflammation and death in 

mice (82).  Pal is part of the Tol-Pal system, which is conserved among gram negative 

organisms (222).  This system has been implicated in the maintenance of cell envelope 

integrity (128) and cell division machinery (68).  Pal has been identified as an antigen in 

many other bacterial pathogens, including Legionella pneumophila and Campylobacter 

jejuni (39, 57).  A homologous lipoprotein (P6) in H. influenzae is being assessed as a 

protective antigen (32, 51, 86, 108).   Although we initially did not choose to investigate 

Pal as a vaccine candidate since we are aiming specifically for surface-exposed proteins, 

these findings from other bacteria suggest it may warrant further study. 

Two flagellar proteins were identified: the major flagellin subunit and the 

flagellar hook protein (FlgE).  P. mirabilis carries two copies of the flagellin gene, flaA 
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and flaB (29).  Normally, flaA is expressed and flaB is silent, but the two genes can 

undergo recombination, resulting in the formation of antigenically distinct flagella (25, 

160).  Recombination of the two alleles occurs infrequently in wild-type cells (135).  

Such an event must have occurred under our culture conditions, since mass spectrometry 

data yielded results for both FlaA and FlaB proteins.  

We identified five iron-related outer membrane proteins as antigenic.  This is not 

surprising considering the important role iron acquisition plays in bacterial pathogens.  

Indeed, we chose to examine outer membranes from bacteria cultured under iron 

limitation because the urinary tract is an iron-limited environment. Iron acquisition 

systems are up-regulated in UPEC during infection in the murine model (215).  UPEC 

up-regulates a number of outer membrane iron receptors when cultured in human urine 

and many of these were identified as antigenic (13, 74).  Additionally, P. mirabilis iron-

related outer membrane receptors have been previously identified as antigenic both in 

mice and in human patients (181, 210).  One of these proteins, also identified as an 

immunoreactive antigen in the current study, was recently identified as HmuR2 

(PMI1426) and characterized as a heme receptor that contributes to virulence in the 

urinary tract (127).   

Two outer membrane antigens predicted to be iron receptors (PMI0842 and 

PMI2596) contribute to the fitness of P. mirabilis HI4320 during experimental urinary 

tract infection.  PMI0842 was previously identified as a virulence factor by signature-

tagged mutagenesis (38) and was recently shown to be up-regulated in response to iron 

limitation (Himpsl et al., in preparation).  Our co-challenge results confirm the previous 

finding from signature-tagged mutagenesis.  Additionally, our independent challenge data 
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show that PMI0842 is required to achieve maximum colonization of the urinary tract.  

This result is surprising due to the fact that iron receptors are typically redundant in 

function; a defect in one system rarely results in attenuation during independent 

challenges since other iron uptake systems remain functional, as highlighted by Torres 

and colleagues (230). The role of PMI0842 in iron uptake in P. mirabilis remains to be 

determined.   

This study is also the first to show a role for PMI2596 in P. mirabilis HI4320 

virulence in the urinary tract.  Although the independent challenge data show this protein 

is not required for virulence, cochallenge data highlight its contribution to colonization in 

the kidneys.  PMI2596 is located roughly 2 kb upstream of the nrp operon, which 

encodes non-ribosomal peptide synthesis genes (65). NrpG was previously identified by 

signature-tagged mutagenesis as a virulence factor in P. mirabilis (38).  Interestingly, a 

strain lacking a functional copy of NrpG was outcompeted by wild-type P. mirabilis 

HI4320 in the kidneys but not the bladders of mice in a cochallenge experiment (38), the 

same pattern we observed with PMI2596::kan.  It is currently unknown if PMI2596 is 

functionally related to the nrp operon.   

Although we were able to identify 37 antigens, we do not believe this study 

generated a complete list of the immunogenic outer membrane antigens expressed by P. 

mirabilis in vivo.  The methods used to identify these proteins imposed some limitations.  

First, we were able only to identify proteins that were abundant enough to be detected by 

Coomassie staining.  Also, since we ran the protein samples on a denaturing gel prior to 

screening with sera, we will have likely missed any conformational epitopes.  Finally, we 

did not detect any fimbrial proteins under any culture condition tested.  This is surprising, 
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especially considering the large number of fimbrial operons encoded in the genome 

(174).  Specifically, we expected to find proteins that comprise MR/P fimbriae, since 

these fimbriae are expressed (although not optimally) under the conditions tested (23) and 

the sera used in this experiment have previously detected MR/P fimbriae (94).  It is likely 

that fimbriae were sheared from bacterial cells during fractionation.   

This study also identified 12 antigenic proteins that do not appear to be surface-

exposed.  These non-surface exposed antigens include two apparent DNA binding 

proteins, a ribosomal protein, various enzymes, and three conserved hypothetical 

proteins.  Since the goal of this study was to identify surface-exposed antigens, these 

proteins were not investigated further for vaccine studies.  Even though these proteins 

may not be ideal vaccine candidates, they were recognized by sera from infected mice, 

meaning they are expressed by P. mirabilis during urinary tract infection and could 

potentially play a role in pathogenesis.  PMI0047 does not contribute to the fitness of P. 

mirabilis during experimental infection, since bacteria with an interrupted copy of this 

gene were able to colonize mice at numbers similar to the wild-type strain. Other proteins 

on this list, however, may play a role in pathogenesis and are currently under 

investigation (G. Nielubowicz and H. Mobley, unpublished data).  

The sera used to identify antigens in this experiment are from our previous study 

in which groups of mice were either infected transurethrally with P. mirabilis (vaccinated 

with live organisms) or sham-vaccinated with PBS (94).  Both groups of mice were then 

transurethrally challenged with 106 CFU of P. mirabilis HI4320 to determine whether 

having a previous infection protected mice from subsequent infection.  Vaccinated mice 

were colonized in the urine, bladder, and kidneys, but had significantly lower 
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colonization levels in the kidney than the sham-vaccinated mice (p = 0.016).  Therefore, 

in the study described here, we identified antigens (which we hope will be protective) by 

using sera from mice that were not completely protected.  It may seem counterintuitive to 

use sera from non-protected mice to search for protective antigens, but it is important to 

point out that these mice had strong immunoglobulin responses to MR/P fimbriae (94).  

MR/P fimbriae or protein subunits (MrpH and MrpA) have been used successfully in a 

protective vaccine in the murine model (118, 120, 177, 200, 201).  Even though these 

antigens can be protective and were present during infection (as evidenced by the strong 

immunoglobin response that was detected), their presence was not able to fully protect 

the mice from subsequent infection.  Higher levels of antibody to specific proteins 

induced by subunit vaccinations may, however, be effective in protecting the urinary tract 

from colonization.  It is important to point out that the correlates of protection in the 

urinary tract are not yet well understood.  Multiple studies have shown that the 

production of serum IgG and IgM do not necessarily correlate with protection (96, 200, 

201). However, data on production of local IgA and protection are not as clear.  Some 

studies have shown no correlation (200, 201), while others have suggested one (94, 120).  

It is known that antigen-specific responses occur in the urinary tract and accelerate the 

clearance of at least one uropathogen, UPEC (227).  

Future work will determine whether these proteins are conserved among P. 

mirabilis strains.  We are also interested in assessing whether these antigens could 

provide protection against other bacteria which are commonly found in polymicrobial 

cUTIs, such as Providencia and Morganella species.  Although these genome sequences 

have not been published, work is currently underway in our laboratory to determine 
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whether homologues of the genes encoding antigenic P. mirabilis proteins are present in 

these species (E. Flannery and H. Mobley, unpublished).  We will also determine the 

extent of protection offered by immunization with selected newly identified antigens in 

the murine model of urinary tract infection.  P. mirabilis antigenic proteins identified in 

this study are being overexpressed in and purified from E. coli.  Mice will be immunized 

with antigen cross-linked to cholera toxin, which is known to be an effective mucosal 

adjuvant (58) and has previously been used with P. mirabilis MrpH for an effective 

vaccine (120). By taking this approach, we hope to develop an effective vaccine against 

this agent of cUTIs.   

 

 



 75

Appendix (Unpublished Data) 

PMI0842, a putative TonB-dependent receptor, was identified in this study as an 

antigenic outer membrane protein that is required for maximal virulence during 

experimental murine UTI.  PMI0842 met all of our criteria for an ideal vaccine candidate, 

and therefore was assessed as a protective antigen.   

PMI0842 was cloned and purified as previously described for other antigens (4, 

12, 120).  Briefly, the gene encoding PMI0842 was cloned into the vector pET-30b(+) 

(Novagen) which resulted in the addition of a six-residue histidine tag at the C terminus.   

IPTG (β-D-1-thiogalactopyranoside) was used to induce expression of PMI0842 in  

E. coli BL21(DE3)pLysS cultured in Terrific Broth (12 g/L tryptone, 24 g/L yeast 

extract, 2.3 g/L KH2PO4, 12.5 g/L K2HPO4, 4% glycerol).  Outer membranes were 

isolated as described in Materials and Methods, above.  PMI0842 was purified from outer 

membrane preparations by using a Ni-NTA column (Qiagen), according to the protocol 

recommended by the manufacturer and as described previously for Pta (4, 5) (Fig. 5).  

Please note that PMI0842 was not purified to homogeneity; nonetheless, antigen 

preparation continued.  Purified PMI0842 was conjugated to adjuvant (cholera toxin, CT) 

at a 10:1 ratio using N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP, Pierce), per 

the manufacturer’s recommendations.   

Mice were immunized intranasally since that route has previously been shown to 

be most effective for P. mirabilis antigens (120).  Mice received a primary dose of 100 

μg PMI0842 (conjugated to 10 μg of CT) on day zero; two boosters (consisting of 10 μg 

PMI0842 conjugated to 1 μg CT) were administered on days seven and fourteen (Fig. 

6A).  CT alone was administered intranasally to a group of control mice; these mice 
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Figure 5. Sample purification of PMI0842.   

M, marker (sizes of relevant bands, in kDa, are depicted to the left of the gel); FT, flow-
through; EFT, elution flow-through.  Proteins in elutions 2-7 were pooled and prepared 
for use in immunization, as described in the text. 
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Figure 6. Intranasal vaccination with PMI0842 does not protect mice from 

transurethral challenge with P. mirabilis HI4320.   

(A) Vaccination scheme. IN, intranasally; TU, transurethrally (B) Mice were immunized 
either with CT alone (closed symbols) or PMI0842-CT (open symbols) and then infected 
with P. mirabilis HI4320.  Each symbol represents data from an individual mouse.  Data 
shown are compiled from two independent experiments.  Bars represent the median.  
Limit of detection is 100 CFU/gram of tissue. 
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received a primary dose of 10 μg CT and boosts of 1 μg CT.  At the beginning of the 

experiment and at the time of each boost, blood was collected by an infraorbital bleed and 

serum was isolated to assess production of PMI0842-specific antibodies.  One week 

following administration of the final boost, mice were infected transurethrally with 

approximately 1 x 107 CFU P. mirabilis HI4320.  After seven days, blood and urine were 

collected (for antibody assessment), mice were sacrificed, and bladders, kidneys, and 

spleens were quantitatively cultured.   

Unfortunately, mice that were immunized with PMI0842-CT were not protected 

from infection; levels of colonization in PMI0842-CT-vaccinated mice were not 

significantly different from levels of colonization in mice that received CT alone (Fig. 

6B).  Therefore, we conclude that PMI0842 did not serve as a protective antigen when 

conjugated to the adjuvant cholera toxin and administered intranasally. Although serum 

and urine samples were collected from mice to detect PMI0842-specific antibody 

production, these samples have not yet been analyzed.  It is possible that vaccination did 

not result in the production of PMI0842-specific antibodies; this possibility could explain 

why no protection was observed.   

 

The work presented in this chapter (excluding the data presented in this appendix) 

was published (165).  The other contributing author, Sara N. Smith, assisted with animal 

studies; all other experiments were performed by G.R.N.  Manuscript was prepared by G. 

R. N.  
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CHAPTER III. Zinc Uptake Contributes to Motility and Provides a Competitive 

Advantage to Proteus mirabilis during Experimental Urinary Tract Infection 

Abstract 

Proteus mirabilis, a gram negative bacterium, represents a common cause of 

complicated urinary tract infections in catheterized patients or those with functional or 

anatomical abnormalities of the urinary tract.  ZnuB, the membrane component of the 

high affinity zinc (Zn2+) transport system ZnuACB, was previously shown to be 

recognized by sera from infected mice.  Since this system has been shown to contribute to 

virulence in other pathogens, its role in P. mirabilis was investigated by constructing a 

strain with an insertionally interrupted copy of znuC.  The znuC::kan mutant was more 

sensitive to zinc limitation than wild type, was outcompeted by wild type in minimal 

medium, displayed reduced swimming and swarming motility, and produced less flaA 

transcript and flagellin protein. Production of flagellin and swarming motility were 

restored by complementation with znuCB in trans.  Swarming motility was also restored 

by the addition of Zn2+ to the agar prior to inoculation; addition of Fe2+ to agar also 

partially restored swarming motility of znuC::kan but addition of Co2+, Cu2+, or Ni2+ did 

not.  ZnuC contributes to, but is not required for, virulence in the urinary tract; znuC::kan 

was outcompeted by wild type during a cochallenge experiment but was able to colonize 

mice to levels similar to wild type during independent challenge.  Since we demonstrated 

a role of ZnuC in zinc transport, we hypothesize that there is limited zinc present in the 

urinary tract and P. mirabilis must scavenge this ion to colonize and persist in the host. 
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Introduction 

Proteus mirabilis, a motile gram negative bacterium, represents a common cause 

of complicated urinary tract infections (244).  These infections typically occur in patients 

with functional or anatomical abnormalities of the urinary tract or patients subjected to 

long-term catheterization (such as those with spinal cord injuries or elderly patients 

residing in nursing homes).  The serious sequelae (including catheter encrustation, stone 

formation, renal scarring, and potential for progression to bacteremia) that can result from 

these P. mirabilis infections (149, 243, 244), as well as the difficulty in treating them, 

have sparked active research into the mechanisms of pathogenesis (5, 38, 60, 84, 89, 216, 

262) and identification of potential vaccine candidates (4, 118, 120, 123, 165, 177, 200).  

One of the most notable characteristics of P. mirabilis is swarming motility, a specialized 

form of flagellar-mediated motility during which bacteria differentiate into elongated 

hyperflagellated cells; these differentiated cells migrate together en masse (185).  

Swarming motility is clinically relevant, as P. mirabilis is capable of swarming across the 

surface of urinary catheters (219).   

Our previous study, aimed at identifying antigens using sera from mice with 

experimental urinary tract infections (94), revealed that a protein annotated as ZnuB is an 

antigen expressed in vivo (165).  ZnuB is the inner membrane component of the ZnuACB 

high-affinity zinc (Zn2+) transport system (171).  The additional components of this ABC 

transporter are ZnuA, a periplasmic binding protein, and ZnuC, a cytoplasmic ATPase. 

   Zinc is essential for life but also toxic at high concentrations; thus, its 

intracellular concentration must be carefully regulated (35).  In bacteria, this regulation is 

achieved primarily by coordinated efforts to import and export zinc in environments 
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where the ion is limited or present in excess, respectively (79).  In conditions where zinc 

is low, high-affinity uptake systems are employed to import zinc into the cell.  In 

Escherichia coli, this process is achieved via the ZnuACB system (171).  This system is 

synthesized from two divergently transcribed operons, znuA and znuCB.  Under zinc 

replete conditions, the regulator Zur (zinc uptake repressor) binds as a dimer in the 

intergenic region between znuA and znuC and represses transcription; when zinc becomes 

limited, the genes are derepressed (170).  Zur is exquisitely sensitive to changes in the 

zinc concentration in the cell; differences can be sensed in the femtomolar range (168).  

Under moderate conditions in which zinc is neither limited nor toxic, zinc is brought into 

the cell through lower-affinity transporters, namely ZupT (71), which has broad metal 

specificity and is expressed constitutively at low levels (70).  In addition, PitA, an 

inorganic phosphate transporter in E. coli, and CitM, a citrate transporter in Bacillus 

subtilis, are capable of transporting zinc (24, 107). 

Much like iron, the level of zinc available in the host is presumed to be limited 

(133, 254) and may actually decrease in response to bacterial infection (64).  Therefore, it 

is not surprising that the ZnuACB system has been found to contribute to virulence in a 

number of pathogens, including Campylobacter jejuni (50), Salmonella enterica serovar 

Typhimurium (15, 40), Haemophilus ducreyi (117), Brucella abortus (105, 253), and 

Pasteurella multocida (67).  Recently, ZnuACB was shown to contribute to the ability of  

uropathogenic E. coli (UPEC) to colonize the urinary tract (196), suggesting the urinary 

tract may be limited in zinc, as previously demonstrated for iron (13, 192, 210, 215).  

Zinc uptake is uncharacterized in P. mirabilis.  We hypothesized that the 

ZnuACB system functions as a zinc transport system in P. mirabilis and contributes to 
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virulence, especially considering it is expressed in vivo (165).  In this study, we show that 

the presence of ZnuC allows P. mirabilis to grow to a higher density under zinc limitation 

and yields a competitive advantage during growth in minimal medium.  ZnuC is required 

for motility; a strain with an interrupted copy of the gene swims and swarms significantly 

less than wild type and produces less flagellin, the major subunit of flagella.  In addition, 

znuA and znuCB appear to be regulated by Zur.  We show, for the first time, that the 

ability to import zinc contributes to the fitness of P. mirabilis during experimental urinary 

tract infection in the mouse model of this disease. 
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Materials and Methods 

Strains and culture conditions. 

P. mirabilis HI4320 was originally cultured from the urine of a catheterized 

nursing home patient with bacteriuria (149).  Luria broth (LB) (per liter, 10 g tryptone, 5 

g yeast extract, and 0.5 g NaCl) and non-swarming agar (per liter, 10 g tryptone, 5 g yeast 

extract, 0.5 g NaCl, and 15 g agar) were used to culture bacteria.  Minimal A medium 

was prepared as previously described (28).  All cultures were incubated at 37ºC with 

aeration unless otherwise noted.  When appropriate, kanamycin or ampicillin was added 

to media at a final concentration of 25 μg/ml or 100 μg/ml, respectively.  Metal chelation 

was achieved by addition of N,N,N′,N′-Tetrakis (2-pyridylmethyl)ethylenediamine 

(TPEN, Sigma-Aldrich), dissolved in ethanol prior to use.    Metals used to supplement 

media were obtained from the following sources: FeCl2, Fisher Scientific; Cu(II)SO4 � 

5H2O, Sigma; Co(II)Cl2 � 6H2O, Sigma; NiSO4 � 6H2O, Sigma;  ZnSO4 � 7H2O, J.T. 

Baker.  The Bioscreen C Growth Curve Analyzer (Growth Curves, USA) was used for 

independent growth curves. 

Construction of mutants. 

Insertional mutants were constructed using the TargeTron system (Sigma), as 

described for P. mirabilis by Pearson and Mobley (173).  Briefly, genes were disrupted 

by insertion of an intron, targeted specifically to the gene of interest by using a set of 

three primers (IBS, EBS1d, and EBS2; listed in Table 5) in a mutagenic PCR.  This 

mutated region of the intron was ligated into the vector pACD4K-C.  Resultant plasmids 

were sequenced to confirm proper re-targeting of the intron.  Plasmids containing a 
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correctly re-targeted intron were electroporated into electrocompetent P. mirabilis 

HI4320 containing the helper plasmid pAR1219 (49).  Since the intron contains a 

kanamycin resistance gene, transformants were selected on agar containing kanamycin 

and screened by PCR for an insertion in the appropriate gene, using the screening primers 

listed in Table 5. 

Complementation. 

qRT-PCR data indicated that znuC::kan contained a polar mutation that resulted 

in reduced expression of znuB; expression of znuB was 50.1-fold lower in znuC::kan than 

in wild type. Therefore, znuCB were employed for complementation studies.  znuCB 

were amplified from wild-type P. mirabilis HI4320 genomic DNA using primers listed in 

Table 5 (znuCBcompFor and znuCBcompRev) and cloned into pCR2.1-TOPO 

(Invitrogen).  The resultant plasmid, pTOPO-znuCB, was transformed into 

electrocompetent E. coli TOP10 (Invitrogen); transformants were selected on agar 

containing kanamycin.  Restriction enzymes HindIII and XhoI (New England Biolabs) 

were used to digest pTOPO-znuCB and the vector pACYC177 (New England Biolabs); 

the insert was ligated into the digested vector using T4 DNA ligase (Promega).  The 

resultant plasmid, pZnuCB, was transformed into P. mirabilis HI4320 by electroporation 

to yield the complemented strain (znuC::kan + pZnuCB), which was selected for on agar 

containing ampicillin.  pACYC177 was also transformed into znuC::kan for use as an 

empty vector control (strain znuC::kan + pEV).   

Quantitative reverse transcriptase PCR (qRT-PCR). 

Log phase culture (0.5 ml) was added to 1 ml RNA Protect solution (Qiagen). 

RNA was isolated using the RNeasy Mini Prep protocol (Qiagen) according to the 
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manufacturer’s directions.  Samples were treated with DNase (Turbo DNA-free DNase, 

Ambion) and cDNA was synthesized using the Superscript First-Strand Synthesis System 

(Invitrogen).  Samples were analyzed by RT-PCR with primers specific to rpoA to 

confirm lack of product in negative controls with no reverse transcriptase added (-RT).  

qRT-PCR reactions were performed in duplicate and contained 30 ng cDNA and 12.5 µl 

2× SYBR Green PCR master mix (Stratagene) per reaction.  Primers were used at 100 

nM (rpoA, znuA) or 200 nM (znuC, znuB, flaA). qRT-PCR was performed with an 

Mx3000P thermal cycler (Stratagene).  Data were normalized to expression of rpoA.  For 

experiments examining expression under conditions of zinc limitation, 35 μM TPEN (or 

ethanol, as a control) was added to cultures 30 minutes prior to RNA isolation.   

Swimming and swarming motility. 

Swimming motility was measured by stabbing the inoculum into soft agar swim 

plates (per liter: 10 g tryptone, 0.5 g NaCl, 2.5 g agar).  Swarming motility was measured 

by spotting 5 μl of the inoculum onto the surface of swarming agar plates (per liter: 10 g 

tryptone, 10 g NaCl, 5 g yeast extract, 15 g agar).  Inocula were late logarithmic phase 

bacterial cultures adjusted to OD600 = 1.0.  Both swim and swarm plates were incubated 

at 30˚C for the times indicated.   Statistical analyses were performed using two-tailed 

student’s t-test with a 95% confidence interval. 

Western blot. 

Overnight cultures of bacteria were adjusted to an OD600 = 1.0.  Cells were 

collected from 1 ml of the adjusted culture, resuspended in 100 μl of 2x Laemmli buffer 

(109), and boiled for 10 minutes.  Proteins present in 10 μl of each sample were loaded 
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onto 12.5% acrylamide gels and separated by polyacrylamide gel electrophoresis.  

Duplicate gels were run; one gel was stained with Coomassie to confirm that protein 

levels were similar in each sample and the other gel was used for Western blot.  Proteins 

were transferred to PVDF membrane (Immobilon P, Millipore) at 100V for one hour at 

4˚C.  The membrane was blocked overnight at 4˚C in 5% milk dissolved in TBS-T 

(0.05% Tween, 100mM Tris (pH 7.5), 9% NaCl).  The membrane was incubated for 45 

min at room temperature with anti-FlaA antibody (27), as recently described (172).  

Following three quick rinses with TBS-T, the membrane was subjected to one 15-minute 

and three five-minute washes in TBS-T.  The secondary antibody, peroxidase-conjugated 

goat anti-rabbit IgG (Sigma), was diluted 1:10,000 in TBS-T and applied at room 

temperature with shaking for 45 minutes.  After the wash steps were repeated, detection 

was performed using Amersham ECL Plus Western Blotting Detection System (GE 

Healthcare) following the protocol recommended by the manufacturer.  

CBA/J mouse model of urinary tract infection. 

Cochallenge and independent challenges of female CBA/J mice were carried out 

as previously described using a modification (95) of the Hagberg protocol (75).  Briefly, 

single colonies were picked from a fresh plate and used to start overnight cultures in LB.  

On the day of inoculation, cultures were diluted with fresh LB to an OD600 ≈ 0.2.  For 

independent challenges, mice were inoculated transurethrally with 50 μl containing 

approximately 107 CFU.  (Actual input was 1.41 x 107 CFU per mouse for mice infected 

with wild type and 2.36 x 107 CFU per mouse for mice infected with znuC::kan.)  For 

cochallenge experiments, the wild-type and mutant cultures were mixed in a 1:1 ratio and 

mice were transurethrally inoculated with 50 μl of the mixture containing approximately 
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107 CFU.  (Actual input for the cochallenge experiment contained, per mouse, 6.15 x 106 

CFU wild type and 1.08 x 107 CFU znuC::kan.)  After seven days, urine was collected, 

mice were euthanized, and bladders and kidneys were harvested asceptically and 

transferred to sterile tubes containing phosphate buffered saline. Tissues were 

homogenized using an Omni TH Homogenizer (Omni International) and plated using a 

spiral plater (Autoplate 4000, Spiral Biotech).  For independent challenges, all samples 

were plated on LB agar.  For cochallenges, all samples were plated on both LB agar and 

LB agar containing kanamycin.  Since znuC::kan harbors a kanamycin resistance gene, 

colony counts from kanamycin plates represent mutant bacteria only; LB agar plates 

allow growth of both mutant and wild-type colonies. Statistical significance was assessed 

by using the Mann-Whitney test and Wilcoxin matched pairs test for independent and 

cochallenge experiments, respectively. 

Statistical analysis. 

All statistical analyses were performed using GraphPad Prism (version 3.00 for 

Windows, GraphPad Software, San Diego, California USA www.graphpad.com). 
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Results 

ZnuC plays a role in zinc acquisition in P. mirabilis. 

In our previous study, ZnuB was identified on an immunoblot of membrane 

proteins using sera from mice experimentally infected with P. mirabilis (165).  The 

antisera recognized ZnuB, indicating that this protein is expressed in vivo and thus may 

represent a therapeutic target.  As homologous ZnuACB uptake systems have been 

shown to contribute to virulence in other bacterial pathogens, its role in P. mirabilis was 

investigated.   

We hypothesized that expression of a divalent cation transporter would be 

regulated and could be induced under zinc restriction.  To test this hypothesis, bacteria 

were cultured in the presence and absence of the zinc chelator TPEN and expression of 

znuACB were measured by qRT-PCR (Fig. 7). All three genes were upregulated >20-fold 

under zinc restriction.  Ethanol, used to solubilize TPEN, had no effect on induction. 

To demonstrate a growth requirement for zinc, a mutation was constructed in the 

putative transport system using a method that has been successful in generating P. 

mirabilis mutants (173).  znuC was inactivated by the insertion of an intron containing a 

kanamycin resistance gene, resulting in strain znuC::kan.  Insertion of the intron within 

znuC was confirmed by PCR.   

There was no difference in the growth rate of znuC::kan compared to wild type 

when cultured independently in LB, minimal medium, or pooled human urine (Fig. 8).  

However, when the two strains were cultured together, and therefore put in direct 

competition for resources, znuC::kan was outcompeted by the wild-type strain in minimal 

medium (Fig. 9A).  The difference in growth was overcome by the addition of 1 mM  
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Figure 7.  Expression of znuACB is induced by zinc limitation.   

Wild type P. mirabilis was cultured in the absence or presence of TPEN.  Gene 
expression was analyzed by qRT-PCR.  Data were normalized to expression of rpoA and 
presented as fold-change compared to culture in LB without TPEN. Black bars, LB 
supplemented with 35 μM TPEN; gray bars, LB supplemented with solvent (ethanol).
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Figure 8.  Growth of znuC::kan compared with wild type.  

(A) Wild type and znuC::kan were cultured independently in LB, and growth was 
monitored by plating samples at the indicated time points.  Compare to OD600 data in Fig. 
11.  Filled symbols, wild type; open symbols, znuC::kan. (B) Wild type and znuC::kan 
were cultured independently in MM, and growth was observed by monitoring OD600.  
Monitoring growth by OD600 resulted in an apparent lag in growth of znuC::kan 
compared with wild type; a similar pattern was observed when monitoring the growth of 
wild type and znuC::kan in LB, even though cfu data show no difference in growth 
between the two strains in LB. Solid line, wild type; hashed line, znuC::kan. (C) Wild 
type and znuC::kan were cultured independently in filtered, pooled human urine.  Growth 
was monitored by plating samples at the indicated time points.  Filled symbols, wild type; 
open symbols, znuC::kan.
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Figure 9.  znuC::kan is outcompeted by wild type during coculture in minimal 

medium.   

Cultures were inoculated with approximately equal amounts of wild type and znuC::kan.  
At indicated time points, samples were taken for plating and the culture was repassaged 
(1:100) into fresh medium.  Filled symbols, wild type; open symbols, znuC::kan.  (A) 
Minimal A Medium. Dashed gray line designates the limit of detection (100 CFU/ml). 
(B) Minimal A Medium supplemented with 1 mM ZnSO4. 
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ZnSO4 to the culture; under those conditions, znuC::kan was maintained in the culture, 

along with the wild-type strain, for the duration of the experiment (Fig. 9B).  

Maintenance of znuC::kan for the duration of the experiment could be achieved by the 

addition of as little as 5 μM ZnSO4 (the lowest concentration tested) to the culture 

medium.  The outcompetition phenotype was observed during coculture in minimal 

medium but not in LB (Fig. 10), suggesting the higher concentration of zinc in LB is 

sufficient to sustain growth of P. mirabilis without a functioning high-affinity uptake 

system, even when it is put in direct competition with the wild-type strain for this 

necessary nutrient.  To confirm results from coculture experiments, the growth of 

znuC::kan was analyzed under zinc limitation achieved by the addition of TPEN to 

culture medium.  Whereas little difference was observed in the growth rates of wild type 

and znuC::kan in LB, znuC::kan was more sensitive to addition of 40 μM TPEN than 

wild type (Fig. 11).  Taken together, these data suggest that ZnuC functions in zinc 

acquisition in P. mirabilis, consistent with its function in other bacterial species. 

Zur represses expression of znuACB. 

Analogous to the E. coli system (170, 171), we hypothesized that znuACB would 

be repressed by the Zn-binding repressor Zur, which is distally encoded on the P. 

mirabilis chromosome (zur, PMI2743; znuACB, PMI1150-1152). To investigate the role 

of Zur in P. mirabilis, zur was insertionally inactivated by the method described above, 

resulting in the strain zur::kan.  Again, this mutation was confirmed by PCR.  As assessed 

by qRT-PCR, expression of znuACB was increased >10-fold in zur::kan (Fig. 12A).  

These results support the hypothesis that Zur acts as a repressor of znuACB in P. 

mirabilis.   
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Figure 10. znuC::kan is maintained during a seven-day coculture with wild type in 

rich culture medium. 

Culture was inoculated with approximately equal amounts of wild type and znuC::kan.  
At indicated time points, samples were taken for plating and the culture was repassaged 
(1:100) into fresh medium.  Filled symbols, wild type; open symbols, znuC::kan.  
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Figure 11.  znuC::kan is more sensitive to TPEN than wild type.   

Wild type and znuC::kan were cultured in either plain LB or LB supplemented with 40 
μM TPEN.  Growth was monitored by recording OD600 at 15 min intervals over a 24 h 
time period; for clarity, only 30 min time points are shown.  Filled symbols, wild type; 
open symbols, znuC::kan; circles, growth in LB; diamonds, growth in LB supplemented 
with 40 μM TPEN.   
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Figure 12.  zur::kan is more sensitive to zinc than the wild-type strain.   

(A) Wild type and zur::kan were cultured in LB.  Gene expression was analyzed by qRT-
PCR.  Data were normalized to expression of rpoA and presented as fold-change in 
zur::kan as compared to expression in wild type. (B) Wild type and zur::kan were 
cultured in plain LB as well as LB supplemented with 500 μM, 750 μM, or 1 mM ZnSO4.  
Filled symbols, wild type; open symbols, zur::kan; circles, LB; triangles, LB plus 500 
μM ZnSO4; diamonds, LB plus 750 μM ZnSO4; inverted triangles, LB plus 1 mM 
ZnSO4. (C) zur::kan was cultured in LB supplemented with zinc either at the start of the 
experiment or after OD600 > 0.3.  Filled symbols, cultures with zinc added at beginning; 
open symbols, cultures spiked with zinc during growth; triangles, LB plus 500 μM 
ZnSO4; diamonds, LB plus 750 μM ZnSO4; inverted triangles, LB plus 1 mM ZnSO4.  
Arrow depicts when zinc was added to (open symbol) cultures.   
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We hypothesized that since zur::kan may overproduce the ZnuACB high-affinity 

uptake system, this strain may be hypersensitive to zinc toxicity.  To test this hypothesis, 

zur::kan and the wild-type strain were cultured independently in LB supplemented with 

500 μM, 750 μM, and 1 mM ZnSO4.  As predicted, zur::kan was more sensitive to excess 

zinc than the wild-type strain (Fig. 12B).  Interestingly, when cultured with zinc at 

concentrations of 500 μM ZnSO4 or above, zur::kan displayed an extended lag phase 

until the culture reached a specific density (OD600 ≈ 0.3).  Once the culture reached this 

density, log phase growth commenced.  To rule out the possibility of a secondary or 

suppressor mutation leading to the ability of zur::kan to grow after extended lag phase, 

cultures were passaged again into fresh medium supplemented with the same 

concentration of ZnSO4.  If a suppressor mutation were responsible for the outgrowth, we 

would expect no extended lag phase to occur.  However, an identical pattern of growth 

was observed (that is, an extended lag phase until OD600 exceeded 0.3); therefore, we 

concluded that zinc toxicity, rather than a suppressor mutation, was the cause of this 

extended lag period during growth.   

We further hypothesized that if zur::kan cells were able to divide (albeit slowly) 

in the presence of zinc, the culture would ultimately reach a density such that the amount 

of zinc present in the culture could be evenly shared by a greater number of cells and 

therefore become less of a burden on individual cells, at which point they would be able 

to overcome the concentration-dependent growth restriction.  We reasoned that if the 

zur::kan culture was allowed to reach this critical density prior to the addition of zinc, 

zinc toxicity should not cause the extended lag phase observed in cultures with zinc 

present from the point of inoculation.  To test this hypothesis, zur::kan was used to 
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inoculate two types of cultures: either LB supplemented with ZnSO4 at the inception of 

the experiment or, alternately, LB supplemented with the same concentration of ZnSO4 

after the culture reached OD600 > 0.3.  Indeed, when ZnSO4 was added to cultures of 

zur::kan that had already passed OD600 = 0.3, the culture was able to grow at a much 

faster rate than its counterpart with ZnSO4 added at the beginning, even though (post- 

ZnSO4 addition to the cultures depicted by open symbols) the two cultures contained the 

same concentration of zinc (Fig. 12C).  

Zinc uptake contributes to swarming and swimming motility. 

It has been previously reported that PpaA, a P-type ATPase homologous to ZntA 

that functions in zinc efflux (187), plays a role in swarming in P. mirabilis.  A strain with 

a transposon insertion in the gene ppaA showed a delayed swarming response compared 

with wild type (110).  Since disrupted zinc efflux affects swarming motility, we 

hypothesized that zinc uptake would also affect motility.  To test this assertion, the 

motility of znuC::kan was investigated.  Indeed, znuC::kan displayed a modest but 

statistically significant reduction in swimming motility compared to the wild-type strain 

(P=0.025, Fig. 13L).  Swarming motility was also affected; znuC::kan displayed 

significantly reduced swarming motility compared to the wild-type strain (P=0.0082; 

compare Fig. 13A and 13B, see Fig. 13I).  In addition, the appearance of the swarming 

colony of znuC::kan was grossly different than the wild-type swarming colony.   Wild-

type swarming colonies displayed a smooth appearance; in contrast, znuC::kan swarming 

colonies had a fractured appearance, with jagged projections advancing at the swarm 

front rather than the smooth colony edge observed with wild type.  Upon close 

inspection, gaps were present in the advancing colony edge containing these projections; 
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Figure 13.  znuC::kan swarms significantly less than wild type.  

(A-F) Swarm agar plates were spotted with 5 μl of log phase culture.  After inoculation 
spot dried, plates were incubated at 30˚C.  Plates shown are representative examples 
measured 24 hours post-inoculation.  (A) Wild type (B) znuC::kan (C) znuC::kan + pEV 
(D) znuC::kan + pZnuCB (E) WT inoculated on LB containing 20 μM TPEN (F) 
znuC::kan inoculated on LB supplemented with 250 μM ZnSO4 (G-H) Gram stains of 
wild type and znuC::kan, respectively, taken from the leading edge of a colony on swarm 
agar.  Images shown were taken at the same magnification.  (I) Swarm radii of wild type, 
znuC::kan, znuC::kan + pEV, and znuC::kan + pZnuCB measured 16 hours post-
inoculation.  Data are from three independent experiments and were analyzed by paired t-
test.  Asterisks above bars denote significance compared to WT.  *, P<0.05; **, P<0.01 
(J) Cultures of znuC::kan were spotted on swarming agar supplemented with ZnSO4.  
Swarm radii were measured 20 hours post-inoculation. Data are from a representative 
experiment and were analyzed by unpaired t-test.  Asterisks denote significance 
compared to plates with no zinc added. *, P<0.05; **, P<0.001 (K) Cultures of znuC::kan 
were spotted on swarming agar supplemented with 50 μM CuSO4, CoCl2, NiSO4, or 
FeCl2.  Swarm radii were measured 20 hours post-inoculation.  Dotted line represents 
mean swarm radius of znuC::kan spotted on agar containing 50 μM ZnSO4 for 
comparison (refer to data shown in J). Data are from a representative experiment and 
were analyzed by unpaired t-test.  Asterisks denote significance compared to plain 
swarming agar plates.*, P<0.005 (L) Swimming radii of wild type, znuC::kan, znuC::kan 
+ pEV, and znuC::kan + pZnuCB measured 16 hours post-inoculation. Data are from 
three independent experiments and were analyzed by paired t-test. *, P<0.05.  Radii of 
wild type and znuC::kan + pZnuCB were not significantly different (P = 0.0508).  
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the swarming colony did not cover the entire agar surface in the same way that the wild-

type swarming colony did.   Interestingly, the wild-type strain displayed a similar 

fractured pattern and reduced swarming radius when inoculated onto swarming agar 

supplemented with TPEN (Fig. 13E).  This result suggests that the defect observed in 

znuC::kan is a result of zinc limitation.   

The swarming defects of znuC::kan were complemented by adding znuCB back in 

trans on a plasmid (P=0.0448 compared to an empty vector control, compare Fig. 13C 

and 13D; see Fig. 13I).  The complemented strain also regained swimming motility 

(P=0.0382 compared to an empty vector control, Fig. 13L). It should be noted that only 

partial complementation was achieved in swarming motility; although the complemented 

strain swarmed less than wild type, this difference was not significant (P=0.0508, Fig. 

13I).  The swarming defect observed with znuC::kan could also be complemented by the 

addition of ZnSO4 to the swarming agar prior to inoculation (compare Fig. 13B and 13F, 

see Fig. 13J).  Under both complementation conditions, the swarming colony morphology 

returned to a noticeably smoother appearance.  Swarming by znuC::kan could not be 

restored by the addition of Co2+, Cu2+, or Ni2+ to the swarm agar (Fig. 13K).  When Fe2+ 

was added to the medium, znuC::kan swarmed more than on plain swarm agar, however, 

the radius of swarming motility did not reach the level achieved by the addition of ZnSO4 

and the colony retained the fractured morphology (Fig. 13K).    

For swarming motility to occur, P. mirabilis must first differentiate into the 

elongated swarmer cell morphology (185).  Gram staining of bacteria taken from the edge 

of the swarming front of both znuC::kan and the wild-type strain revealed that cells from 

both plates were elongated (Fig. 13G and 13H); therefore, the swarming defect of 
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znuC::kan does not appear to be a result of a block in the elongation process.  One of the 

hallmark characteristics of a swarm cell is the large number of flagella synthesized by 

this morphotype.  To determine if znuC::kan is capable of producing flagella at levels 

similar to wild type, flagellin transcript and protein were assessed in znuC::kan by qRT-

PCR and Western blot, respectively.  Transcription of flaA, which encodes flagellin, was 

reduced approximately 15-fold in znuC::kan compared to wild type (Fig. 14A), which 

resulted in production of lower levels of FlaA protein (Fig. 14B).  FlaA protein levels 

were restored in the complemented strain.  Transcription of flaA was also slightly reduced 

in wild type cultured in LB containing TPEN (Fig. 14A). 

ZnuC contributes to, but is not required for, virulence of P. mirabilis in the urinary 

tract. 

Because the ZnuACB system has been shown to contribute to virulence of several 

pathogens, its role in pathogenesis was investigated in the murine model of ascending 

urinary tract infection that has been well established for virulence factor assessment in P. 

mirabilis (5, 38, 84, 98, 256).  CBA/J mice were transurethrally inoculated with 

approximately 1 x 107 CFU of either wild type or znuC::kan. After seven days, mice were 

sacrificed and bacteria present in urine, bladders, and kidneys were quantified. We found 

that znuC::kan colonized mice in numbers similar to the wild-type strain (Fig. 15A).   

To assess the contribution of the ZnuACB transport system to the fitness of P. 

mirabilis in the murine urinary tract, we conducted a cochallenge experiment in which 

znuC::kan was put in direct competition with wild type during infection.  Ten CBA/J 

mice were infected transurethrally with a 1:1 mixture of wild type and znuC::kan.  

Following a seven day infection, znuC::kan was outcompeted by wild type more than 

10,000-fold in the urine (P<0.005) and was unrecoverable from the bladder 
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Figure 14.  Flagellin transcript and protein levels are decreased in znuC::kan.  

(A) Analysis of flaA transcript by qRT-PCR.  Left bar shows expression of flaA in 
znuC::kan cultured in LB relative to its expression in wild type cultured in LB.  Right bar 
shows flaA expression in wild type cultured in LB supplemented with 35 μM TPEN 
relative to expression in wild type cultured in unsupplemented LB.  (B) Western blot with 
anti-FlaA antibody.   
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Figure 15.  ZnuC contributes to fitness of P. mirabilis in the urinary tract, but is not 

required for infection.   

Mice were infected transurethrally and after seven days, urine, bladders, and kidneys 
were quantitatively cultured.  Each symbol represents data from an individual mouse – 
solid symbols, mice infected with wild type; open symbols, mice infected with 
znuC::kan.  Bars represent the median.  Limit of detection is 100 CFU/ml of urine or 
gram of tissue.  (A) Independent challenge.  Mice were infected with approximately 107 
CFU of either wild type or znuC::kan.  (B) Cochallenge.  Mice were infected 
transurethrally with approximately 107 CFU of a 1:1 mix of wild type and znuC::kan. 
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and kidneys (P<0.01 and P<0.005, respectively; Fig. 15B).  Taken together, these data 

reveal that while ZnuC is not required for P. mirabilis to colonize the host, it offers a 

competitive advantage during urinary tract infection. 
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Discussion 

This is the first study to demonstrate the importance of zinc acquisition by P. 

mirabilis in the urinary tract during infection.  We have shown that ZnuC, a component 

of a putative zinc ABC transporter that imports this critical ion, contributes to the fitness 

of P. mirabilis in the mouse model of ascending urinary tract infection.  Based on growth 

differences in independent cultures supplemented with TPEN and coculture in minimal 

medium, ZnuC (presumably as a component of ZnuACB) appears to function as a zinc 

transport system in P. mirabilis.  In addition, znuA and znuCB appear to be repressed by 

Zur since expression of all three genes was increased in a zur mutant compared with wild 

type.  The over-expression of this high-affinity zinc uptake system rendered P. mirabilis 

hypersensitive to ZnSO4, demonstrating the importance of the ability to regulate zinc 

homeostasis.  We also discovered that zinc acquisition is required for normal swimming 

and swarming motility.  The statistically significant reduction in swarming of znuC::kan 

was complemented by expressing ZnuCB in trans or by adding ZnSO4 to swarming agar 

prior to inoculation, suggesting the defect resulted specifically from low levels of 

intracellular zinc in the mutant. 

Results from the wild type and znuC::kan in vivo cochallenge infection suggest 

that there is a limited supply of zinc in the urinary tract.   When znuC::kan was put in 

direct competition for this nutrient with wild type (which retains a functioning high 

affinity transport system), the mutant failed to thrive and was unrecoverable from 

infected animal tissue.  However, during independent challenge, znuC::kan was able to 

utilize the zinc present and colonized to levels similar to wild type.  This result suggests 

that in the absence of competition, znuC::kan has sufficient mechanisms for acquiring 
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this critical ion, perhaps through the use of lower-affinity transport systems.  A similar 

phenotype was observed during experimental urinary tract infection with a derivative of 

UPEC strain CFT073 lacking a function ZnuACB transport system; the mutant was 

outcompeted in bladders and kidneys during cochallege (196).  However, in contrast to P. 

mirabilis, UPEC CFT073 required functional ZnuACB to reach optimal infection levels 

in the kidney during independent challenge; although there was no difference in bladder 

colonization, CFT073 ΔznuA was recovered from infected kidneys in significantly fewer 

numbers than controls (196).  The reason for this disparity is not immediately clear, but 

one possible explanation could be a difference in low affinity zinc uptake between the 

two species.  In any case, taken together, data from two different uropathogens align well 

and support the hypothesis that zinc is a critical nutrient during infection of the urinary 

tract.   

The ability of znuC::kan to colonize the urinary tract during independent 

challenge suggests that this mutant is capable of using other means to bring zinc into the 

cell.   ZupT, previously thought to be a zinc-specific low affinity transporter (71), is in 

fact a transporter with broad metal specificity (70).  However, based on the genome 

sequence and annotation of P. mirabilis HI4320 (174), this strain appears to lack a ZupT 

homolog.  Other transporters known to import zinc include the inorganic phosphate 

transporter PitA (24) and the citrate transporter CitM (107).  P. mirabilis appears to 

encode proteins homologous to both PitA and CitM, but the contribution of either of 

these proteins to zinc acquisition in this species is currently unknown.   

It should be noted that we cannot rule out the possibility that the colonization 

defect of znuC::kan observed during cochallenge could be due, at least in part, to the 
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reduction in motility observed with this strain.  We observed only a modest defect in 

swimming motility in znuC::kan, while swarming motility was greatly affected; 

znuC::kan produced less flagellin than the wild-type strain.  Flagella-mediated motility 

has been implicated as a virulence factor in P. mirabilis (143). A FlaA-
 strain of P. 

mirabilis did not differentiate into swarmer cells (25), but we observed elongated forms 

of znuC::kan and know this strain is capable of at least this step in the differentiation 

process. The contribution of swarmer cells and swarming motility (as opposed to 

production of flagella and swimming motility) to virulence is unclear.  The expression of 

virulence genes has been linked to swarmer cell differentiation (10).  However, the 

presence of swarmer cells in vivo is debated (7, 92).  In addition, some studies conclude 

that motile, nonswarming strains have a reduced capacity to cause infection (7) while 

others found that non-flagellated strains (which are therefore incapable of swarming) are 

still able to cause infection (116, 260). 

In P. mirabilis, a strain with an interrupted copy of the ZntA zinc efflux protein 

homolog PpaA also displayed reduced swarming (110).  This phenotype is interesting 

because we note that proteins with seemingly opposing functions (zinc uptake and efflux 

for ZnuC and PpaA, respectively), when interrupted, both affect swarming motility.  

Perhaps zinc homeostasis (as opposed to exclusively uptake or efflux) plays a role in 

motility.  Indeed, in E. coli, transcription of genes involved in flagellar biosynthesis are 

down-regulated in response to treatment with TPEN (211) while the transcription of some 

motility-related genes was increased in E. coli treated with zinc (114). 

As described above, swarming motility requires a large number of flagella per 

bacterium.  The production of flagella occurs via a regulatory cascade mediated by the 
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‘master regulator’ FlhDC (reviewed in (42, 217)).  flhDC comprise Class I genes of the 

flagellar regulon and activate expression of the Class II genes, which include proteins 

necessary to form the basal body and hook of the flagella as well as FliA.  FliA is the 

transcription factor required to synthesize proteins present in Class III, including FlaA.  

FlhC, part of the FlhDC complex that induces the flagellar cascade, was recently 

determined to have a zinc-binding site (240).  It is unknown what, if any, role zinc-

binding has on FlhDC function.  However, if FlhDC requires zinc for its function, the 

levels of intracellular zinc in znuC::kan may not be sufficient to fulfill the normal 

requirement needed for optimal FlhDC activity.  We hypothesize that this potential 

reduction in FlhDC activity could represent one explanation for the reduced motility of 

znuC::kan; reduced FlhDC activity would result in reduced transcription of flagellar 

genes, including flaA (as we observed), and therefore reduced motility.  This hypothesis 

could help explain the differences in the effect mutation of ZnuC had on swimming and 

swarming motility; swarming motility, which has a greater requirement for flagellin, was 

affected to a greater degree.  Furthermore, this phenomenon may not be specific to P. 

mirabilis, since motility was also reduced in UPEC mutants lacking functional zinc 

uptake systems (73, 196).   To elucidate the mechanism of interplay between zinc 

homeostasis and motility, further studies are required. 

The ability of P. mirabilis to employ swarming motility, although described for 

more than a century (250), is still not well understood and remains a target of active 

research.  Deciphering this behavior would not only benefit our understanding of a facet 

of the lifecycle of this pathogenic bacterium, but could potentially lead to important 

therapeutic targets since P. mirabilis may gain access to the body by swarming over the 
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surface of catheters.  We have shown, for the first time, that the ability to acquire zinc via 

a high-affinity transport system is another piece of this proverbial puzzle. 
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Appendix (Unpublished Data) 

 To determine if Zur contributes to virulence, zur::kan was assessed in the 

murine model of ascending UTI.  CBA/J mice were transurethrally inoculated with 

approximately 1 x 107 CFU of either wild type or znuC::kan.  After seven days, mice 

were sacrificed and colonization was determined by quantifying bacteria present in urine, 

bladders, and kidneys.  There was no difference in the level of colonization achieved by 

zur::kan and the wild-type strain; therefore, Zur is not required for infection of the 

urinary tract by P. mirabilis (Fig. 16A).   

A cochallenge experiment in which zur::kan was put in direct competition with 

wild type during infection was also conducted.  CBA/J mice were infected transurethrally 

with a 1:1 mixture of wild type and zur::kan.  Following a seven day infection, zur::kan 

was recovered from the urine, bladders, and kidneys of infected mice at levels 

statistically significantly lower than the wild-type strain (Fig. 16B).   

Typically, upon determination that a strain is outcompeted by wild type in vivo, it 

is assumed that the gene product is a fitness factor and offers a competitive advantage 

during infection.  However, it is difficult to interpret the zur::kan results in that way.  As 

an in vitro control for the weeklong cochallenge, a weeklong coculture experiment was 

performed.  Overnight cultures of wild type and zur::kan were diluted to the same optical 

density and used to inoculate one fresh LB culture.  This mixed culture was followed for 

seven days.  Periodically, the culture was repassaged into fresh LB (typically, at the 

beginning and end of each day); at the time of repassage, a sample was plated to 

determine the levels of wild type and zur::kan present in the culture.  During a weeklong 
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Figure 16.  Zur is not required for infection.   

Mice were infected transurethrally and after seven days, urine, bladders, and kidneys 
were quantitatively cultured.  Each symbol represents data from an individual mouse – 
solid symbols, mice infected with wild type; open symbols, mice infected with zur::kan.  
Bars represent the median.  Limit of detection is 100 CFU/ml of urine or gram of tissue.  
(A) Independent challenge.  Mice were infected with approximately 107 CFU of either 
wild type or zur::kan.  Actual input values (per mouse) were 2.26 x 107 CFU and 2.5 x 
107 CFU for mice infected with wild type and zur::kan, respectively.  (B) Cochallenge.  
Mice were infected transurethrally with approximately 107 CFU of a 1:1 mix of wild type 
and zur::kan.  Results compiled from two independent experiments are shown.  In one 
experiment, the actual input inoculum (1.69 x 107 CFU/mouse) contained 6.21 x 106 CFU 
wild type and 1.07 x 107 CFU zur::kan.  In the second experiment, the actual input 
inoculum (1.53 x 107 CFU/mouse) contained 5.21 x 106 CFU wild type and 1.01 x 107 
CFU zur::kan. 
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independent culture, zur::kan was maintained at high levels throughout the course of the 

experiment (Fig. 17A).  In contrast, during coculture with wild type, zur::kan was slowly 

lost from the culture (Fig. 17B).  Therefore, it appears that zur::kan has a slight growth 

defect in vitro.  This result complicates interpretation of the cochallenge data since the 

outcompetition observed in vivo could merely be a result of the zur::kan growth defect.  

Additionally, interpretation of zur::kan results is difficult because, at this time, it is 

unclear whether Zur regulates the expression of genes other than znuACB in P. mirabilis. 

 

 The work presented in this chapter has been submitted for publication under the 

title “Zinc Uptake Contributes to Motility and Provides a Competitive Advantage to 

Proteus mirabilis during Experimental Urinary Tract Infection” (Nielubowicz, G. R., 

Sara N. Smith, and Harry L. T. Mobley); the manuscript has been reviewed and is 

currently under revision.  Sara N. Smith assisted with animal studies; all other 

experiments were preformed by G. R. N.  Manuscript was prepared by G. R. N.  
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Figure 17.  zur::kan is outcompeted during in vitro coculture with wild type.   

Data points represent times at which the culture was repassaged 1:100 into fresh LB. (A) 
Weeklong zur::kan culture in LB (B) Weeklong coculture of wild type and zur::kan in 
LB.  Closed symbols, wild type; open symbols, zur::kan. 
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CHAPTER IV. DISCUSSION 

 
 The main goal of this study was to identify potential antigens for inclusion in a 

multivalent vaccine against a major cause of complicated UTI, P. mirabilis.  An 

immunoproteomic approach was used and resulted in the identification of 23 outer 

membrane antigens expressed by P. mirabilis in vivo during urinary tract infection.  It 

also resulted in the characterization of three proteins that contribute to virulence: the 

TonB-dependent receptors PMI0842 and PMI2596 and the zinc transport protein ZnuC.   

 Previous work by others has resulted in the development of multiple vaccines that 

significantly reduce colonization in the mouse model.  However, in each study, some 

mice that were vaccinated still developed an infection (i.e., not all mice were protected) 

(118, 120, 177, 200, 201).  Therefore, none of the potential vaccine antigens offer 

complete protection.  It was our goal to identify additional antigens for inclusion in a 

multivalent vaccine; targeting more than one antigen simultaneously may be the most 

effective way to prevent infection.   

Arguably, the most successful vaccines to date have targeted MR/P fimbrial 

proteins, namely MrpA and MrpH (118, 120, 177, 200, 201).  However, as discussed in 

Chapter I, the mrp operon is capable of undergoing phase variation (255).  It is currently 

unclear if mice susceptible to infection following vaccination with MrpA or MrpH were 

colonized by bacteria not expressing MR/P fimbriae.  The down-regulation of the target 

antigen by colonizing bacteria could be one explanation for why these mice were not 

protected by the vaccine.  
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 Additional vaccines have targeted UcaA and PmfA, the major structural subunits 

of two other fimbriae (UCA and PMF) encoded by P. mirabilis (177, 201).  Mucosal 

immunization with UcaA protected mice from bladder and kidney colonization, while 

mucosal immunization with PmfA offered protection in the kidneys only (201).  As is the 

case with MR/P fimbriae, PMF contribute to virulence (at least in the mouse model) (138, 

261); the role of UCA during infection has not been assessed.  It may be difficult to 

directly compare the results of these various vaccinations; experiments performed by 

different groups used different strains of P. mirabilis and different adjuvants, but it 

appears that intranasal immunization with MrpH reduced colonization compared to 

controls more effectively than intranasal immunization with MrpA (120, 201).  This 

observation raises the question of whether the protection observed with UcaA and PmfA 

could be improved by targeting the tip adhesins, rather than major structural subunits, of 

these fimbriae.  Given the number of putative fimbrial operons identified in the P. 

mirabilis genome (174), and the encouraging results achieved so far by vaccination with 

fimbrial proteins, it is possible that other fimbrial proteins may also serve as protective 

antigens.  However, most of these other fimbriae have not yet been characterized 

experimentally; it is not known if they are expressed in vivo or contribute in any way to 

pathogenesis.  Future work investigating these possibilities could also potentially 

contribute to vaccine design.   

Interestingly, no fimbrial proteins were identified in this study (Chapter II).  We 

found this result surprising, especially considering that MR/P fimbriae are known to elicit 

a strong immune response during infection (20, 94).  There are a few possible reasons 

why no fimbrial proteins were detected: either the culture conditions used did not favor 
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the expression of fimbriae, or, alternately, fimbriae were sheared from the bacterial 

surface during sample preparation.  Of course, a third possibility is that fimbriae were 

present, but not recognized by sera.  We consider this third possibility unlikely, especially 

given that the sera used in our screen was previously shown to react with MR/P fimbrial 

proteins (94).  Fimbrial preparations should be prepared and probed with the sera from 

infected mice to determine what, if any, fimbriae are recognized.  Again, based on 

previous results, we predict that MR/P fimbriae will react with the sera, but it would be 

interesting to determine if other fimbrial proteins are also recognized.  

 The immunoproteomic screen detailed in Chapter II resulted in the identification 

of 23 outer membrane proteins that are potential vaccine candidates (165).  We were 

encouraged that outer membrane proteins could serve as protective antigens based on 

previous work using outer membrane preparations for vaccination (142).  Unfortunately, 

vaccination with PMI0842 did not result in protection from transurethral challenge 

(Chapter II, Appendix).  However, proof of principle was offered by results of 

vaccination with Pta, another antigen identified in our screen.  Mice that received an 

intranasal immunization with Pta* (an active site mutant lacking serine protease activity) 

had significantly lower colonization levels in their kidneys and spleens than control mice; 

bladder colonization was not affected by immunization with Pta* (4).  Immunization with 

Pta* resulted in significant increases in the production of IgA in the urine and IgG in the 

serum directed against Pta* (as compared to pre-immunization samples) (4).  A 

significant inverse correlation between serum IgG production and kidney colonization 

level was observed; that is, mice with higher levels of antibodies had reduced 
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colonization levels and mice that were colonized at higher levels had lower levels of 

antibodies (4). 

 Importantly, although protection was significant compared to control groups, 

some mice that received the Pta* vaccine were still colonized (4).  These results mirror 

those from other P. mirabilis vaccine studies (118, 120, 177, 200, 201).  Taken together, 

results from all P. mirabilis vaccination studies suggest that vaccination with one antigen 

may not be sufficient to provide complete protection.   For this reason, the pursuit of a 

multivalent vaccine that combines multiple antigens is ongoing.  The antigens identified 

in our immunoproteomic screen represent a pool of potential targets for inclusion in this 

multivalent vaccine; however, the level of protection offered by the vast majority of these 

candidate antigens has not yet been assessed experimentally. 

 The first logical step in the development of this multivalent vaccine would be to 

combine the two most successful antigen preparations to date: Pta* and the N-terminal 

region of MrpH.  As discussed above, when administered individually, both antigens 

offered significant protection but still resulted in infection of some mice (4, 118, 120).  

The use of these antigens together should be fairly straightforward, for three reasons: the 

antigens have already been cloned into expression vectors; purification schemes have 

been designed and successfully implemented; an animal model (including the previously 

determined ideal mode of vaccine delivery) is readily available and currently in use in our 

laboratory.  We hypothesize that mice immunized with a combination of Pta* and the N-

terminal domain of MrpH will be significantly protected from transurethral infection; 

furthermore, we predict that mice receiving the mixed vaccine will be protected better 

than groups of mice only receiving one antigen. 



 

 121

 Recent vaccine work on another uropathogen, UPEC, has also been encouraging 

(12); results from that study further validate that a mucosal vaccine targeting antigenic 

outer membrane proteins can be effective against a uropathogen.  The identification of 

antigens used in that study resulted from a very specific approach, termed the “omics” 

approach, used to identify potentially protective antigens (214). These antigens all fit the 

criteria of PASivE proteins (Pathogen-specific, Antigenic, Surface-exposed, and in vivo 

Expressed) that are hypothesized to represent ideal vaccine candidates.  The identification 

of PASivE proteins was made possible by the completion of many different screens, 

including comparative genomic hybridizations, microarray analyses, and an 

immunoproteomic screen (similar to the one described for P. mirabilis in Chapter II) 

(214).  Target antigens were chosen because they were identified from multiple screens. 

 The recent improvements in resources available for P. mirabilis should aid in 

vaccine development efforts, which can be modeled after the strategy successfully 

employed for the UPEC vaccine.  The resolution of the genome sequence of P. mirabilis 

HI4320 is a critical factor that will allow many of the screens performed with UPEC to be 

utilized for P. mirabilis.  First, it allowed for design of the P. mirabilis microarray.  This 

microarray has already been validated (S. Himpsl, M. Pearson, and H. L. T. Mobley, 

unpublished data) and is currently being used to investigate the gene expression profile of 

P. mirabilis during experimental UTI (M. Pearson and H. L. T. Mobley, unpublished 

data).  These results will be extremely valuable for consideration during vaccine design, 

as it is crucial to target antigens that are expressed in vivo.  Second, it has already 

afforded us the ability to easily identify outer membrane antigens by mass spectrometry. 
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 One aspect of vaccine design that will be different for P. mirabilis than E. coli is 

the identification of genes common to pathogenic strains.  UPEC are a specific subset of 

E. coli, but it is thought that all strains of P. mirabilis can cause UTI regardless of isolate 

origin (176, 216).  In addition, many virulence genes appear to be conserved among P. 

mirabilis isolates.  However, recent data suggest that there may be previously 

unappreciated differences between strains.  For example, the pta gene was present in all 

isolates, but expression of pta was only detected in UTI (not fecal) isolates (4).  It is 

currently unclear if this pattern extends to other virulence factors as well.  The fact that 

all P. mirabilis isolates appear to be capable of causing UTI adds another layer of 

complication to vaccine design.  E. coli and P. mirabilis are both found in the gut, but the 

UPEC vaccine targets proteins that are specifically expressed by uropathogenic, and not 

fecal, isolates.  In this way, potential reaction of gut microbes to vaccination is hopefully 

minimized.  However, it appears that the potential problem of targeting P. mirabilis in the 

gut cannot be handled in the same way (i.e., only targeting proteins not found in 

commensal strains).  Further work will be necessary to determine, first, how the gut 

microbiota (specifically P. mirabilis) is affected by mucosal vaccination against P. 

mirabilis and, second, how to best handle any potential negative effects that may result. 

 The P. mirabilis microarray was also recently used to identify genes shared by P. 

mirabilis and two other causative agents of complicated UTI, M. morganii and P. stuartii 

(60).  This study employed comparative genomic hybridizations and resulted in the 

identification of highly conserved genes present in all three species.  The identification of 

these highly conserved genes raises the possibility that a “complicated UTI vaccine” 
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could be developed that would protect against infection by all three species; however, no 

specific work toward this end has begun yet. 

 Future work that could affect vaccine design should also utilize human samples.  

Although the existence of an animal model has been crucial to our understanding of P. 

mirabilis pathogenesis, like all animal models, it may not exactly mirror infection 

dynamics in humans.  For example, using sera from human patients with UTI caused by 

P. mirabilis could lead to the identification of antigens that are not expressed in mice or 

that are not recognized by sera from mice.  Analyzing the transcriptome of P. mirabilis 

isolated from the urine of infected human patients could also lead to the identification of 

genes expressed during human infection that may not be expressed during in vitro growth 

or mouse infection.   

 Efforts to develop a vaccine against P. mirabilis would also benefit greatly from 

the identification of correlates of protection.  What factors are associated with protection?  

Most P. mirabilis vaccine studies have reported no significant correlation between 

antibody production and protection (94, 142, 177, 200, 201); a few have suggested a 

correlation between the production of IgA and protection, but again, a significant 

correlation was not detected (94, 120).  However, in contrast to all other earlier work, 

analysis of the recently-developed, successful Pta* vaccine data revealed a significant 

correlation between serum IgG levels and protection (4).  It is unclear why a correlation 

was observed with the Pta* vaccine but not previous vaccinations with other antigens; 

previously used antigens have offered a similar, if not better, degree of protection from 

infection.  It will be interesting to see if this correlation can be observed with future 

vaccine trials.  In addition, protection from UPEC infection after vaccination has recently 
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been correlated with efficient antibody class switching (12).  However, it is unclear if 

class switching correlates with protection against P. mirabilis. 

 Aside from the recognition of outer membrane proteins that can potentially serve 

as vaccine candidates, the immunoproteomic screen also resulted in the identification of 

13 non-OMP antigens.  Although these proteins are not ideal vaccine candidates, they are 

proteins that are expressed in vivo; therefore, they can offer valuable information about 

the state of bacteria during infection.  Indeed, the identification of one of these proteins, 

ZnuB, led to the characterization of the zinc uptake system ZnuACB in P. mirabilis.  

ZnuACB contributes to fitness in vivo, a fact which was unappreciated prior to these 

studies.  In fact, we argue that a second immunoproteomic screen could be undertaken 

with the sole purpose of identifying proteins from the cytosol and/or inner membrane.  

Again, although not suitable for vaccine development, identification of these proteins 

may offer some insight into, for example, bacterial metabolism during infection.   

 As mentioned above, the immunoproteomic screen led us to investigate ZnuACB, 

the zinc transport system of which ZnuB is the inner membrane component.  Experiments 

focused on ZnuC, the cytoplasmic ATPase.  We found that ZnuC is required for normal 

swarming motility and offers a competitive advantage.  We hypothesize that it is not 

ZnuACB, per se, that are required for these functions, but perhaps other proteins that 

require zinc are not functional due to lower levels of intracellular zinc in znuC::kan than 

the wild-type strain.  However, at this time, we have no experimental data to support this 

hypothesis.  One of the methods typically used to examine differences between two 

strains are microarray experiments.  Indeed, microarrays have been preformed analyzing 

E. coli cultured in the presence of TPEN (compared to E. coli cultured without TPEN) 
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(211).  However, it is not clear that microarray experiments would answer our primary 

question.  These experiments are designed to show differences in the levels of transcript; 

it is possible that zinc-binding proteins are all synthesized in the same amount, but 

remain inactive or are unstable when no zinc is inserted.  Additionally, there are methods 

for differentiating between protein levels in two samples, such as the 2D-DIGE (two-

dimensional fluorescence difference in gel electrophoresis) approach recently employed 

for a study examining expression of UPEC proteins during culture in LB or human urine 

(13).  However, again, if target proteins are synthesized in the same amount, we would 

not identify them in this way.  Perhaps there is a way to combine this technology with the 

use of a radioactive zinc isotope (65Zn(II)); however, to our knowledge, no such 

experiments have been performed.  In any case, the identification of zinc-binding proteins 

that are affected by decreased zinc uptake could lead to new avenues of research; the 

function of these proteins could contribute to the competitive advantage observed in vivo 

that is associated with the presence of a functional ZnuACB zinc transport system. 

 We hypothesize that multiple factors contribute to both the in vivo defect and the 

significant decrease in motility of znuC::kan.  Our current working hypothesis regarding 

the motility defect of znuC::kan revolves around FlhDC, the master regulators of the 

flagellar cascade.  When the structure of the FlhDC complex was solved recently, it was 

discovered that FlhC contained a previously unrecognized zinc-binding site (240).  We 

hypothesize that FlhDC requires zinc and that less zinc is available in znuC::kan, leading 

to fewer functional copies of FlhDC.  There are, of course, two major assumptions 

contained in this hypothesis: first, that znuC::kan contains less intracellular zinc than the 

wild-type strain, and, second, that FlhDC requires zinc for its function.  We are currently 
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trying to address the first of these assumptions experimentally.  It remains unknown, 

however, if FlhDC requires zinc to be functional; to our knowledge, this issue has not yet 

been addressed experimentally.  The zinc ion present in the crystal structure of FlhC was 

ligated by four cysteine residues.  Perhaps a site-directed mutagenesis approach could be 

used to specifically target these residues, resulting in the formation of mutant proteins 

unable to bind zinc.  If successfully generated, these non-zinc-containing proteins could 

be assessed in functional assays related to motility, i.e. the transcription of flagellin or 

other motility-related genes.  Again, we believe it is likely that there are multiple factors 

that contribute to the defect in motility of znuC::kan; the FlhDC complex is just one 

potential target.   

 We initially identified ZnuB through the immunoproteomic screen.  Although we 

chose not to pursue ZnuB as a vaccine candidate (based on its predicted location in the 

cell), we learned that the ZnuACB system is important to P. mirabilis during UTI.  This 

finding has led us to believe that other identified antigens may also play an important role 

during infection.  Indeed, two putative outer membrane iron receptors, PMI0842 and 

PMI2596, were also found to impart a competitive advantage during infection (Chapter 

II) (165).  The proteins we identified in the immunoproteomic screen have not all been 

characterized yet.  Other proteins that may be interesting or contribute to pathogenesis 

based on their annotation include a putative RTX toxin (PMI2043) and two putative iron 

acquisition proteins (IreA and PMI0409).   

 In closing, complicated UTIs caused by P. mirabilis are a public health concern.  

Patients experiencing these infections often suffer considerable morbidity or even 

mortality.  These infections commonly affect catheterized patients, including elderly 
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populations in nursing homes.  As the aging population is projected to increase, it is 

possible an increase in catheter-associated UTIs will also occur; this possibility makes 

vaccine development even more pressing.  The work reported here has contributed to the 

long-term goal of the development of a multivalent vaccine against P. mirabilis by 

identifying potential protective antigens.  Indeed, one of these antigens (Pta) has already 

been shown to be protective in the mouse model of ascending UTI (4).  The identification 

of proteins expressed during infection also resulted in insight into the importance of 

metal ion acquisition in vivo; the uptake of both iron and zinc are important to P. 

mirabilis during UTI.   
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