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Abstract. In this paper, we present a new method to determine the pore-size distribution (PSD) in a
porous medium. This innovative technique uses the rheological properties of non-Newtonian yield stress fluids
flowing through the porous sample. In a first approach, the capillary bundle model will be used. The PSD is
obtained from the measurement of the total flow rate of fluid as a function of the imposed pressure gradient
magnitude. The mathematical processing of the experimental data, which depends on the type of yield stress
fluid, provides an overview of the pore size distribution of the porous material. The technique proposed here
was successfully tested analytically and numerically for usual pore size distributions such as the Gaussian
mono and multimodal distributions. The study was conducted for yield stress fluids obeying the classical
Bingham model and extended to the more realistic Herschel-Bulkley model. Unlike other complex methods,
expensive and sometimes toxic, this technique presents a lower cost, requires simple measurements and is easy
to interpret. This new method could become in the future an alternative, non-toxic and cheap method for the
characterization of porous materials.

Keywords: Porous material / pore-size distribution / non-Newtonian yield stress fluid / Herschel-Bulkley
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1 Introduction

Porous media are found almost everywhere around us
[1–4], whether in living matter (human skin, cartilage,
bone, etc.), inert matter (soils, layers sedimentary rocks,
etc.) or industrial materials (concretes, cements, powders,
textiles, etc.). The characterization of porous media in
terms of porosity, specific surface, PSD etc., is an impor-
tant issue for many industrial sectors: assisted petroleum
recovery, thermal insulation of buildings, CO2 seques-
tration, energy storage, etc. The phenomena related to
flow through porous media have occupied and continue
to stimulate a strong research activity, both fundamental
and applied. The main objective of this work is to pro-
pose a new non-polluting, simple and economic method to
determine the pore size distribution of a porous medium
without the defects of the currently existing techniques.
Among them, we can cite classical methods such as: (i)
the mercury intrusion porosimetry (MIP) [1–3,5]. This
technique is based on the existence of a threshold below
which the pores cannot be invaded. Indeed, due to its large
surface tension mercury does not wet most materials. A
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pressure difference ∆Plg must be imposed so that mer-
cury penetrates the pores whose radii rp are greater than
r∗p = 2σlg cos θ/∆Plg where σlg is the liquid/gas interfacial
tension and θ the contact angle. Because of the harmful
effects of mercury vapor, this technique is destined to be
abandoned; (ii) the method of isothermal gas adsorption
[6], based on the molecular Van der Waals interactions
between a condensing vapor and the internal surface of
the pores is particularly adapted to the characterization
of porous media with mesopores (in the range 5 nm 6 r 6

100 nm). There are other alternative techniques that can
characterize the PSD like thermoporometry [7], the Small
Angle Neutron (SANS) or X-Ray Scattering (SAXS) [8,9],
nuclear magnetic resonance (NMR) [10], not to mention
the destructive methods such as stereological analysis of
polished slices [11]. All these techniques are either difficult
to implement or expensive (microscopy, image acquisi-
tion by X-ray Computerized Micro-Tomography, etc.).
The above cited classical methods are based on the exis-
tence of a threshold below which the pores cannot be
invaded according to a thermodynamic control parame-
ter. Like the aforementioned techniques, our new approach
is based on the injection of non-Newtonian yield stress
fluid into the porous medium (invasive method). In the
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present method, we propose to use the rheological prop-
erties of yield stress fluid to scan different pore scales and
determine the PSD. The basic idea is the following: in
order to set such fluids into motion, it is necessary to
impose between both ends of a pore a pressure gradient
whose magnitude (∇P ) is greater than a critical value
depending on the fluid yield stress (τ0) and the pore
radius (rp). In other words, for a given pressure gradi-
ent magnitude ∇P , only the pores whose radius is greater
than the critical radius r0 = 2τ0/∇P are invaded. Then
it is possible to scan the PSD by adjusting the pressure
gradient step by step and measuring the corresponding
flow rate Q. From the curve Q = f(∇P ), it is possi-
ble to extract the PSD solving an inverse problem. This
technique has been successfully tested on unimodal, bi or
tri-modal Gaussian PSD. The problem inversion depend-
ing on the rheological behavior of the fluid, we started
using ideal yield stress fluids such as Bingham fluids [12].
Since it is rather difficult to find fluids obeying these
rheological laws, we have generalized our method to the
Herschel-Bulkley model [13] which better describes most
of the non–Newtonian yield stress fluids. In this work,
we will give the results of this generalized model by pre-
senting first the analytical expression of the solution of
the inverse problem coming from the resolution of the
associated integral equation described below. So, we can
calculate the probability density depending on the par-
tial derivatives (integer or fractional) of the characteristic
curve (Q = f(∇P )). This paper also reports an improve-
ment to this technique: the solution of the problem for the
PSD identification using a method based on a numerical
approach with yield stress fluids such as Herschel-Bulkley
model.

2 Models and procedure

2.1 Formulation of the problem and solution

In this paper, the porous material is described by a
bundle of capillary tubes [14,15], the radii of which are
distributed according to an unknown probability density
function p(r). This model, originally introduced by Purcell
[16], is used nearly in all theoretical studies of porous
media because of its amenability to analytical treatment
and because variables that are difficult or impossible to
measure physically can be computed directly from this
model. Still, let us review the main limitations of this
model:

– The first one concerns the maximum porosity: for a
porous medium whose pores have the same radius,
the maximum 2D-packing is the hexagonal packing
arrangement with a maximum porosity of φ = π

√
3/6 ≈

0.907 in an infinite medium (this value decreases when
the confinement increases and strongly depends on the
shape of the boundaries). The maximum porosity for
a random close packing of disks is even lesser with a
maximal value φ = 0.84 for an infinite medium. These
analytical values overestimate the maximal porosity
because the contact of the pores would not be possi-
ble in a “real” capillary bundle porous medium in which

some solid material has to remain between the pores
in order to guarantee the structural robustness of the
material. Some values around φ = 0.78 are considered
acceptable in practice. Moreover, let us note that this
model gives access only to the open porosity since it is
based on the flow properties;

– It neglects complex features of porous media such as
tortuosity, the dead arms and it neglects intercon-
nectivity between pores as it assumes unidirectional
flow;

– The contraction-expansion features of non-Newtonian
yield stress fluid flows cannot be accounted for because
this model assumes a single radius along each pore of
the bundle with no variation in the cross-sectional area;

– It cannot be representative for flows in an anisotropic
medium due to its assumption of unique permeability
along propagation direction;

– It neglects the elongation effects associated with porous
media flows.

However, some of the limitations cited above can be
erased by more complex variants not considered here.
In our study, we ignore the tortuosity that only affects
the characteristic curve by increasing the length of
the pores [1,2] and not the non-dimensional PSD. We
will use this model to derive the inversion technique
which allows us to obtain the PSD from the char-
acteristic curve for a given yield stress fluid in non-
inertial regimes. Under these conditions, the expression
of the total flow rate Q through this capillary model,
when a pressure gradient magnitude ∇P is imposed
on this system, is a function of the elementary flow
rate q(∇P, r, n) in each capillary and of the probability
density p(r):

Q (∇P ) =

∫ ∞

r0=
2τ0
∇P

q (∇P, r, n) p (r) dr (1)

In this study, our goal is to extract the probability den-
sity p(r) from the curve describing the evolution of total
flow rate Q(∇P ) as a function of the pressure gradi-
ent magnitude of a Herschel-Bulkley fluid (H-B) through
a porous medium. This measured flow rate is calcu-
lated directly from the integral equation (1) when p(r) is
known. If this distribution is unknown, this relation con-
stitutes a Volterra equation of the first kind, whose kernel
q(∇P, r, n) is the elementary flow rate in each capillary
and Q(∇P ) constitutes the source term obtained exper-
imentally. The kernel q(∇P, r, n) depends on the yield
stress fluid type and the Herschel-Bulkley model is used
here because it describes the rheological behavior of most
non-Newtonian yield stress fluids more realistically than
the Bingham model. Indeed, the H-B model can take into
account the pseudo-plastic or dilatant behavior of the real
yield stress fluids and constitute a generalization of the
Bingham model. In H-B fluids beyond the yield stress
τ0, the linearity of the shear stress with the shear rate
is replaced by a power law. It is, therefore, a model with
three parameters: the yield stress τ0, the consistency of the
fluid k and power-law index n. The rheological behavior
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law describing this model is given by:
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with τ the shear stress tensor and D the rate of defor-
mation tensor. For the flow in a tube with circular
cross-section, these equations take the simpler form:
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where τr′z is the shear stress, (∂uz/∂r
′) the rate of defor-

mation and r′ is the radial coordinate. The elementary
flow rate of the Herschel-Bulkley fluid through a capillary
of circular cross-section with radius r, which constitutes
the kernel of equation (1), is given by [17]:
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For r ≤ r0 the fluid does not flow. The critical radius
r0 = 2τ0/∇P is also the radius of the core zone of the
plug flow. The pore size distribution p (r) can be obtained
through differential operators applied to Q (∇P ) [13]:

p (r) =
2(1+3n)/nk1/n (∇P )

2

16πτ0r(1+3n)/n (1/n)!

[

(

1 + 4n

n

)

∂(1+n)/n.

∂ (∇P )
(1+n)/n

+ ∇P
∂(1+2n)/n.

∂ (∇P )
(1+2n)/n

]

Q |
∇P=

2τ0
r

(5)

It should be noted (i) that equation (5) is valid only for
n ∈ Q but since the rational numbers are a dense subset
of the real numbers, any real number has rational num-
bers arbitrarily close to it and (ii) that for n = 1 the
Herschel-Bulkley model reduces to that of Bingham fluid
and equation (5) reduces to that obtained by Ambari et al.
[18] and (iii) that in equation (5), (1/n)! is finite even for
any real value of n 6= 0 and is calculated by the Gamma
function:
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2.2 Analytical inverse method to determine the PSD

In the case where the power-law index is n = 1/q with
q ∈ N∗, a general relationship is obtained between the
probability density p(r) and the integer partial derivatives

of the total flow ∂iQ/∂ (∇P )
i. In the case where q is non-

integer it is possible to generalize this formula considering
these derivatives as fractional. This will be justified later.
In order to reduce the number of physical parameters
involved in this problem, we will normalize the previous
equations, using as characteristic scales L for the length
and τ0/L for the pressure gradient magnitude where L is
the thickness of the studied sample (directly accessible)
and not the mean radius of the capillaries which is still
unknown and would require a complementary measure-
ment. Therefore, the non-dimensional kernel is then given
by:

q+
(

∇P+, r+, n
)

=
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with HeH−B = ρτ
(2−n)/n
0 L2/k(2/n) the Hedström number

in the case of a Herschel Bulkley fluid [19], ρ the density
of fluid and r+0 = 2/∇P+ the non-dimensional critical
radius. In equation (6), the flow rate is normalized by the
characteristic flow rate:

qc =
nπ

(3n+ 1) (n+ 1)

(

Lk1/nτ
(n−1)/n
0

ρ

)

(7)

Figure 1 below presents the evolution of the elementary
flow rate q+ (that is to say the kernel of Eq. (1)) in a pore
of radius r+ = 1 as a function of the imposed pressure
gradient magnitude ∇P+ for different power-law index
and for a Hedström number HeH−B = 0.02.
As for non-dimensional pore size distribution:

p+
(

r+
)

=
n (∇P+)

(1+5n)/n

16HeH−B (3n+ 1) (1 + n) (1/n)!
[

(

1 + 4n

n

)

∂(1+n)/n.

∂ (∇P+)
(1+n)/n

+ ∇P+ ∂(1+2n)/n.

∂ (∇P+)
(1+2n)/n

]

Q+ |∇P+= 2

r+
(8)

In the case, where n is non-integer, the calculation of
the fractional derivatives in equation (8) are very difficult
unless the derived function is simple. One of the simplest
solutions for non-integer derivation is when the derived
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Fig. 1. Elementary flow rate vs. pressure gradient magnitude
for different power-law index and HeH−B

= 0.02.

function is a polynomial. it can be carried out by means
of the following relation defined by Riemann [20]:

dν (xm)

dxν
=

Γ (m+ 1)

Γ (m− ν + 1)
xm−ν (9)

where ν is the non-integer derivation order, Γ the gamma
function and m the order of the derivative of a monomial,
with (x = ∇P ). In our study, the above relation will be
used to calculate the different fractional derivatives that
occur in equation (8) provided a polynomial fit of the
evolution Q+ = f (∇P+) is given (in the present study,
all the characteristic curves Q+ = f (∇P+) were fitted by
polynomial functions of maximum order 40 because this
order leads to a satisfactory inversion of all the curves
whatever the value of the power-law index n. However,
we have noticed that the lower the value of n, the lower
the order of the polynomials to use. For instance, for n =
0.9, a polynomial of order 15 starts to give satisfactory
results). Remember that in the case where n = 1/q with
q ∈ N∗, the two successive derivatives are integers. In all
cases, the distribution will be calculated by using equation
(8). In the next section we explain the approach followed
to obtain this inverse distribution.

2.2.1 Inversion in the case of a Bingham fluid (n = 1)

As a first attempt to test this method, let us assume that
the fluid is a Bingham fluid (n = 1) and that the PSD is of
Gaussian type of mean radius µ and standard deviation σ.
Written in non-dimensional form (r+ = r/L, µ+ = µ/L,
σ+ = σ/L and p+ (r+) = p (r)L), this distribution is:

p+
(

r+
)

=
1

σ+
√
2π

exp

[

− (r+ − µ+)
2

2σ+2

]

(10)

and the normalized Volterra equation (Eq. (1)) is:

Q+
(
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)
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Fig. 2. Total flow rate vs. pressure gradient magnitude for a
Gaussian distribution and a Bingham fluid for HeH−B

= 0.02.

Using equations (6), (10) and (11), it is possible to cal-
culate the characteristic curve Q+ (∇P+). In Figure 2
above, it is shown for µ+ = 10−4, σ+ = 2 × 10−5 and
HeH−B = 0.02. This figure shows the non-dimensional
total flow rate vs. the non-dimensional pressure gradient
magnitude resulting from the flow of the Bingham fluid
through such a porous medium. This figure is character-
ized by a first region at low pressure gradients in which
the flow rate is zero. This region extends until the largest
pore in the material is invaded. It is followed by a second
region in which the flow rate increases with the pressure
gradient. Now, let us start from this characteristic curve
Q+ (∇P+) and let us try to calculate p+ (r+). For n = 1,
equation (8) becomes:

p+
(

r+
)

=
(∇P+)

6

128HeH−B

[

5
∂2.

∂ (∇P+)
2 +∇P+ ∂3.

∂ (∇P+)
3

]

× Q+ |∇P+= 2

r+
(12)

Because equation (12) has only integer derivatives, it can
be directly applied to the non-dimensional characteristic
curve (Fig. 2) to calculate p+ (r+). It is plotted in Figure 3
together with the original normal distribution (Eq. (10))
and the agreement between both curves is very good (see
the article [12]).
We have also tried to use the method involving the poly-
nomial fit of the characteristic curve Q+ (∇P+) and its
fractional derivatives (Eq. (9)). The results obtained by
this method are shown in Figure 4. It shows that this tech-
nique is also relevant even though it introduces some noise
for the small radii related to the polynomial fit needed
here.

2.2.2 Inversion in the case of a Herschel-Bulkley fluid
for n = 1/q with q∈∈∈◆∗∗∗

As a second attempt to test this method, let us make the
problem more complex and consider a Herschel-Bulkley
pseudo-plastic fluid whose power law index has the form
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Fig. 3. Comparison between the initial and the analytically
calculated PSD for a Bingham fluid.

Fig. 4. Comparison between the initial and the fractional
method calculated PSD for a Bingham fluid.

n = 1/q with q ∈ N∗. In this case, the inversion proce-
dure also involves integer partial derivatives of order 1+ q
and 2 + q. For instance for n = 1/2, the normalized PSD
(Eq. (8)) writes as:

p+
(

r+
)

=
(∇P+)

7

240HeH−B

[

6
∂3.

∂ (∇P+)
3 +∇P+ ∂4.

∂ (∇P+)
4

]

× Q+ |∇P+= 2

r+
(13)

Following the same procedure as in the previous sec-
tion and for the same initial Gaussian distribution, we
have calculated the characteristic curve Q+ (∇P+) pre-
sented in Figure 5. Now, when equation (13) is applied
to the characteristic curve (Fig. 5), the initially injected
Gaussian PSD is retrieved as we can see in Figure 6. Like-
wise this distribution can be obtained using the fractional
derivatives method (Fig. 7) with some additional noise for
the smallest radii because of the poor description of the

Fig. 5. Total flow rate vs. pressure gradient magnitude for a
Gaussian distribution and a Herschel-Bulkley fluid for n = 1/2
and HeH−B

= 0.02.

Fig. 6. Comparison between the initial and the analytically
calculated PSD for a Herschel-Bulkley fluid with n = 0.5.

characteristic curve by the polynomial function when r is
small.

2.2.3 Inversion in the case of a Herschel-Bulkley fluid
for n = p/q with p∈∈∈◆∗∗∗ \ {1}{1}{1} and with q∈∈∈◆∗∗∗

In the case where the flow index of the fluid is a ratio-
nal number whose numerator is different from unity, the
identification formula (Eq. (8)) presents also non-integer
derivatives. In this case, only the fractional derivatives
method is usable based on the polynomial fit of the char-
acteristic curve. The results for a pseudo-plastic fluid
(n = 0.9) are presented in Figures 8 and 9 for a nor-
mal distribution whose parameters are again µ+ = 10−4,
σ+ = 2 × 10−5 and for HeH−B = 0.02. Likewise for the
same set of parameters, the results concerning a dila-
tant fluid (n = 1.2) are given in Figures 10 and 11. We
note that the inverse distribution can be obtained by the
method using the fractional derivatives but like in the
case of a Bingham fluid, some fluctuations appear for the
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Fig. 7. Comparison between the initial and the fractional
method calculated PSD for a Herschel-Bulkley fluid with n =

0.5.

Fig. 8. Total flow rate vs. pressure gradient magnitude for a
Gaussian distribution and a Herschel-Bulkley fluid for n = 0.9.

small radii due to the lack of precision of the polynomial
fit used here. Therefore, we will present in the next sec-
tion another numerical method effective and robust and
that can be applied to all yield stress fluids such as the
Herschel-Bulkley fluids and for all kinds of distributions.
Note that this approach, based on the fractional deriva-
tives and the polynomial interpolation function, fails for
more complex distributions (bimodal or tri-modal) prob-
ably because of the unsuited interpolation function used
here. This has motivated another numerical method based
on the numerical discretization of the Volterra equation.

2.3 Numerical inverse method for determining PSD

An alternative method to solve the Volterra equation
(Eq. (1)) is to use a matrix system. For this, we adopt
the following approach: the pressure gradient magnitude
(j-index) and the pore radius (i-index) are discretized
using N points so that the source term Q (∇P ), the ker-
nel q (∇P, r, n) and the PSD p(r) become respectively

Fig. 9. Comparison between the initial and the fractional
method calculated PSD for a Herschel-Bulkley fluid with n =

0.9.

Fig. 10. Total flow rate vs. pressure gradient magnitude for a
Gaussian distribution and a Herschel-Bulkley fluid for n = 1.2.

Fig. 11. Comparison between the initial and the fractional
method calculated PSD for a Herschel-Bulkley fluid with n =

1.2.
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Qj = Qj(∇Pj), qij = q(∇Pj , ri, n) and pi = p(ri). The
Volterra equation is then rewritten as follows:

Qj =
N
∑

i=1

qijpi∆r for j = 1, ..., N (14)

with ∆r = (rmax − rmin)/(N − 1). Mathematically, if the
kernel qij is not singular, equation (14) has a unique
solution which is given by the following relation:

pi =
(qij)

−1
Qj

∆r
for i = 1, ..., N (15)

where (qij)
−1 is the inverse matrix of the kernel.

2.3.1 Numerical approach

The non-dimensional form of the functions is used to solve
the previous system. For this, we use the kernel in the form
written in equation (6). This kernel is discretized using a
non-dimensional radius step ∆r+ and a non-dimensional
pressure gradient magnitude step ∆(∇P )

+ such that:

∆r+ = (r+max − r+min)/(N − 1)

∆(∇P )
+
= (∇P+

max −∇P+
min)/(N − 1)

with ∇P+
min = 2/r+max and ∇P+

max = 2/r+min for given val-
ues of r+min and r+max. The discretized non-dimensional
radius and pressure gradient magnitude now become:

r+i = r+min + (i− 1)∆r+ for i = 1, ..., N

∇P+
j = ∇P+

min + (j − 1)∆(∇P )
+

for j = 1, ..., N

The kernel matrix is then built with the previously
discretized elements:

q+ij = q+
(

∇P+
j , r+i , n

)

with

q+
(

∇P+
j , r+i , n

)

=HeH−B 1

2
1
n

(

1

2n+ 1

)

1
(

∇P+
j

)3

×
(

r+i ∇P+
j − 2

)1+ 1
n

×
[

8n2 + 4n (n+ 1) r+i ∇P+
j

+
(

2n2 + 3n+ 1
) (

r+i ∇P+
j

)2
]

At this point, after having experimentally obtained the N
components of the source vector Qj and calculated the

inverse of the kernel matrix (qij)
−1, we can determine

the unknown distribution pi. The number of values used
(here N = 1000) can naturally be reduced depending on
the desired accuracy. Indeed, to numerically invert the
Volterra equation, we no longer need a large number of
values as previously required in the case of the analyti-
cal and fractional derivatives methods. Note that in an

Fig. 12. Total flow rate vs. pressure gradient magnitude for a
Gaussian distribution and a Bingham fluid (N = 25).

experimental work, this is the number of points of the
pressure gradient (or flow rate) that would command the
number of points for the radius. But within the range of
pressure gradients experimentally explored, if one wishes
a finer discretization for the radius, it is always possible
to interpolate the missing data of the pressure gradient
(or the flow rate) in order to find a square matrix.

2.3.2 Numerical inversions of some distributions by
using Herschel-Bulkley model

• Herschel-Bulkley fluid with n = 1 (Bingham
model)

As in most experiments it is cumbersome to obtain a
large sample of data, we have tested the accuracy of the
present numerical method on a sample of N = 25 points
(instead of 1000 points used in the two previous methods).
Figure 12 shows the characteristic curve for a normal dis-
tribution (µ+ = 10−4, σ+ = 2 × 10−5) and a Bingham
fluid (n = 1) for HeH−B = 0.02 and Figure 13 presents
the results obtained by the numerical method compared
to the initial Gaussian PSD. A good agreement is found
here although the size of the sample is small which seems
to be encouraging.
To verify the efficiency of this numerical technique with
more complex distributions, a bimodal Gaussian distribu-
tion is considered, with two peaks at µ+

1 = µ1/L = 10−4

and µ+
2 = 2µ+

1 and two different standard deviations
σ+
1 = σ1/L = 2 × 10−5 and σ+

2 = 2σ+
1 . For a Bingham

fluid (n = 1) at HeH−B = 0.02, the characteristic curve
can be evaluated (Fig. 14). For this example, N = 1000
points are used to increase the accuracy.
Once again, when the numerical method is applied to
the data in Figure 14, the initial bimodal Gaussian
distribution is perfectly found (Fig. 15).

• Herschel-Bulkley fluid with n = 0.9 (pseudo-
plastic) and n = 1.2 (dilatant)
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Fig. 13. Comparison between the initial and the numerically
calculated PSD for a Bingham model with N = 25.

Fig. 14. Total flow rate vs. pressure gradient magnitude for a
bimodal distribution (µ+

1 = 10
−4, µ+

2 = 2µ+

1 , σ
+

1 = 2 × 10
−5,

σ+

2 = 2σ+

1 ) and a Bingham fluid (n = 1) for N = 1000 points.

Finally, we can test this method on pseudo-plastic or
dilatant yield stress fluids. Let us recall that these two
cases generally require the use of the fractional deriva-
tives method leading to some noise when the pore radius
becomes very small. The two fluids tested here are char-
acterized by the following parameters: HeH−B = 0.02,
n = 0.9 (pseudo-plastic) and n = 1.2 (dilatant). A tri-
modal Gaussian distribution is tested with µ+

1 = 10−4,
µ+
2 = 2µ+

1 , µ
+
3 = 3µ+

1 , σ
+
1 = 2 × 10−5, σ+

2 = 3σ+
1 /2 and

σ+
3 = 2σ+

1 .
Figures 16 and 17 validate the pseudo-plastic case (n =
0.9) and Figures 18 and 19 validate the dilatant case

Fig. 15. Comparison between the initial and the numerically
calculated PSD for a bimodal distribution (µ+

1 = 10
−4, µ+

2 =

2µ+

1 , σ
+

1 = 2× 10
−5, σ+

2 = 2σ+

1 ) and a Bingham fluid (n = 1)
for N = 1000 points.

Fig. 16. Total flow rate vs. pressure gradient magnitude for a
tri-modal distribution with (µ+

1 = 10
−4, µ+

2 = 2µ+

1 , µ
+

3 = 3µ+

1 ,
σ+

1 = 2 × 10
−5, σ+

2 = 3σ+

1 /2 and σ+

3 = 2σ+

1 ) and a Herschel-
Bulkley pseudo-plastic fluid (n = 0.9).

(n = 1.2). Therefore, this numerical method seems very
effective and robust and can be applied to all kind of
yield stress fluids such as the Herschel–Bulkley for any
power-law index n < 1 (pseudo-plastic behavior) or n > 1
(dilatant behavior) and for all kinds of distributions. All
these tests show that the numerical inversion method is
relevant for determining the pore size distribution p(r)
provided that a sufficient number of points and well-
adapted radius and pressure gradient magnitude intervals
are taken.



A. Oukhlef et al.: Mechanics & Industry 21, 509 (2020) 9

Fig. 17. Comparison between the initial and the numerically
calculated PSD for a tri-modal distribution (µ+

1 = 10
−4, µ+

2 =

2µ+

1 , µ
+

3 = 3µ+

1 , σ
+

1 = 2 × 10
−5, σ+

2 = 3σ+

1 /2 and σ+

3 = 2σ+

1 )
and a Herschel-Bulkley pseudo-plastic fluid (n = 0.9).

Fig. 18. Total flow rate vs. pressure gradient magnitude for a
tri-modal distribution (µ+

1 = 10
−4, µ+

2 = 2µ+

1 , µ
+

3 = 3µ+

1 , σ
+

1 =

2× 10
−5, σ+

2 = 3σ+

1 /2 and σ+

3 = 2σ+

1 ) and a Herschel-Bulkley
dilatant fluid (n = 1.2).

3 Conclusion

This work presents a new method for determining and
identifying the pore size distribution of porous materi-
als. It is based on the capillary bundle model like most
of the other experimental techniques. This method uses
non-Newtonian yield stress fluids. The existence of a yield
stress gives the possibility to scan the pore distribution.
Analytically, the total flow rate of such fluids into a porous
medium appears as a Volterra integral equation of the
first kind whose kernel is analytically known in the case
of the flow into a straight capillary. The mathematical
determination of the probability density p(r) function is
possible using the partial derivatives (of integer or non-
integer order) of the total flow rate of fluid through the
porous medium as a function of the pressure gradient mag-
nitude or by a numerical method based on the inverse

Fig. 19. Comparison between the initial and the numerically
calculated PSD for a tri-modal distribution (µ+

1 = 10
−4, µ+

2 =

2µ+

1 , µ
+

3 = 3µ+

1 , σ
+

1 = 2 × 10
−5, σ+

2 = 3σ+

1 /2 and σ+

3 = 2σ+

1 )
and a Herschel-Bulkley dilatant fluid (n = 1.2).

matrix of the kernel. These techniques are successfully
tested for Herschel-Bulkley fluids in the case of mono,
bi or tri-modal Gaussian distributions but any other dis-
tribution or yield stress fluid (Casson, Robertson-Stiff,
etc.) could be used potentially. However, in some cases the
resolution of the Volterra equation should be done numer-
ically and not analytically. We hope that this method
could become in the future an alternative to the toxic
and expensive existing methods for the characterization
of porous materials.
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