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1. Introduction  

Due to the fact that modern materials are widely used in aerospace industry, automotive 

industry, medicine and many others it is very important to find out a way to meet all its 

needful parameters. There is a lot of composites, which arise from a combination of at least 

two different components on the macroscopic level and whose parameters are unknown. 

Therefore, it is difficult to get to know their possibilities and functionality. A kind of 

composite materials are Functionally Graded Materials (FGM). They are characterized by 

the fact that its composition and structure gradually change over the volume, which follows 

from changes in properties of material (Miyamoto et al., 1999). There are many works on 

this topic.  

Microstructure and thermal stress relaxation of ZrO2-Ni, which is an example of FGM, by 

hot-pressing was studied in (Jingchuan et al., 1996). The researches consisted of scanning, 

transmission electron microscopy and X-ray diffractometry shown that the chemical 

composition and microstructure of ZrO2-Ni FGM is distributed gradiently in stepwise way. 

The preliminary analyze of thermal stress distribution by means of Finite Element Method 

was also presented there. In other article the identification of the nonlinear thermal-

conductivity coefficient by gradient method was shown (Borukhov, 2005). Author puts his 

attention to the gradient methods of solution of the inverse heat-conduction problem of 

designation of the nonlinear coefficient λ(T), without preliminary finite-dimensional 

approximation. Review of the principal developments in Functionally Graded Materials, 

with an emphasis on the recent work published since 2000, are presented in (Birman&Byrd, 

2007). A various areas relevant to the different aspects of theory and applications of FGM 

are submitted there. 

As it was mentioned above the difficulty of working with composites is that many parameters 
cannot be directly determined. An example would be the relationship between composite 
properties and temperature variation. The study of these relationships can be done 
experimentally, which is costly because it requires proper equipment and sample preparation.  
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The effect of multi fibres filler in composite on thermal conductivity was examined in paper 
(Jopek&Strek, 2011). Three types of optimization were performed in terms of effective 
thermal conductivity: minimization, maximization and determination of arrangement which 
gives expected value of effective thermal conductivity. Hybrid method combining 
optimization with genetic algorithm and differential equation solver by finite element 
method was used to find optimal arrangement of fibers position in composite matrix.  

In this paper an attempt to perform simulation for comparison numerical results with 
experimental results was made. To carry out the simulation, the environment of the 
program COMSOL Multiphysics was used (Comsol, 2007). The code was written in 
COMSOL Script and combines Finite Element Method (Zienkiewicz&Taylor, 2000) with 
optimization Nelder-Mead algorithm (Nelder&Mead, 1965). This algorithm belongs to non-
gradient optimization methods of function of many variables (Weise, 2009). The 
computations are performed using the simplex, so that in each iteration value at several 
specific points is calculated. In this way we find the minimum of the function. It found its 
application in many studies and wide range of problems. 

This method was used for engineering optimization as a Globalized Bounded Nelder-Mead 

algorithm (GBNM) (Luersen&Le Riche, 2004). In that article a global approach to real 

optimization was shown by using restart procedure. The Globalized Bounded Nelder-Mead 

can be applied to discontinuous, non-convex functions. To speed up a global search an 

improved restart procedure was found. An example of this was shown in article where 

improved restart procedure was used for optimization of composite bracket (Hossein Ghiasi 

et al., 2007). This approach was changed by using a one-dimensional adaptive probability 

function and including nonlinear constraints. Thereby the Improved Globalized Nelder-

Mead Method became more efficient than evolutionary algorithm, as results confirmed. 

Some attempts of benchmarking the Nelder-Mead downhill simplex algorithm with many 

local restarts appeared in (Hansen, 2009). This method was also applied for Multiple Global 

Minima (Stefanescu, 2007). In that article author proves that Nelder-Mead heuristic 

procedure can detect successfully multiple global minima. 

Simplex method, mentioned above, can be also used as combined with genetic algorithm. In 

this way the genetic algorithm is used to find a global optimum area and then the Nelder-

Mead algorithm is used for a local optimization (Durand&Alliot, 1999). A hybrid genetic 

and Nelder-Mead algorithm (HGNMA) was also used for decoupling of Multiple Input 

Multiple Output (MIMO) system with application on two coupled distillation columns 

process (Lasheen et al., 2009). In that article a technique that uses relative gain array to 

choose proper pairing and HGNMA to find optimal elements’ values of the steady state 

decoupling compensator unit was proposed. That minimizes internal couplings of MIMO 

systems. Similar hybrid was presented for optimization in the variational methods of 

Boundary Value Problems (Mastorakis, 2009). Author presents a way of solution of p-

Laplacian equation. Next, it is discussed with other methods for the solution. Using the 

Nelder-Mead’s method also problems of identification of material parameters can be solved, 

as it is shown in article where investigation of processes in a rock mass is described (Blaheta 

et al., 2010).  

Simulation, which is carried out in this chapter, for the heat transfer in considered domains 

with the boundary conditions in the form of a heat flux on both ends or temperature allows 
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to determine parameters such as a thermal conductivity, a heat exchange surface area at the 

boundary or an outside temperature around both ends of the area. Modifying the program 

code simulations which optimize the temperature, in case when the thermal conductivity is 

dependent on the nonlinear function, can be also performed. The Nelder-Mead’s 

optimization algorithm combined with Finite Element Method calculations are performed in 

COMSOL Script environment. Considered modern composite consists of multiple materials 

with different properties in different sections. 

2. Heat transfer  

The heat transfer can be defined as a movement of energy which is caused of temperature 

difference. It can be provided by the three mechanisms. First of them is a conduction, which 

can be described as diffusion, which is held in a stationary medium and occurs because of 

temperature gradient. The mentioned medium can be in form of solid or fluid. Next is 

convective, which appears as a result of fluid motion. The last one is radiation, which 

follows from electromagnetic waves between two surfaces, on which different temperatures 

are. Additionally those surfaces must comply with a condition that the first surface is visible 

to an infinitesimally small observer on the second surface. 

The heat transfer by conduction can be defined by the heat equation 

 ρ·Cp·
∂T
∂t

 Tሻ=Q ,  (1)׏·ሺk∘׏-

where: T – is the temperature, ρ – is the density, Cp - is the heat capacity at constant 

pressure, k – is the thermal conductivity and Q – is a heat source or heat sink. Taking into 

consideration a steady-state model the temperature does not change with time. 

The thermal conductivity describes a relationship between the heat flux vector q and the 

gradient of temperature ׏T (Bejan&Kraus, 2003), so it takes a form of 

 q=-k·׏T ,	 (2) 

The heat flux, mentioned above, is a kind of boundary condition, which can be described as 

 n∘ሺk·׏Tሻ=q
0
+h·ሺT୧୬୤ − Tሻ + Cୡ୭୬ୱ୲ ∙ ൫Tୟ୫୮ସ − Tସ൯ ,  (3) 

where: q
0
 - is the input heat flux, h·ሺT୧୬୤ − Tሻ - is used for convective heat transfer, where h is 

the heat transfer coefficient and T୧୬୤ is the ambient bulk temperature, Cୡ୭୬ୱ୲ ∙ ൫Tୟ୫୮ସ − Tସ൯ - is 

used for radiation heat transfer, where Tୟ୫୮ is the temperature of surrounding radiation 

environment and Cୡ୭୬ୱ୲ is a product of surface emissivity and the Stefan-Boltzmann constant. 

3. The Nelder-Mead algorithm  

The Nelder-Mead algorithm is a method that does not require to determine a derivative of 

an objective function. This function is determined in few specific points, different in each 

iteration. The first simplex algorithm was defined by Spendley in 1962. In 1965 Nelder and 

Mead improved it and turned the simplex search into an optimization algorithm by adding 

options like: reflection, expansion, contraction and shrinking. Thanks those operations, 
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which speed up the process of optimization, the simplex deforms in way that was suggested 

by Nelder and Mead to adapt better to the objective functions (Nelder & Mead, 1965). 

An n-dimensional simplex with n+1 vertices p0,p1,p2,…,pn is the smallest convex set which 
contains these points, where set {pj - p0 : 1 ≤ j ≤ n} must consist of linearly independent 
vector. In the two-dimensional space the simplex can be created from any triangle and in 
three-dimensional space from any tetrahedra. 

In this method selected initial simplex is modified by means of elementary geometric 
operations called: reflection, expansion, contraction and shrinking. As a result of each of 
them the vertex, where value of the objective function takes the highest value (the “worst” 
vertex), is replaced by another – “better”. In this way the simplex is coming more and more 
to local minimum of examined function. 

Finding the minimum of the objective function must be preceded by an analysis, where as a 
result the vertices, in which the objective function takes the smallest and the highest value, 
are marked in the following way (see Fig. 1a): 

 pmin – the vertex where the objective function takes the smallest value: 

 fሺpminሻ ≤ fሺpiሻ for any 0 ≤ i ≤ n   (4) 

 pmax – the vertex where the objective function takes the highest value: 

 fሺpmaxሻ ≥ fሺpiሻ for any 0 ≤ i ≤ n   (5) 

 ̅݌ – centroid of the points (the vertex pmax is excluded) see: 

 pഥ=
1

n
∙ ൫∑ pii≠max ൯  (6) 

After determining points pmin, pഥ, pmax, a procedure of minimization of the objective 
function can begin. In each iteration the following stages can be specified: reflection, 
expansion, contraction and shrinking, which are described below (Weise, 2009). 

Reflection – is based on determining a point which is symmetrical image of point pmax 
relative to point pഥ. New point is marked as podb (see Fig. 1b) and its coordinates are 
designed by formula: 

 podb=pഥ+ǂ·൫pഥ-pmax൯  (7) 

  

Fig. 1. (a) Initial simplex with vertices p0, p1, p2 where (f(p0)>f(p2)>f(p1)), (b) Simplex: 
reflection stage 
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Value of reflection coefficient ߙ is in the range of ߙ א ሺͲ,ͳሿ, but usually it is assumed that ߙ = ͳ. 

After reflection stage, depending on value of the objective function in reflection point 
fሺpodbሻ, we consider few excluded cases (8), (9) and (10), which determine further 
investigation in given iterations:  

 fሺpminሻ ≤ fሺpodbሻ < fሺpmaxሻ ,  (8) 

 fሺpodbሻ < fሺpminሻ ,  (9) 

 fሺmaxሻ ≤ fሺpodbሻ ,  (10) 

If in calculated point podb the objective function takes value (8) then the reflection is 
accepted. The new simplex is designed by replacing the vertex pmax with podb. Next 
indexes min, max and location of point pഥ are updated and if a stop condition, which is 
described later, is not fulfilled a new iteration begins with new reflection. 

Expansion – Assume that reflection inequality (9) was fulfilled, which means that a vertex 
which was found in reflection stage is better point than pmin (it is closer to minimum of 
objective function f). 

It suggests that next steps of finding the minimum should follow in this direction. Because 
of this the reflection is not accepted and the calculations are carried out by the expansion 
(see Fig. 2). A new point is calculated and marked as pe: 

 pe=pഥ+Ǆ·൫podb-pഥ൯,  (11) 

where Ǆ>1 is an expansion coefficient (usually Ǆ = ʹ). Next, a value of the objective function 
in new point is calculated fሺpeሻ, and: 

 if fሺpodbሻ < fሺpminሻ then the expansion is successful, new simplex is designed by 
replacing pmax with pe (new simplex is designed by vertices pe,	p2, pmin – Fig. 2a); 
then indexes min and max and a location of point pഥ are updated and after checking the 
stop condition next iteration begins; 

 else when fሺpeሻ ≥ fሺpodbሻ, pmax is replaced by podb (new simplex is designed by 
vertices podb, p2, pmin – Fig. 2b) and it follows as previous (indexes are updated, stop 
condition is checked and next iteration begins) 

 

Fig. 2. Expansion stages: successful (a), unsuccessful (b) (new designed simplex is hatched) 
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Contraction. Reflection cannot be accepted also in case when fሺodbሻ ≥ fሺpmaxሻ, see (10). In 
this situation occurs contraction of a simplex, whose new vertex is counted according to the 
formula: 

 pz=pഥ+ǃ·൫pmax-pഥ൯	 (12) 

where a coefficient of contraction β takes a value β א ሺͲ,ͳሻ, usually β=0.5 (see Fig. 3a). If 

point pz leads to improvement, which means fሺpzሻ < fሺpmaxሻ, then point pmax is replaced 

by point pz and a new simplex is created (designated by pz, pʹ, pmin). Next indexes are 

updated, stop condition is checked and next iteration begins. 

Shrinking. This stage takes place when after contraction an inequality (13) is fulfilled:  

 fሺpzሻ ≥ fሺpmaxሻ  (13) 

In this situation point pmin remains unchanged, and the whole simplex is shrinking 
according formula (14): 

 pi←ǅ·ሺpi+pminሻ, i=0, 1, …, n, i≠min (14) (14) 

where ǅ א ሺͲ,ͳሻ is a shrinking coefficient and usually ǅ = Ͳ,ͷ (see Fig. 3b). A simplex which 

is build of a new obtained points p0, …, pn is used in next iteration (if the stop condition is 

not fulfilled). 

  

Fig. 3. (a) Contraction stage (if contraction is successful the hatched simplex is chosen),  
(b) Shrinking stage (new designed simplex is hatched) 

In this papers two stop conditions were used. The first when an absolute value of difference 

between fሺpminሻ and fሺpmaxሻ is smaller than accuracy solution 

 abs ቀfሺpminሻ-fሺpmaxሻቁ  < ǆ  (15) 

and the second when a number of iterations is bigger than maximum number of iterations 

 step > maxstep.  (16) 

Algorithm of Nelder-Mead method 

Input data: 

Initial simplex with vertices: p0, p1, ..., pn, 
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Coefficients:  
ǂ – reflection, 
ǃ – contraction, 
Ǆ – expansion, 
ǅ – shrinking, 
ǆ - accuracy of solution, 

maxstep – maximum number of iterations. 

1. Repeat 
2. count a value of function in vertices of simplex: p0, p1, ..., pn 

3.  find pmin, pmax (min≠max) 

4. pഥ=
1

n
∙ ሺ∑ pi௜ஷ௠௔௫ ሻ, 

5. podb=pഥ+ǂ·൫pഥ-pmax൯ 
6. if fሺpodbሻ < fሺpminሻ then 

7.     pe=pഥ+Ǆ·൫podb-pഥ൯ 
8.     if fሺpeሻ<fሺpodbሻ then 

9.         pmax=pe   ► expansion 

10.     else 

11.        pmax=podb   ► reflection 

12.     end if 

13. else 

14.     if fሺpminሻ≤fሺpodbሻ<fሺpmaxሻ then 

15.         pmax=podb 
16.     else 

17.        pz=pഥ+ǃ·൫pmax-pഥ൯ 
18.        if fሺpzሻ≥fሺpmaxሻ then 

19.           for i=0 to n do 

20.              if i≠min then 

21.                 pi=ǅ·ሺpi+pminሻ ► shrinking 

22.             end if 

23.            end for 

24.      else 

25.           pmax=pz  ► contraction 

26.      end if 

27.    end if 

28.  end if 

29.  until abs ቀfሺpminሻ-fሺpmaxሻቁ  < ǆ or step > maxstep  ► stop conditions 

30.  return x*= pmin     ► approximate solution 

4. Reconstruction of thermal parameters in 1-D domain  

As a first a reconstruction of thermal parameters was carried out. This simulation was made 

for heat transfer in 1-D space, in a domain which length was 1 m. The boundary condition 

was the heat flux at both ends of the domain. Basing on the temperature distribution in area ܶሺݔሻ thermal parameters of the issue were designated. Those parameters were: a thermal 
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conductivity (k), a transversal convective heat transfer coefficient (h1 and h2) and an external 

temperature around both ends of the domain (Tinf1 and Tinf2). The reconstruction of 

mentioned factors was performed by the optimization. 

4.1 Stage I  

In the first stage desired temperature distribution was defined as 

 Tഥሺxሻ=18.75·x+287.5 ,  (17) 

and minimized integral have a form of 

ܨ  = ׬ Abs ቀTሺxሻ-Tഥሺxሻቁ1

0
dx=׬ Abs ቀTሺxሻ-ሺ18.75·x+287.5ሻቁ1

0
dx.  (18) 

The start simplex for particular parameters is presented in Table 1. 
 

Vertices √݇ √ℎͳ √ℎʹ ඥ݂ܶ݅݊ͳ ඥ݂ܶ݅݊ʹ 

p1 1 2 3 4 5 

p2 100 2 3 4 5 

p3 1 100 3 4 5 

p4 1 2 100 4 5 

p5 1 2 3 100 5 

p6 1 2 3 4 100 

Table 1. Start simplex for the stage I 

Numbers, placed in Table 1, are square roots of searched thermal parameters. This 

assumption guarantees that values will be positive. Results of the calculations are presented 

below in Table 2 and Table 3. Required accuracy of solution was obtained after 88 steps with 

F=0.0105 for following set of parameters. 

 

Parameter √݇ √ℎͳ √ℎʹ ඥ݂ܶ݅݊ͳ ඥ݂ܶ݅݊ʹ 

pmin 53.1230 16.4196 42.9727 9.5704 -18.2983 

Table 2. Values of minimized square roots of pmin 

Parameter ݇ ℎͳ ℎʹ ݂ܶ݅݊ͳ ݂ܶ݅݊ʹ 

p2min 2800 269.6035 1800 91.5928 334.8276 

Table 3. Values of minimized parameters pmin 

The objective function F was minimized with the accuracy of solution ǆ=1e-2.  
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4.2 Stage II 

In the second stage of calculation some restrictions were imposed to the optimal parameters, 

as it is presented below: 8Ͳ < k < ͳʹͲ, 8 < h1 < ͳʹ, ͳͷ < h2 < ʹͷ, 8Ͳ < Tinf1 < ͳʹͲ, ͵ͷͲ < Tinf2 < Ͷͷ. 
Thereby, we did not have to minimize the roots of objective function. 

The start simplex for particular parameters is presented in Table 4. 

k h1 h2 Tinf1 Tinf2 

80 8 15 80 350 

120 12 25 120 450 

82 9 18 90 360 

110 11 24 119 420 

101 8 17 89 360 

110 11 21 111 444 

Table 4. Start simplex for the stage II 

Numbers placed in Table 4 are not square roots of searched thermal parameters, but there 

are values which minimize the objective function. 

Required accuracy of solution was obtained after 45 steps with F=0.1801 for following set of 

parameters. 

Parameter ݇ ℎͳ ℎʹ ݂ܶ݅݊ͳ ݂ܶ݅݊ʹ 

pmin 101.0347 9.8034 20.0654 101.9420 396.8020 

Table 5. Values of minimized parameters pmin 

Values which were determined are within established limits. 

4.3 Stage III 

Next stage of the research was optimization of the thermal parameters of material in which 
coefficient of thermal conductivity was dependent on spatial variable x, like in the 
Functionally Graded Materials. In those composites temperature distribution with given 
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boundary conditions are usually nonlinear. In these paper it is assumed that parameter k(x) 
has polynomial form 

 kሺxሻ=݌଴+݌ଵx+݌ଶݔଶ.  (19) 

In this stage the heat transfer equation takes a form of 

 Tሻ=0 ,  (20)׏·ሺkሺxሻ∘׏ 

where k(x) – thermal conductivity depends on spatial variable x. 

The following boundary conditions (different temperature on ends) was assumed for 
calculations 

 T=T01=283 K, (21) 

 T=T02=483 K.  (22) 

Now the vector of parameters have a form of: p=[p0, p1, p2]. 

There were two tasks solved for one function of Tഥሺxሻ, one integral and for two different start 
simplexes. 

The desired function Tഥሺxሻ has a form of: 

 Tഥ1ሺxሻ=286.25-170.513·x+2398.87 ∙ ଶ-3898.57ݔ ∙ ସ-265ݔ·ଷ+2133.67ݔ ∙   (23)	ହ.ݔ

Minimized integral was defined as: 

 I1=׬ Abs(T(x)-(
1

0
286.25-170.513·x+2398.87 ∙ ଶ-3898.57ݔ ∙ ସ-265ݔ·ଷ+2133.67ݔ ∙   (24)	 ହ))dxݔ

4.3.1 Task 1 

The calculation began with the start simplex described in Table 6. 

Vertices, pij pi0 pi1 pi2 

p1j 10 -150 100 

p2j 30 -50 200 

p3j 15 -120 120 

p4j 25 -80 180 

Table 6. Start simplex for the task 1 of stage III 

Results were achieved with solution accuracy of 1e-6. 

Required accuracy of solution was obtained after 61 steps with F=2.9492 for following set of 
parameters. 

Parameter p0 p1 p2 

pmin 21.1025 -106.6785 167.7030 

Table 7. Values of minimized parameters pmin 
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In Fig. 4 disparity between the expected and the obtained temperature distribution is 
presented. Distribution of the coefficient of thermal conductivity, for kሺx, p୫୧୬ሻ is presented 
in Fig. 5.  

 

 

Fig. 4. Disparity between the expected and the obtained temperature distribution (task 1)  

 

 

Fig. 5. Distribution of the thermal conductivity coefficient for k(x,pmin) (task 1) 
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4.3.2 Task 2 

In the second task the start simplex was (Table 8): 

Vertices, pij pi0 pi1 pi2 

p1j 19 -115 130 

p2j 16 -95 160 

p3j 18 -110 150 

p4j 21 -90 170 

Table 8. Start simplex for the stage III (task 2) 

Results were achieved with solution accuracy of 1e-6. 

Required accuracy of solution was obtained after 151 steps with F=2.9336 for the following 
set of parameters. 

Parameter p0 p1 p2 

pmin 22.9741 -114.6551 180 

Table 9. Values of minimized parameters pmin 

In Fig. 6 disparity between the expected and the obtained temperature distribution is 
presented. Distribution of the coefficient of thermal conductivity, for kሺx, p୫୧୬ሻ is presented 
in Fig. 7. 

 

Fig. 6. Disparity between the expected and the obtained temperature distribution (task 2)  
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Fig. 7. Distribution of the thermal conductivity coefficient for k(x,pmin) (task 2) 

Despite the fact that the thermal conductivity coefficient seems to look identical in task 1 

and 2, there is some difference. In Fig. 8 the disparity in distribution of mentioned thermal 

conductivity is shown. Concluding, although in task 2 the start simplex was wider (bigger) 

than in task 1, the solution was found with the same accuracy. 

 

Fig. 8. Disparity between the thermal conductivity coefficient in task 2 and task 1 
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Summarizing, as it was shown above in this section, it is possible to provide a reconstruction 
of parameters using hybrid method (FEM with Neleder-Mead). Carrying out the simulation 
for 1-D domain with length 1 m and defined boundary condition the parameters (the 
thermal conductivity, the transversal convective heat transfer coefficient and the external 
temperature around both ends of the domain) can be designated. Values of those 
parameters can be calculated within some restrictions, which can be specified for material 
which is examined. It is also possible to designate the value of thermal conductivity 
parameter of FGM which has a polynomial form. 

5. Reconstruction of thermal parameters in 2-D space  

In this subsection calculations were made to designate the distribution of the thermal 
conductivity in 2-D domain. Cylinder with radius r=1m and height z=1m was analysed in 
2D axial symmetry model. An axis of symmetry is designated as r=0. In this case it was also 
assumed that the distribution of the thermal conductivity has a form of polynomial as: 

 kሺzሻ=݌଴+݌ଵ·z+݌ଶ·z2+݌ଷ·z3.	 (25) 

A boundary condition, such that temperature at the top and at the bottom of the cylinder 
was equal in order that T01=400 K and T02=300 K. For axis r=0 axial symmetry was assumed 
and on the circumference of the cylinder was assumed a thermal insulation.  
In these calculations some restrictions have been imposed. An integral I, which contains 
sum of three integrals was minimized, as shown below 

 I=I1+5·൫1-I2൯+5·൫1-I3൯,	 (26) 

where: I is minimized integral, I1 – is an absolute value of difference between expected and 
obtained temperature distribution 

 Iͳ = ׬ Abs ቀTሺzሻ-Tഥሺzሻቁ1

0
dz,  (27) 

I2 – determined part of domain where a relationship such that k(z)>kmin, where kmin is a 
minimum value, is satisfied,  

I3 – determined part of domain where a relationship such that k(z)<kmax,, where kmax is a 
maximum value, is satisfied. 

There were two tasks computed, each for one function of expected temperature. Each task 
was calculated for two variants of values for kmin and kmax – each of them for three start 
simplexes, as it is presented in subsection below. 

5.1 Task 1 – First function of temperature distribution 

In this task the expected temperature distribution took a form of 

 Tഥ1ሺzሻ=300.481+171.955·z-72.9167 ∙  ଶ,  (28)ݖ

and integral I1 was defined as 

 Iͳ = ׬ Abs ቀTሺzሻ-൫300.481+171.955·z-72.9167·z2൯ቁ1

0
dz.  (29) 
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 Vertices, pij pi0 pi1 pi2 pi3 

Start simplex A 
(the narrowest) 

p1j 20 110 -55 0 

p2j 30 120 -50 1 

p3j 40 130 -45 1 

p4j 50 140 -40 0 

p5j 25 140 -60 1 

Start simplex B 
(wider) 

p1j 50 200 -65 5 

p2j -40 -100 -90 15 

p3j 45 180 5 20 

p4j 80 90 -10 25 

p5j 70 180 -120 30 

Start simplex C 
(the widest) 

p1j 100 400 -70 10 

p2j -50 -200 -130 20 

p3j 50 250 20 100 

p4j 110 20 -150 250 

p5j 100 200 -300 70 

Table 10. Task 1 - Different start simplexes taken for calculation 

Three different start simplexes were assumed and collected in Table 10. As it was mentioned 

above there were two variants of calculations. Results and assumptions for them are 

presented in subsections 5.1.1 and 5.1.2. 

5.1.1 Variant 1 

For calculations below we defined restrictions as follows: kmin=20 and kmax=120. Which 
means that we were looking for k(z) distribution in this range: 20<k(z)<120. Numerical 
results are presented in table below. 

Simplex Steps pi0 pi1 pi2 pi3 Fmin 

A 255 1.98993e+1 2.71751e+1 -3.02331e+1 8.22635e+1 1.54875e-1 

B 208 2.11709e+1 1.24838e+1 1.17308e+1 4.99511e+1 3.02988e-1 

C 121 1.99063e+1 2.77594e+1 -3.17098e+1 8.33822e+1 1.50866e-1 

Table 11. Values of minimized parameters pmin for simplexes A, B, C 

For the start simplex A, distribution of the thermal conductivity for minimized value 
k(pmin) is shown in Fig. 9. Disparity between the expected and the obtained temperature 
distribution was also examined (see Fig. 10) and it varies between -0.5 and 0.47.  
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Fig. 9. Distribution of the thermal conductivity (variant 1, start simplex A)  

 

Fig. 10. Disparity between the expected and the obtained temperature distribution  
(variant 1, start simplex A) 

For the start simplex B, distribution of the thermal conductivity for minimized value 
k(pmin) is shown in Fig. 11. Disparity between the expected and the obtained temperature 
distribution was also examined (see Fig. 12) and it varies between -0.6 and 0.45. 
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Fig. 11. Distribution of the thermal conductivity (variant 1, start simplex B)  

 

Fig. 12. Disparity between the expected and the obtained temperature distribution  
(variant 1, start simplex B) 

For the start simplex C, distribution of the thermal conductivity for minimized value 

k(pmin) is shown in Fig. 13. Disparity between the expected and the obtained temperature 

distribution was also examined (see Fig. 14) and it varies between -0.48 and 0.46. 
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Fig. 13. Distribution of the thermal conductivity (variant 1, start simplex C)  

 

Fig. 14. Disparity between the expected and the obtained temperature distribution  
(variant 1, start simplex C) 
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In all cases the results were achieved with solution accuracy of 1e-5. Temperature 
distribution was similar for all simplexes. 

5.1.2 Variant 2 

For calculations below we defined restrictions as follows: kmin=10 and kmax=320. Which 
means that we were looking for k(z) distribution in this range: 10<k(z)<320. Numerical 
results are presented in table below. 

Simplex Steps pi0 pi1 pi2 pi3 Fmin 

A 91 7.81939e+1 2.99943e+2 -6.54279e+1 8.01293 2.21234 

B 156 9.98179 5.00957 9.61216 2.01388e+1 3.02264e-1 

C 117 3.98227e+1 8.07309e+1 -1.43192e+2 2.37720e+2 8.36632e-2 

Table 12. Values of minimized parameters pmin for simplexes A, B, C 

For the start simplex A, distribution of the thermal conductivity for minimized value 
k(pmin) is shown in Fig. 15. Disparity between the expected and the obtained temperature 
distribution was also examined (see Fig. 16) and it varies between -3.8 and 2.8.  

 
 

 

 

 

Fig. 15. Variant 2, start simplex A- Distribution of the thermal conductivity  
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Fig. 16. Variant 2, start simplex A - Disparity between the expected and the obtained 
temperature distribution 

For the start simplex B, distribution of the thermal conductivity for minimized value 
k(pmin) is shown in Fig. 17. Disparity between the expected and the obtained temperature 
distribution was also examined (see Fig. 18) and it varies between -0.56 and 0.46.  

 

Fig. 17. Variant 2, start simplex B- Distribution of the thermal conductivity  
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Fig. 18. Variant 2, start simplex B - Disparity between the expected and the obtained 
temperature distribution 

For the start simplex C, distribution of the thermal conductivity for minimized value 

k(pmin) is shown in Fig. 19. Disparity between the expected and obtained temperature 

distribution was also examined (see Fig. 20) and it varies between -0.48 and 0.47.  

 

Fig. 19. Variant 2, start simplex C- Distribution of the thermal conductivity  
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Fig. 20. Variant 2, start simplex C - Disparity between the expected and the obtained 
temperature distribution 

In all cases the results were achieved with solution accuracy of 1e-5. Temperature 

distribution was similar for all simplexes. 

5.2 Task 2 – Second function of temperature distribution 

The form of the second expected temperature distribution looks as follows: 

 Tഥ1ሺzሻ=298.794+149.678·z-47.9503 ∙   (30)	ଶ,ݖ

and integral I1 takes a form of 

 Iͳ = ׬ Abs ቀTሺzሻ-൫298.794+149.678·z-47.9503 ∙ ଶ൯ቁ1ݖ

0
dz .  (31) 

For this task another three different start simplexes were assumed and collected in Table 13. 

 Vertices, pij pi0 pi1 pi2 pi3 

Start simplex A 
(the narrowest) 

p1j 10 150 -80 0 

p2j 15 160 -90 1 

p3j 30 210 -110 1 

p4j 40 220 -120 0 

p5j 50 230 -130 1 

Start simplex B 
(wider) 

p1j 100 400 -90 20 

p2j -60 -300 -230 40 

p3j 90 350 60 200 

p4j 40 220 -120 0 

p5j 150 200 -300 90 
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 Vertices, pij pi0 pi1 pi2 pi3 

Start simplex C 
(the widest) 

p1j 150 150 -95 30 

p2j -80 -350 -290 50 

p3j 100 380 70 220 

p4j 50 280 -180 20 

p5j 200 250 -400 100 

Table 13. Task 2 - Different start simplexes taken for calculation 

For this function also two variants were calculated. Results and assumptions for them are 
presented in chapters 5.2.1 and 5.2.2. 

5.2.1 Variant 1 

The restrictions defined for these variants take a form of: kmin=20 and kmax=120. This 
means that we were looking for k(z) distribution in range like: 20<k(z)<120. Numerical 
results are presented in table below. 

Simplex Steps pi0 pi1 pi2 pi3 Fmin 

A 138 5.84429e+1 -1.02247e+2 3.68435e+2 -2.21308e+2 6.60791e-1 

B 111 3.95147e+1 5.94787e+1 -1.13091e+2 1.3497e+2 3.07911e-1 

C 240 4.55508e+1 1.59731e+1 7.83838 5.09419e+1 2.02351e-1 

Table 14. Values of minimized parameters pmin for simplexes A, B, C 

For the start simplex A, distribution of the thermal conductivity for minimized value 
k(pmin) is plotted in Fig. 21. Between the expected and the obtained temperature 
distribution was some disparity which is from -1.48 and 1.2 (see Fig. 22).  

 

Fig. 21. Variant 1, start simplex A- Distribution of the thermal conductivity 

www.intechopen.com



 
Finite Element Analysis – From Biomedical Applications to Industrial Developments 310 

 

Fig. 22. Variant 1, start simplex A - Disparity between the expected and the obtained 
temperature distribution 

For the start simplex B, distribution of thermal conductivity for minimized value k(pmin) is 
plotted in Fig. 23. It was some disparity, between the expected and the obtained temperature 
distribution, and value of it was from -0.45 to 1.21 (see Fig. 24).  

 

Fig. 23. Variant 1, start simplex B- Distribution of the thermal conductivity  
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Fig. 24. Variant 1, start simplex B - Disparity between the expected and the obtained 
temperature distribution 

For the start simplex C, distribution of the thermal conductivity for minimized value 
k(pmin) is plotted in Fig. 25. It was some disparity, between the expected and the obtained 
temperature distribution, and value of it was from -0.45 to 1.2 (see Fig. 26). 

 

Fig. 25. Variant 1, start simplex C- Distribution of the thermal conductivity  

www.intechopen.com



 
Finite Element Analysis – From Biomedical Applications to Industrial Developments 312 

 

 

 

 
Fig. 26. Variant 1, start simplex C - Disparity between the expected and the obtained 
temperature distribution 

5.2.2 Variant 2 

The restrictions defined for these variants take a form of: kmin=10 and kmax=320. This 

means that we were looking for k(z) distribution in range like: 10<k(z)<320. Numerical 

results are presented in table below. 

 

Simplex Steps pi0 pi1 pi2 pi3 Fmin 

A 129 1.34412e+2 -1.60382e+2 6.15741e+2 -3.19053e+2 4.65232e-1 

B 146 1.13668e+2 9.88941e+1 -1.36084e+2 2.45597e+2 2.31297e-1 

C 119 1.32751e+2 -2.95152e+1 2.27876e+2 -9.65976 2.4153e-1 

Table 15. Values of minimized parameters pmin for simplexes A, B, C 

In Fig. 27 the distribution of the thermal conductivity for minimized value k(pmin) is 

plotted for the start simplex A. It was some disparity, between the expected and the 

obtained temperature distribution, and value of it was from -1 to 1.2 (see Fig. 28). 
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Fig. 27. Variant 2, start simplex A- Distribution of the thermal conductivity  

 

Fig. 28. Variant 2, start simplex A - Disparity between the expected and the obtained 
temperature distribution 

In Fig. 29 distribution of the thermal conductivity for minimized value k(pmin) is plotted for 
the start simplex B. It was some disparity, between the expected and the obtained 
temperature distribution, and value of it was from -0.41 to 1.2 (see Fig. 30). 
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Fig. 29. Variant 2, start simplex B- Distribution of the thermal conductivity  

 

Fig. 30. Variant 2, start simplex B - Disparity between the expected and the obtained 
temperature distribution 

In Fig. 31 the distribution of thermal conductivity for minimized value k(pmin) is plotted for 
the start simplex C. It was some disparity, between the expected and the obtained 
temperature distribution, and value of it was from -0.47 to 1.2 (see Fig. 32). 
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Fig. 31. Variant 2, start simplex C- Distribution of the thermal conductivity  

 

Fig. 32. Variant 2, start simplex C - Disparity between the expected and the obtained 
temperature distribution 
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In all cases the results were achieved with solution accuracy of 1e-5. For all simplexes the 

temperature distribution was similar. 

Summarizing, in this chapter some new possibilities of Identification of Thermal 

Conductivity of Modern Materials using the Finite Element Method and Nelder – Mead's 

Optimization Algorithm were proposed. Simulating heat transfer in 2-D axial symmetry 

model, made of the Functionally Graded Material, it is possible to designate its thermal 

conductivity distribution. This parameter can have the polynomial form. It is also possible to 

calculate its values within some restrictions. All solutions were found regardless of how far 

the start simplex was from the solution.  

6. Conclusion 

Because experimental evaluation of thermal parameters of composites is expensive and time 

consuming, computational methods have been found to be efficient alternatives for 

predicting the best parameters of composites. As it was presented in this chapter the Nelder-

Mead algorithm connected with the Finite Element Method can be used to optimize many 

different issues. It has its applicable in problems where it is difficult or impossible to 

designate the gradient of the objective function. The developed hybrid method can be used 

for optimization of the heat transfer problems.  

In the section 4 of this chapter reconstruction of parameters was provided. Some heat 

transfer parameters in one-dimensional domain with length 1m, for defined boundary 

conditions were designated using numerical calculations. The thermal conductivity, the 

transversal convective heat transfer coefficient and the external temperature around both 

ends of the domain were calculated within some defined restrictions. 

Next, in section 5 possibility of designation of the thermal conductivity was shown. The 2-D 

axial symmetry model was considered where heat transfer was simulated. The thermal 

conductivity was in polynomial form. There was also possible to put some restrictions on 

the searched parameters. 

The hybrid method, which was proposed here, can be very helpful in designating any 

parameters of modern materials like for example Functionally Graded Materials. Proposed 

method can be also used instead of destructive testing of materials. 
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