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Abstract

Background: Acetylcholine receptor type ligand-gated ion channels (ART-LGIC; also known as Cys-loop receptors)
are a superfamily of proteins that include the receptors for major neurotransmitters such as acetylcholine, serotonin,
glycine, GABA, glutamate and histamine, and for Zn2* ions. They play a central role in fast synaptic signaling in animal
nervous systems and so far have not been found outside of the Metazoa.

Results: Using sensitive sequence-profile searches we have identified homologs of ART-LGICs in several bacteria and a
single archaeal genus, Methanosarcina. The homology between the animal receptors and the prokaryotic homologs spans
the entire length of the former, including both the ligand-binding and channel-forming transmembrane domains. A
sequence-structure analysis using the structure of Lymnaea stagnalis acetylcholine-binding protein and the newly detected
prokaryotic versions indicates the presence of at least one aromatic residue in the ligand-binding boxes of almost all
representatives of the superfamily. Investigation of the domain architectures of the bacterial forms shows that they may
often show fusions with other small-molecule-binding domains, such as the periplasmic binding protein superfamily |
(PBP-I), Cache and MCP-N domains. Some of the bacterial forms also occur in predicted operons with the genes of the
PBP-II superfamily and the Cache domains. Analysis of phyletic patterns suggests that the ART-LGICs are currently
absent in all other eukaryotic lineages except animals. Moreover, phylogenetic analysis and conserved sequence motifs
also suggest that a subset of the bacterial forms is closer to the metazoan forms.
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Conclusions: From the information from the bacterial forms we infer that cation-pi or hydrophobic interactions with
the ligand are likely to be a pervasive feature of the entire superfamily, even though the individual residues involved in
the process may vary. The conservation pattern in the channel-forming transmembrane domains also suggests similar
channel-gating mechanisms in the prokaryotic versions. From the distribution of charged residues in the prokaryotic M2
transmembrane segments, we expect that there will be examples of both cation and anion selectivity within the
prokaryotic members. Contextual connections suggest that the prokaryotic forms may function as chemotactic
receptors for low molecular weight solutes. The phyletic patterns and phylogenetic relationships suggest the possibility
that the metazoan receptors emerged through an early lateral transfer from a prokaryotic source, before the divergence
of extant metazoan lineages.
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Background

The flux of ions across excitable cellular membranes is a sig-
naling mechanism that is extensively utilized by organisms
from all the three major superkingdoms of life. This direc-
tional flow of ions across cellular membranes is mediated by
a wide range of ion channels that may be gated by a variety of
signals, such as voltage, mechanical forces or chemical first
messengers [1]. Ion-dependent signaling is particularly criti-
cal for the functions of the animal nervous system, where
propagation of signals along neuronal processes and the
transmission of signals from neurons or receptor cells to their
targets is mediated by the action of ion channels. The neuro-
nal ligand- or neurotransmitter-gated ion channels (LGICs)
combine the functionalities of a receptor and ion channel in a
single protein, and mediate fast synaptic signaling [1]. The
neurotransmitter released by the presynaptic cell, within a
few microseconds binds to the extracellular ligand-binding
module of the ion channel and causes the channel to open.
This results in a selective flow of ions down their electrochem-
ical gradients through the water-filled pore of the channel,
and the excitation or inhibition of the train of action poten-
tials in the postsynaptic cells. Furthermore, within a few mil-
liseconds the neurotransmitter dissociates from the receptor
and thereby terminates the synaptic signal. Thus, the LGICs
act as molecular switches to provide a specific impulse of ion
flux in response to a neuronal signal [1]. One of the most
prominent superfamilies of the animal LGICs has as its pro-
totype the acetylcholine-gated channels and includes the
receptors for a variety of neurotransmitters in both verte-
brates and invertebrates ([2], also see [3]). The known endog-
enous ligands bound by these receptors are acetylcholine,
GABA, serotonin, glycine, histidine, glutamate and cationic
zinc [4-8]. The receptors are also the targets of plant toxins
such as nicotine and strychnine, conotoxins of snails, lopho-
toxins of corals, and many of the neurotoxins of elapid snakes
[4-6]. This superfamily is commonly referred to as the Cys-
loop superfamily (named after a conserved cystine bridge
seen in the animal representatives of this superfamily) or the
acetylcholine-receptor-type LGIC superfamily (ART-LGIC).

All the known members of this superfamily possess stereo-
typic domain architectures, with an all-p amino-terminal lig-
and-binding domain (LBD) and a carboxy-terminal
transmembrane domain comprised of four membrane-span-
ning helices (4-TM). The members of this superfamily exhibit
a pentameric quaternary structure, with the second trans-
membrane helix from each monomer (helix M2) contributing
to the wall of a transmembrane pore through which the ion
passes. The animal ART-LGICs may exist as heteropentam-
ers, containing up to four distinct paralogous monomers. The
ligand is bound at the dimer interface of two adjacent LBDs,
and residues from both subunits form a box-like cavity to
accommodate the ligand [9,10]. In the case of most animal
neurotransmitter receptors in their open state, only two (or
occasionally three) of the five subunit junctions in the penta-
meric receptor are occupied by the ligand [4-6].
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The ART-LGICs characterized to date show ion selectivity.
The excitatory channels, such as the acetylcholine and serot-
onin receptors, the mammalian Zn receptors and some inver-
tebrate GABA receptors, allow the flow of cations, whereas
the inhibitory receptors, such as those for glycine and GABA,
invertebrate glutamate and histamine receptors, and some
invertebrate serotonin receptors (such as Caenorhabditis ele-
gans MOD-1), allow the flow of anions. Cation or anion selec-
tivity of the channel is principally governed by the charge
distribution in the linker between the transmembrane helices
M1 and M2 [11,12].

Several recent studies based on the X-ray structure of the
recombinant homopentamer of the soluble acetylcholine-
binding domain (ACHB) from the snail Lymnaea stagnalis
[9] and the electron microscopic structure of the transmem-
brane domain [13] have thrown light on the possible mecha-
nisms of ligand interaction and channel gating of the ART-
LGICs. The current model for the mechanism of these chan-
nels posits that the binding of the ligand causes a preferential
rotation of one of the B sheets of the LBD. The resultant con-
formational change is believed to be transmitted via interac-
tions with the loop between helices M2-M3 to the
hydrophobic constriction in the middle of the M2 helices that
line the channel walls [13]. This causes a relaxation of the
middle of the girdle and allows the flow of the ions. Despite
intense studies, there remain several unresolved issues with
respect to the mechanism by which the binding of the ligand
to a segregated site transmits the conformational change to
the rest of the LBDs to trigger the rotation. Furthermore, the
extent of the applicability of the conclusions drawn from the
acetylcholine receptor model for other members of the super-
family remains somewhat unclear.

Thus far, the ART-LGIC superfamily is known only from mul-
ticellular animals (metazoans). Phylogenetic analysis sug-
gests that the common ancestor of the bilateral animals
already possessed multiple members belonging to two major
families of the superfamily that correspond, respectively, to
the excitatory cationic channels, including the acetylcholine
and serotonin receptors, and the inhibitory anionic channels,
including the GABA, glycine and invertebrate histamine and
glutamate receptors [2,14,15]. This restricted phyletic pattern
is in contrast with what has been previously observed for the
voltage-gated potassium channels of the Shaker-type super-
family and the voltage-gated sodium channels. In both these
cases, several representatives are known from both non-ani-
mal eukaryotes, as well as numerous prokaryotes, suggesting
that they were employed in signaling in other contexts well
before the origin of the animal nervous system [16-19]. This
prompted us to investigate if distant representatives of the
Cys-loop/ART-LGIC superfamily could be detected in organ-
isms outside the animal lineage. We also sought to use these
distant relatives in comparative sequence-structure and
genomics studies to understand the most general functional
and mechanistic features that typify this superfamily.

Genome Biology 2004, 6:R4



http://genomebiology.com/2004/6/ /R4

We report here the identification of several prokaryotic mem-
bers of the ART-LGIC superfamily and discuss the general
implications of these proteins for the mechanisms and origin
of the Cys-loop receptors of the animal nervous system.

Results and discussion

Identification of prokaryotic versions of the ART-LGIC
superfamily

To investigate the origins of the animal ART-LGIC super-
family, we tried to obtain a complete picture of their phyletic
spread in all organisms with currently available genomic
sequence information. All bona fide animal members of this
superfamily (with the exception of snail ACHB) contain a
globular, extracellular, amino-terminal LBD and a carboxy-
terminal 4-TM domain. The membrane-spanning helices,
being compositionally biased, tend to frequently recover false
positives in iterative sequence profile searches. Accordingly,
we only used the globular extracellular domains of the known
ART-LGIC receptors, which are typically around 200-220
amino acids in length, for our iterative sequence profile
searches with the PSI-BLAST program.

Iterative searches from a number of starting queries, such as
the human acetylcholine receptor a7 chain (gi: 2144875;
region 24-230), C. elegans MOD-1 receptor (gi: 25154135;
region 32-238) or the human GABA receptor a4 chain (gi:
1346079; 46-256) recovered a consistent set of receptors
from diverse animals with significant expect (e)-values prior
to convergence (run with inclusion threshold of 0.01). Inter-
estingly, in addition to the animal sequences these searches
also recovered sequences from different bacteria. For exam-
ple a search initiated with the above-mentioned acetylcholine
receptors as the seed recovered Gloeobacter violaceus, Cro-
cosphaera watsonii (both cyanobacteria) in iteration 3 (e-
values = 105-107) and Rhodopseudomonas palustris (a-pro-
teobacteria) in iteration 6 (e-value = 10-4). However, no sig-
nificant hits belonging to any of the other eukaryotic lineages,
such as the fungi, Dictyostelium, plants, alveolates or Giardia
were detectable. To further investigate the occurrence of
ART-LGIC homologs in bacteria, we constructed a PSI-
BLAST profile of the LBDs recovered in the above searches
and used it to systematically search all the bacterial genomes,
which are available as whole-genome shotgun reads or as
completely assembled chromosomes. As a result of these
searches we recovered statistically significant hits to the ART-
LGIC LBDs from several other phylogenetically diverse bacte-
ria including Cytophaga hutchinsonii, o-proteobacteria like
Bradyrhizobium japonicum and Magnetospirillum magne-
totaticum, y-proteobacteria, like Erwinia chrysanthemt,
Microbulbifer degradans and Methylococcus capsulatus,
several cyanobacteria and a single archaeal genus Meth-
anosarcina.

All these bacterial hits corresponded to the full length of the
animal LBDs, which were used as seeds to build the sequence
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profiles. When signal peptides and the transmembrane heli-
ces were predicted for the bacterial proteins, all of them
showed a general structure similar to the animal receptors;
that is, an amino-terminal signal peptide and a LBD followed
by a carboxy-terminal 4-TM domain. However, some of the
bacterial proteins showed additional domains between the
amino-terminal signal peptide and the ART-LGIC super-
family ligand-binding and channel domains (see below for
further discussion). Reciprocal searches with either just the
region corresponding to the LBD or the whole unit compris-
ing both the LBD and the following 4-TM domain of the bac-
terial proteins recovered the animal Cys-loop proteins with
significant e-values (0.001-10"7 in iterations 1-3). For exam-
ple, a search with the sequence of Chuto841 (gi: 23135736)
from C. hutchinsonii recovered the animal receptors with e-
values in the range 104-10-¢ in the second iteration. The sec-
ondary structure was predicted for the region corresponding
to the LBD in the bacterial proteins using the programs PHD
[20] and JPRED2, using the combined information from the
multiple alignment, a PSI-BLAST position-specific score
matrix and a hidden Markov model derived from the align-
ment [21]. The predicted secondary structure of the bacterial
proteins precisely corresponded to the secondary structure of
the conserved core of the animal LBDs typified by the ACHB
(PDB:1UV6), with an amino-terminal helix followed by nine 8
strands, which form a p sandwich [9].

Taken together, the above observations suggested that the
bacterial proteins were bona fide homologs of the animal
neurotransmitter receptors of the ART-LGIC/Cys-loop
superfamily.

Mechanistic and functional implications of the
comparative sequence-structure analysis of the
bacterial and animal ART-LGIC receptors

To obtain information regarding the potential functional and
structural similarities and differences of the predicted bacte-
rial ART-LGIC and the animal receptors we prepared a mul-
tiple alignment of the bacterial sequences with the
representatives of all the major classes of animal Cys-loop
proteins (Figure 1) using the T_Coffee program [22]. The
alignment was further refined on the basis of secondary
structure predictions and comparisons with the available
structure of the stand-alone animal LBD, ACHB. The multiple
alignment shows that the majority of the highly conserved
positions in the LBD are in the conserved strands, and when
mapped onto the structure of ACHB, they correspond to the
positions stabilizing the hydrophobic core of the B-sandwich
(Figure 1, see also Additional data file 1). This observation
strongly suggests that the bacterial versions would adopt a
tertiary structure similar to the animal LBDs.

The bacterial LBDs differ notably from the animal LBDs,
however, in lacking the characteristic cysteine residues which
form the disulfide bridge in practically all known animal
receptor subunits (Figure 1). However, in place of the second
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Figure |

A multiple alignment of the ART-LGIC/Cys-loop superfamily (see also Additional data file 2 for alignment; an alignment of metazoan members only may
also be obtained from PFAM: PF02931 LBDs; PF02932: TM domain). Proteins are denoted by their gene names, species abbreviations and gi. The
secondary-structure assignments, based on the available crystal structures of the acetylcholine receptor pore (pdb: |OED) and Achbp protein (pdb:
1UV6), are shown above the alignment where E denotes extended or strand, and H, helix. The coloring reflects the composition of the amino acids at 90%
consensus. The coloring scheme and the consensus abbreviations are as follows: h, hydrophobic (ACFILMVWY), |, aliphatic residues (ILV), and a, aromatic
residues (FHWY) are shaded yellow; s, small (AGSVCDNPT) and u, tiny residues (GAS) are colored green; c, charged (DEHKR), +, basic (HKR), -, acidic
(DE), p, polar (CDEHKNQRST) are colored magenta. The conservation pattern as plotted onto the three-dimensional structure of the ACHB is shown in
Additional data file |. Also shown below the alignment are the key residues described in the text. # and @ represent residues of adjacent chains (PDB id:
1UV6, chain C and chain D respectively) involved in ligand binding (shaded gray). Residues predicted to be potentially involved in the transmission of
conformational change are marked by an asterisk (*) at the bottom of the column and are colored violet and shaded gray. The highly conserved positions
- the acidic residue in the middle of the Cys-loop and the basic residue at the carboxyl terminus of the LBD - are shown in inverse blue shading. The
arginine residue involved in ion selectivity in anionic channels is shaded green and the glutamate residue involved in ion selectivity in cationic channels is
shaded purple. Species abbreviations are as follows: Bjap, Bradyrhizobium japonicum; Ce, Caenorhabditis elegans; Crwa, Crocosphaera watsonii; Cyhu,
Cytophaga hutchinsonii; Dm, Drosophila melanogaster; Echr, Erwinia chrysanthemi; Glvi, Gloeobacter violaceus; Hs, Homo sapiens; Lst, Lymnaea stagnalis; Mba,
Methanosarcina barkeri; Mcap, Methylococcus capsulatus; Mdeg, Microbulbifer degradans; Meac, Methanosarcina acetivorans; Mmag, Magnetospirillum
magnetotacticum; Npun, Nostoc punctiforme; Rpal, Rhodopseudomonas palustris; Syn, Synechococcus sp.; Toma, Torpedo marmorata.
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cysteine the bacterial sequences possess a highly conserved
hydrophobic position that is likely to be buried in the hydro-
phobic core of the sandwich and, thereby, similarly stabilize
the region corresponding to the Cys-loop of the animal
sequences (Figure 1). This absence of the cysteines in the bac-
terial versions of these family is reminiscent of what was pre-
viously observed in the bacterial homologs of several animal
extracellular protein domains, such as the SCP1/PR1 domain,
the immunoglobulin domains and the MAC-perforin
domains [23-25]. Eukaryotic cells typically possess an exten-
sive secretory compartment, with a strongly oxidizing envi-
ronment, in the form of the endoplasmic reticulum, through
which a protein passes before secretion [26]. In contrast, in
bacteria most disulfide bond formation occurs after extrusion
to the periplasmic compartment [27]. The presence of this
extensive secretory compartment in eukaryotic cells might
have allowed a greater role for stabilization through disulfide
bonds, and thereby favored the emergence of interacting
cysteines in eukaryotic versions of domains as opposed to the
bacterial counterparts.

Over and above the general conservation of hydrophobic res-
idues in the 4-TM domain, there are some potential function-
ally relevant conserved positions shared by the bacterial and
metazoan proteins. One of these is the helix-bending position
in helix M1 (usually occupied by a proline (P), glycine (G) or
serine (S), and corresponding to P221 in Torpedo californica
ACHR a-chain), which is predicted to be critical for the flexi-
bility of the structure to conformational change [13,28].
Another position of interest is in the middle of helix M2, and
is occupied by a small residue (corresponding to S252 in T.
californica ACHR a-chain) that initiates a bend in the helix
resulting in the hydrophobic constriction or girdle that forms
the channel gate [13]. Glycine 275 of T. californica ACHR a-
chain, in the loop between helices M2 and M3, has been
implicated as one the residues that may be critical for the
rotational freedom of the ACHR M2 helix during the gating
process [13]. The strong conservation of a small residue at
this position in both the bacterial and animal members of this
family suggests that it is likely to support this function
throughout the superfamily. Less obvious is the role of a polar
residue just before the start of helix M4 that is highly con-
served across both bacterial and animal members of this
superfamily. From its position in the structure, it is possible
that interactions of residue with solvent water might play a
role in stabilizing one of the conformational states.

One of the major determinants of ion selectivity is the
sequence just amino-terminal to the helix M2 on the cytoplas-
mic side. The cation channels usually have a sequence motif
of the form glutamate (E)-[arginine (R)/lysine (K)] with the
glutamate playing a role in cation selection. The anion chan-
nels usually have a motif of the form alanine (A)-[RK] with
the basic residue participating in anion selection [11,12,29]. A
glutamate corresponding to that of the cation channels is seen
in about eight of the bacterial sequences and a basic residue
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similar to the anion channels is seen in six of the bacterial
sequences, suggesting that both selectivities are likely to be
encountered in the bacterial sequences (Figure 1). In addi-
tion, like the animal sequences, the bacterial sequences con-
tain poorly conserved polar or charged residues at the
carboxyl terminus of the M2 helix, which might play a role in
fine-tuning their selectivity [4,6,11,13]. The long hydrophilic
linker between helices M3 and M4 is highly variable in length
and sequence in the animal proteins. It has been implicated in
cytoplasmic interactions with functional partners such as the
P2X family of ATP receptors [30] and the cytoskeletal recep-
tor-clustering protein gephyrin [31]. In contrast to the animal
members of the superfamily, all bacterial versions possess an
abbreviated cytoplasmic M3-M4 loop and are unlikely to have
functional interactions that are seen in the animal versions.

The ligand-binding box in ACHB has been termed the aro-
matic box as it is bounded by multiple aromatic residues (Fig-
ures 1, 2). In several metazoan receptors the positively
charged group on the ligands has been suggested to form cat-
ion-w interaction with the n-orbitals of different aromatic res-
idues in the binding box [32-34]. An examination of the
ACHB structure [9] revealed that the side chains of eight res-
idues almost completely envelop the ligand, and are the prin-
cipal constituents of the ligand-binding box (Figure 2). Of
these, the dyad of two consecutive cysteines, which are
amino-terminal to the final strand of the LBD is observed
only in a subset of the animal cation channels, and does not
represent a conserved interaction position. Of the remaining
six positions, two are from one of the subunits while the
remaining four are from the other subunit (Table 1). The aver-
age number of aromatic residues in these positions in the bac-
terial proteins is 2.1, whereas in the animal sequences it is 2.6.
Every sequence in our representative set, animal or bacterial,
with the exception of the human Zn receptor [8], contains at
least a single aromatic residue in one of these positions. This
suggests that aromatic residues are critical for ligand interac-
tion throughout this superfamily, though the exact position in
the ligand-binding box that is occupied by an aromatic resi-
due does not seem to be preserved. However, the smaller
number of aromatic residues in the ligand-binding box of bac-
teria may indicate some differences in the type of ligand and
the nature of the interactions.

Furthermore, an interesting difference is noted in the aroma-
ticity of the positions corresponding to leucine (L) 112 (subu-
nit D) and tryptophan (W) 143 (subunit C) of the ACHB
structure between the bacterial and animal sequences (Figure
2). The ratio of aromatic residues at these positions is anti-
correlated, and this anti-correlation is strongly preserved in
the individual sequences. This suggests that these two posi-
tions might represent mutually exclusive, but functionally
equivalent, surfaces for ligand interaction. The presence of at
least one aromatic residue in most of the predicted ligand-
binding pockets could imply that cation-r interactions with
the bound ligand are widespread in the entire superfamily.
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Chain B

Chain D

Cartoon representations of ACHB. (a) The ligand-binding dimer of ACHB; (b) the pentamer of ACHB. The representations were derived from the
crystal structure of the snail acetylcholine-binding protein (PDB 1UV6). Residues forming the ligand-binding box are shaded orange. The chain of residues
that could potentially act as a conduit for transmission of conformational changes is colored green and the prominent conserved ones among them have

been labeled.

Table |

Character of residues in the conserved positions of the ligand-binding box

Ratio of aromatic residues

Overall aromaticity

Position* R104(D) LI12(D) W143(C) T144(C) Y185(C) Y192(C)
Bacteria 02 0.53 02 0.0 0.6 053 2.1
Animals 0.14 0.22 0.82 0.0 0.54 0.89 26

*The positions correspond to the D and C chains of ACHB (PDB: UV6)

However, other explanations are also possible. For example,
one or more aromatic residues could have a possible struc-
tural role in constraining the pocket to favor a particular lig-
and or ligand orientation. Alternatively, they could provide
the requisite hydrophobic environment in the pocket or inter-
act with the ligand through aromatic stacking.

In addition to the residues discussed above, there are several
other conserved residues in the LBD that may have a role in
transmission of conformational changes. Among the most
highly conserved features is the aPaD signature (where 'a' is
any aromatic residue, and D is aspartate) in the middle of the
region corresponding to the Cys-loop (Figure 1) and these res-
idues are essential for wild-type receptor function [5]. They
lie far away from the ligand-binding region and close to
another nearly universally conserved basic residue at the end
of the terminal strand of the LBD (Figure 1). This basic resi-
due is known to be mutated in the glycine receptor a1 subunit
in the human genetic disease sporadic hyperekplexia [35].

The aspartate from the aPaD motif and the basic residue
could potentially form a salt bridge to stabilize the 'outer
sheet' of the B sandwich and thereby regulate the preferential
movement of the sheets after ligand binding. This proposal is
consistent with recent studies that implicate some of these
charged residues, especially the aspartate in the Cys-loop, in
coupling ligand binding to further conformational changes
leading to channel gating [36,37]. The other highly conserved
positions are a tryptophan at the end of strand 2 (W58 in
ACHB) and an aromatic or hydrophobic position (W82 in
ACHB) that are in hydrophobic interaction with each other
(Figures 1, 2). These residues are at the center of a set of fairly
conserved positions (including D61, P84, D108, G109 and
isoleucine (I) 150 in ACHB) in both bacterial and eukaryotic
proteins that form a chain on either side from the ligand-
binding box to the surface of the 'inner sheet' at the top of the
LBD [9,28]. It is likely that these residues form a conduit for
the propagation of the conformational change from the lig-
and-binding box to the inner sheet (Figure 2).
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The conservation of certain key features in both the LBD and
the 4-TM domains of the bacterial and eukaryotic receptors
suggests that despite their extensive sequence divergence
they are likely to share general functional and mechanistic
properties. In the pentamer these residues appear to form a
continuous ring passing through the top surface of the LBD,
and undergo conformational changes in relation the presence
of a bound ligand (Figure 2) [9].

Functional significance of domain architectures and
gene neighborhoods of bacterial ART-LGICs

We analyzed the domain architectures and gene neighbor-
hoods of the predicted bacterial ART-LGICs to glean further
insights regarding their biological functions. Unlike the ani-
mal ART-LGICs, the bacterial receptors show a greater diver-
sity in their domain architectures, while preserving the core
module which comprises the extracellular LBD and 4-TM
channel-forming domain (Figure 3). The representatives
from cyanobacteria, Rhodopseudomonas and one of the three
versions from C. hutchinsonii show a simple architecture
identical to the animal forms. Some versions, like those from
the a-proteobacteria, M. magnetotacticum and B. japoni-
cum, show a further amino-terminal fusion to a domain of the
periplasmic binding protein type I (PBP-I) superfamily (Fig-
ure 3). The archetypal domains of the PBP-I superfamily are
the bacterial proteins such as the lysine/arginine/ornithine-
binding protein, that bind amino acids and other small mole-
cules in the extracellular or periplasmic space and facilitate
their uptake by ABC-family transporters [38]. Interestingly,
PBP-I domains also form the LBDs of two distinct super-
families of animal neuronal receptors. The NMDA-type
receptors, which comprise a class of ligand-gated channels
distinct from the ART-LGIC/Cys-loop superfamily, contain
an amino-terminal PBP-I domain and a carboxy-terminal
domain belonging to the second major superfamily of bacte-
rial periplasmic binding proteins (the PBP-II superfamily, for
example, HisJ) [39,40]. The channel-forming transmem-
brane domain in these proteins is inserted into the carboxy-
terminal PBP-II domain. The metabotropic glutamate recep-
tor and vertebrate taste receptors, which are G-protein-cou-
pled receptors, contain a PBP-I domain amino-terminal to
their 7-TM domains [39,40].

A third architectural theme in the bacterial ART-LGICs is a
fusion of two additional amino-terminal domains to the core
receptor module, namely the MCP-N (methyl-accepting
chemotaxis protein-N domain) and Cache domains [41]. This
version is seen in a number of phylogenetically distant
prokaryotes, such as the archaeon Methanosarcina and the
bacteria Cytophaga and Microbulbifer (Figure 3). The MCP-
N and Cache domains are prevalent prokaryotic sensor
domains that bind a variety of extracellular or periplasmic lig-
ands and regulate signal transduction via a variety of carboxy-
terminal signaling domains. In an interesting parallel to the
PBP-I/II domains, the MCP-N and Cache domains are found
in a regulatory subunit (a.2-8) of the animal voltage-gated cal-
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cium channels, and appear to comprise the binding site for
the drug GABApentin and possibly an as-yet unknown endog-
enous ligand [41]. Thus, these architectures suggest that
many of the predicted bacterial receptors might possess mul-
tiple ligand-interaction domains and that an interplay of
allosteric effects could regulate their function. Remarkably,
the additional domains found with the bacterial ART-LGIC
proteins are also encountered in animal neuronal receptors,
suggesting that all these domains belong to a common
network of ancient sensory modules that have been utilized in
diverse contexts [42].

Contextual information in the form of conserved gene neigh-
borhoods or predicted operons in prokaryotes often provides
hints to identify gene products that functionally or physically
interact or belong to the same pathways or signaling cascades
[43,44]. Accordingly, we examined the gene neighborhoods
of all the predicted bacterial ART-LGICs to identify conserved
neighborhoods or persistent patterns of genomic clustering of
genes with similar functions. In some bacteria, the gene for
the ART-LGIC was found in a conserved gene neighborhood
along with a gene for a stand-alone version of the PBP-II
superfamily (Figure 3). This is analogous to the above-noted
fusion of the PBP-I domain to the ART-LGIC in other bacte-
ria, and suggests that these stand-alone PBP-II domains
probably functionally cooperate with the receptors. In one
bacterium, namely Rhodopseudomonas, there is a similar
predicted operon, but instead of a gene for a PBP-II super-
family protein, there is one for a stand-alone Cache domain.
This situation parallels the fusion with the Cache domain in
some of the receptor versions and these two independent pro-
teins may similarly cooperate functionally.

Taken together, these observations suggest that bacterial
ART-LGICs may function as chemotaxis receptors. As most
bacterial genomes in which they are present contain only a
single member of the ART-LGIC superfamily, it is likely that,
in contrast to many of the well studied metazoan receptors,
they function as homopentamers. The PBP-I, PBP-II MCP-N
and Cache domains that are either fused or operonic with
many of the predicted bacterial receptors may help in a pre-
liminary concentration or sensing of amino acids or other
small-molecule ligands. These ligands may then bind to the
channel's LBD domain and activate an ionic flux across the
cell membrane that in turn regulates the motility of the bacte-
rium in response to the ligand. This proposal is analogous to
the recently reported activity of a voltage-gated Na+ channel
in the bacterium Bacillus pseudofirmus in chemotaxis, motil-
ity and the regulation of the Na+-cycle [16]. Interestingly, in
at least one bacterium, Microbulbifer degradans, the ART-
LGIC with a predicted cation selectivity is in a predicted
operon with a Na+/H+* symporter, suggesting possible inter-
actions with the Na+ cycle.
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Figure 3

A phylogenetic tree of proteins containing the ART-LGIC domain with relevant domain architectures and gene neighborhoods. Bacterial branches are
colored blue and animal branches magenta. Nodes with maximum-likelihood RELL bootstrap support of more than 70% are shown as yellow circles.
Selected gene neighborhoods that provide contextual functional information are shown as box arrows. The globular domains in the domain architectures

are drawn approximately to scale. LBD, the ligand-binding domain of the ART-LGIC domain. Species abbreviations are as in Figure I.

Phyletic patterns and phylogenetic relationships of the
bacterial and eukaryotic ART-LGICs

Comparative genomics of ART-LGICs suggests that they
show a highly non-uniform phyletic patterns. Among the
eukaryotes they are only seen in animals, and could not be
detected in the currently available genomic sequences of
other crown-group eukaryotes such as plants, fungi, Dictyos-
telium, Entamoeba, apicomplexans or -earlier-branching
eukaryotic taxa such as Giardia and Trichomonas. Among
the prokaryotes, too, they show a highly sporadic distribu-
tion: very distantly related taxa may possess similar receptors
(for example, Cytophaga and the archaeon Methanosarcina,
Figure 3), whereas closely related taxa may differ from each
other in possessing or lacking a predicted ART-LGIC. These
phyletic patterns are similar to those observed for several sig-

naling receptors in prokaryotes and are suggestive of a high
degree of mobility through lateral transfer, and frequent gene
loss [45].

We constructed phylogenetic trees of the ART-LGICs by using
an alignment that spanned the entire length of the LBD and
the 4-TM channel domain, and included all bacterial mem-
bers and representatives of all the major animal receptor
groups. The trees constructed using several different methods
- maximum likelihood, Bayesian inference, minimum evolu-
tion and neighbor-joining - produced congruent tree topolo-
gies (Figure 3). As expected, the tree showed a strongly
supported monophyletic animal branch that in turn split up
into the two major families corresponding to the great split
between the classical acetylcholine-serotonin type (usually
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cationic) receptors and their relatives and the classical gly-
cine-GABA type (usually anionic) receptors and their rela-
tives [2,7,14,15].

All the animal sequences are much closer to each other to the
exclusion of all other prokaryotic sequences (Figure 3). They
possess several unique sequence and structure features,
including the characteristic cysteines of the Cys-loop and the
extra large variable region between the transmembrane heli-
ces M3 and M4. Its absence in the bacterial forms suggests
that they are 'simpler’ versions, which are closer to the prim-
itive state. The mean intra-group distance of the metazoan
versions, measured using the JTT substitution matrix on an
alignment of 368 positions, is 1.7. This value is much lower
than the intra-group distance of 3.01 that is observed for the
bacterial forms (the overall mean distance being 2.8).

The prokaryotic proteins also show greater diversity of archi-
tectures in comparison to the stereotypic architecture of all
the animal members of this superfamily. These observations
suggest that the diversification of the prokaryotic forms pre-
ceded the emergence of the eukaryotic forms and thus that
the root of the tree is more likely to lie in the bacterial lineage
than within the metazoan lineage. Certain bacterial versions
(those from Crocosphaera, Gloeobacter, Erwinia and Rho-
dopseudomonas) are markedly more similar in sequence to
the eukaryotic forms (Figures 1, 3). Specifically, these similar-
ities include the extension of strand 2 of the LBD, before the
universally conserved W, and the hWxP motif (where h is a
hydrophobic residue and x any residue) amino-terminal to
strand 4 of the LBD. Constrained trees, where the animal
branch was artificially grouped with the more distantly
related bacterial sequences, were significantly worse (using
the Kishino-Hasegawa and Bayesian posterior probability
tests; data not shown) than the trees in which they were
grouped with their closer bacterial homologs. This observa-
tion, taken together with the greater likelihood of the root
being amongst the prokaryotes, suggests that the above fea-
tures shared by some of the bacterial sequences and the ani-
mal versions are synapomorphies or derived characters.

Taken together, the phyletic patterns and the specific rela-
tionship of the animal sequences to a subset of the bacterial
forms suggests that the common ancestor of the animal ART-
LGICs probably arose via an early lateral gene transfer from a
bacterium to the ancestral lineage leading to the modern
metazoans. Following this transfer, the ancestral eukaryotic
version acquired the characteristic cysteines of the Cys-loop
and duplicated and diverged to give rise to the two major
metazoan Cys-loop families. By the time of the common
ancestor of the bilateral animals the two major families
appear to have diversified into about nine distinct lineages
(Figure 3). The biased sampling of eukaryotic genome
sequences and the high frequencies of gene loss in the eukary-
otes could imply that the transfer of the ART-LGICs from bac-
teria to the eukaryotes might have occurred well before the
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emergence of the animal lineage, and has been lost repeatedly
in the other eukaryotes. While this possibility cannot be ruled
out until more representative eukaryotic sequences become
available, it is likely that there was a single precursor for all
the animal sequences, which was acquired at some point from
a bacterial source, and the massive radiation of the Cys-loop
receptors occurred only after the animals branched off from
the rest of the crown group. In principle it is possible that the
bacterial sequences emerged through a secondary transfer
from the animals. However, the potentially greater antiquity
of the prokaryotic lineages possessing these proteins, com-
bined with their greater diversity, makes this direction less
likely given the current data. In addition, as discussed below,
the case of the ART-LGIC receptors seems to fit the general
pattern, which is observed for many other eukaryotic signal-
ing proteins that appear to have a bacterial provenance.

It is of interest to note that several other animal neurotrans-
mitter receptors show connections to bacterial signaling sys-
tems. In addition to the MCP-N and Cache domains shared by
the metazoan voltage-gated Ca2+ channels, and the PBP-I
domains of various G-protein-linked and NMDA-type recep-
tors, there are similar parallels in the receptors for the gase-
ous neurotransmitter nitric oxide (NO). The NO receptors of
animals share two domains, namely the HNOB and HNOBA,
which are involved in heme-dependent NO sensing with sev-
eral bacterial signaling proteins [46]. Likewise, a recent anal-
ysis of the enzymes in the biosynthetic pathways of all
common metazoan neurotransmitters suggested that many of
them may have been laterally transferred from bacteria to
eukaryotes at different points in eukaryotic evolution [47].
Some of these include some potentially late transfers, analo-
gous to previous observations for the NO receptors and the
present report on ART-LGICs. Furthermore, parallel
instances of connections to bacterial sensory proteins have
been noted in the case of plant receptors for cytokinin, ethyl-
ene and light (phytochromes), and certain small-molecule
receptors of the cellular slime mold Dictyostelium (see [48]
and references therein). Thus, the ART-LGICs appear to
belong to a larger sensory network that probably first
emerged in the bacterial signaling systems and was subse-
quently recruited by the eukaryotes in contexts unique to
their own functional milieus.

Conclusions

We report here the identification of several prokaryotic
homologs of the animal acetylcholine receptor-type ligand
gated ion channels (Cys-loop receptors). The pattern of the
residues conserved in both the metazoan and bacterial recep-
tors suggests that a common mechanism of channel-gating is
likely to operate throughout this superfamily. Furthermore,
the ligand-binding box appears to preserve at least one aro-
matic residue, although its exact position may not necessarily
be conserved. The conservation pattern also suggests that a
chain of positions leading out on either side from the ligand-
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binding box may mediate the transmission of the conforma-
tional change through the 'top' of the LBD, which may then
transmit through the rest of the structure. The charge interac-
tions between the acidic residue in the middle of the Cys-loop
region and a basic residue the extreme carboxyl terminus of
the LBD, just before the transmembrane domain also appear
be universal features that might be involved in the process of
channel gating. On the basis of the domain architectures and
operon organizations, we predict that the bacterial ART-
LGICs are likely to function as chemoreceptors for low-
molecular-weight solutes in the environment. Phyletic and
phylogenetic analyses suggest that the ancestor of the animal
lineage probably acquired a single progenitor from a bacterial
source, and it subsequently radiated to give rise to all the Cys-
loop receptor subunits of the extant metazoans.

Materials and methods

The nonredundant (NR) database of protein sequences
(National Center for Biotechnology Information (NCBI)) was
searched using the BLASTP program [49]. Unfinished micro-
bial and eukaryotic genomes were searched using the
TBLASTN program with protein queries [49]. Iterative data-
base searches were conducted using the PSI-BLAST program
with either a single sequence or an alignment used as the
query, with a position-specific score matrix inclusion expec-
tation (E) value threshold of 0.01 (unless specified other-
wise); the searches were iterated until convergence [49]. For
all searches with compositionally biased proteins, the statisti-
cal correction for this bias was used. Multiple alignments
were constructed using the T_Coffee [22] or PCMA programs
[22], followed by manual correction based on the PSI-BLAST
results and structural information. All large-scale sequence-
analysis procedures were carried out using the SEALS pack-
age [50]. Transmembrane regions were predicted in individ-
ual proteins using TMPRED [51], TMHMM2.0 [52] and
TopPred II [53] with default parameters. For TopPred, the
organism parameter was set to 'prokaryote’ or 'eukaryote'
depending on the source of the protein. Signal peptides were
predicted using the SIGNALP program [54].

Protein structure manipulations were performed using the
Swiss-PDB viewer program [55]. Protein secondary structure
was predicted using a multiple alignment as the input for
PHD [20] or JPRED2 [21]. Similarity-based clustering of pro-
teins was carried out using BLASTCLUST [56].

Phylogenetic analysis was carried out using the maximum-
likelihood, neighbor-joining, Bayesian inference and mini-
mum evolution (least squares) methods. The MrBayes pro-
gram was used for the Bayesian inference of phylogeny [57].
The alignment for phylogenetic analysis was prepared by vis-
ually deleting all those columns that contained non-con-
served residues from five or fewer sequences. Regions with
substantial gaps, which are replaced by numbers in Figure 1,
were also entirely deleted from the alignment. The resulting
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alignment with 49 sequences and 368 columns was used for
all subsequent phylogenetic analysis. Maximum-likelihood
distance matrices were constructed with the TreePuzzle 5
program [58] using 1,000 replicates generated from the input
alignment and used as the input for construction of neighbor-
joining trees with the Weighbor program [59]. Weighbor uses
a weighted neighbor-joining tree construction procedure that
has been shown to correct effectively for long-branch effects.

The minimal evolution trees were constructed using the
FITCH program [60] of the Phylip package on 1,000 boot-
strap replicates prepared from the input sequence. For maxi-
mum-likelihood analysis two different procedures were used.
In the first, a minimum evolution tree obtained using FITCH
was provided as a input for the Protml program [61,62],
which then produced a maximum-likelihood tree using local
rearrangements. The statistical significance of the internal
nodes of this maximum-likelihood tree was assessed using
the relative estimate of logarithmic likelihood bootstrap
(Protml RELL-BP) [61,62], with 10,000 replicates. In the sec-
ond procedure an initial full maximum likelihood tree was
constructed using the Proml program of the Phylip package
[60]. A gamma distribution with one invariant and four vari-
able sites with different rates was used for constructing this
tree, which was then used as the guide tree to generate further
full maximum-likelihood trees using the PhyML program
with 100 bootstrap replicates generated from the input align-
ment [63]. The consensus of these 100 trees was derived
using the Consense program of the Phylip package to obtain
the bootstrapped full maximum-likelihood tree. Gene neigh-
borhoods were determined by searching the NCBI PTT tables
with a custom-written script. These tables can be accessed
from the genomes division of the Entrez retrieval system.

Additional data files

The following additional data are available with the online
version of this paper. Additional data file 1 contains the con-
servation pattern of the ART-LGIC superfamily plotted onto
the three-dimensional structure of the ACHB protein. Addi-
tional data file 2 contains the alignment of the proteins in Fig-
ure 1 in Word format.
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