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ABSTRACT 
The aim of this work is to identify the tensor of thermal 

conductivity and volumetric heat of an anisotropic material 

with conductivity tensor diagonal, the heat conduction follows 

the linear Fourier law. The temperature field in the plate is 

obtained by solving the analytical heat equation. The solution 

of the direct problem is simulated by applying the Finite 

Element Method 2D. The inverse problem is solved by 

returning the intermediate step of the MEF. An optimization 

method based on conjugate gradient algorithm has enabled us 

to develop an identification of thermophysical parameters 

procedure. 
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1. INTRODUCTION 
Improving the characterization of anisotropic materials is 

currently a major challenge for designing new structures or 

infrastructures. The thermophysical parameters identification 

allows to introduce materials whose characteristics meet 

specific needs or optimize existing systems. 

Since the 1980s, several studies have given considerable 

impetus to inverse methods in thermal: Hensel applies reverse 

engineering theories [1] Kurpisz determines the heat flux [2], 

Ballis measuring the thermal diffusivity of cell carbon foam 

[3]. Some authors have studied the sensitivity of the 

parameters   and c  [3] [4] [5]. In the literature, few studies 

intended to. the simultaneous identification of the specific 

heat and conductivity Atchongolo presented a method for 

identifying thermal parameters for isotropic materials [6] 

The approach of this study is based on the exploitation of 

temperature fields obtained by the analytical resolution of the 

heat equation. The Inverse Problem is solved by crossing back 

the equations obtained by the Finite Element Method for 

solving the Direct P identify the thermal parameters of an 

material with thermal conductivity tensor is 

diagonal
1

2

0

0






 
  
 

. 

To validate our calculation approach we compared the 

temperature fields determined, analytically and numerically, 

with the experimental fields temperatures measured by an 

infrared camera on a plate of polymethylmethacrylate 

(PMMA), these measures were carried out within the institute 

P' of the University of Poitiers. 

2. DIRECT PROBLEM 

2.1. Position of the problem 
In order to identify the thermal characteristics of a material, 

we performed a procedure both experimental and numerical. 

We consider a rectangular thin solid plate of length L , width 

l  and thickness e . The plate is homogeneous, its thickness is 

small and the length is very close to the width. We will 

assume that the temperature distribution is two-dimensional. 

Let us consider that the plate occupies the interval [0, ]L  from 

the Ox  axis, and [0, ]l , by the 0y  axis. The temperature 

distribution within the plate is a function ( , , )T x y t  of 
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coordinates ( , )x y  and time t . At time 0t  , the temperature 

distribution is known, we will denote it 
0 ( , )T x y . A constants 

heat flux 
1q  is imposed on the side bounded by x L  

(denoted 
3 ) and 

2q  is imposed on the side bounded by 

y l  (denoted 
4 ). The other sides (denoted 

1  and 
2 ) 

are well protected against any convective, radiative or 

conductive currents. Figure 1 illustrates the domain 

[0, ] [0, ]L l   occupied by the plate and the boundary 

conditions. 

 
Fig 1: Rectangular plate and boundary conditions 

Let c  be the heat capacity per unit volume (   being the 

specific mass and c  the heat capacity per unit mass). Let  
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 be the thermal conductivity tensor. According 

to Fourier’s prescriptions, this symmetrical tensor is assumed 

to be positive definite. The temperature distribution ( , , )T x y t  

in the plate is governed by the diffusion equation [7]: 
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The above boundary conditions read: 
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The initial condition reads: 

0( , ,0) ( , ) 0T x y T x y  . 

2.2. Analytical resolution of the direct 

problem 
A particular solution of the heat equation and the boundary 

conditions is 

 

2 2
2 21 2 1 2

1 2
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( , , ) ( ) ( ) ( )

2 3 2 3

q q q L q l
x y t t x y

C L l L l


  
     

 
but this solution does not satisfy the initial condition. 

we will use these functions 
2
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instead functions 21

12
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l
 because they are null 

mean (in x, respectively in y). 

the function
 

( , , ) ( , , ) ( , , )v x y t T x y t x y t   is the solution of 

the heat equation with all the homogeneous boundary 

conditions and the initial condition 
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The method of separation of variables leads to search 

( , , )v x y t  in the form of a double Fourier series 
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At time 0, the exponential is worth 1, the coefficients mnA
 
 are 

determined by the initial condition.  
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With our choice of functions with zero mean in x and in y, the 

coefficient 
00A  is null and only the coefficients 

0mA  and 
0nA  

 1, 1m n   are not null. 
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We integrate twice by parts 
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Such as   
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Finally the temperature in the plate is 
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In the next part we will give an alternative method for solving 

the heat equation using the finite element method (FEM). 

2.3. Resolution of the Direct problem by 

Finite Element Method(FEM) 
The above Partial Differential Equation (1) admits a 

variational formulation. The latter consists in multiplying the 

heat conduction equation by a regular test function *T , and 

to integrate it over the whole domain  . This weak 

formulation leads to solve the equivalent problem [5]: Among 
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all temperature fields satisfying the initial condition 

0( , ,0) ( , )T x y T x y , find the one for which 

1

* * ( *).( ) 0s

T
cT dxdy T dy grad T grad T dxdy

t
  

  


  

  

and this for any test function *T .  

An approximate solution of the diffusion problem presented in 

paragraph 2.3 can be obtained by choosing a finite number of 

appropriate test functions. We present next some details about 

this approach for obtaining the temperature field in the 
framework of Finite Element Method. 

The Finite Element Method [8] is applied for the space 

discretization of the partial differential equations. We proceed 

to the discretization of the domain Ω into Nt three nodes 

triangular elements 
e . The total number of nodes is 

denoted N [9]. Let us denote 
eA    the 

e

tn n  positioning 

matrix defined by the following rule: a component 
e

i jA    

is equal to 1 if the node numbered globally j  on the structure 

coincides with the node numbered locally i  on the element e, 

it is equal to 0 otherwise. The matrix  
eB    is the gradient 

matrix of element (e).  

Therefore, this boundary value problem reduces to the 
ordinary differential equation (ODE). 

  [ ] [ ]e e e e t

e

dT
C B A B A T F

dt


 
        

 
  

We can summarize this ODE issued from a weak formulation 
associated to a spatial discretization as [6]: 

      
dT

C K T F
dt

 
  

 
 

where  

 {T} is the nodal temperature vector, 

 [C] is the overall capacity matrix,  

 [K] is the overall conductivity matrix,  

 [F] is the overall nodal flux vector.  

Solving our problem of transient conduction by FEM leads 

into solving the first order ODE for which the initial 

condition is:    0 1 2(0) (0) ... (0)
t

NT T T T . The 

temperature field in the material will be approximated at the 

nodes.  

2.4. Results of the direct problem  

In this part, and to validate our approach to calculating we 

compared the analytical and numerical results with 

experimental temperatures for PMMA plate with the 

following characteristics [10] 

– Dimensions of the plate: 

0,148 0.041L m and l   

– Discretization step: /148x L  and 

/ 41y l   

– Thermal conductivity tensor:  

0.17 0

0 0.17

  
  
 

(W/m/°C) 

– Specific heat 6 31,666.10 / m /c J C     

– Flows  
1 2256 / 0q W m and q    

– Time step: 1t s   

Figure 2 below illustates the evolution of experimental and 

simulated temperatures of the plate, at a node with respect to 

time. 
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Fig 2: Evolution of temperature at point of coordinates 

(0.147, 0.02) 

Figure 3 below illustates the evolution of experimental and 

simulated temperatures of the plate, in a horizontal line at 

time t=100 s and y=0.02 m. 
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Fig 1: Changes of the temperature in function of the 

abscissa x (t=100s, y=0.02m) 

Note that the simulated analytical temperature evolution 

curves fit the experimental ones, This comparison validates 

the developed direct approach. 

Next, in the inverse problem and to put in the experimental 

conditions, a noise with standard deviation 0.02 C    is 

imposed on the temperature according to the precision current 

infrared cameras 

3. INVERSE PROBLEM 

3.1. Position of the problem 
In the inverse problem we enjoy the results obtained from the 

analytical solution of the direct problem to estimate the 
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thermo physical parameters of a given material. Once the 

temperature function T (x, y, t) is recorded in a series of 

points on the surface of the sheet, repeatedly, the least squares 

method is applied to estimate thermodynamic parameters. The 

method of least squares leads to constrained optimization 

process: Reduce the cost function 

     
2

0

1
,

2

ft t
e e e e

e

dT
J(ρc ) C B A B A T F dt

dt
 

 
          

 


 

Under the positive constraint for c , and the diagonal 

constraint for .  

To minimize this function by a steepest descent method, we 

need to express its gradient with respect to the conductivity 

tensor  :  

   
0

1
[ ( ) ]

2

ft tte e t e e

e

R B A U T T U B A dt         

with  

      
d T

U C K T F
d t

 
   

   
We will need also its derivative with respect to the specific 

heat: 
( )

J
r

c





 

3.2. Identification algorithm  

As steepest descent method to minimize the 

function ( , )J c  , we implement the projected conjugate 

gradient method which consists in constructing iteratively a 

sequence converging to the minimum. . 

The algorithm of this method can be summarized as follows 

1. Initialize   by 0  and c  by 0( )c ,  

Deduce the initial values 0r and 0R  of r and R , 

Initialize a sequence of scalars id  by 0 0d r   and a 

sequence of directions iD  by 0 0D R  ,  

2. At iteration i  

calculate i  and i which minimize 

 ( , )i i ii
J c d D     with respect to   and   

1( ) ( )i i i ic c d       

1i i i iD      

3. if 1ir  
 and 1iR  

 stop, otherwise 

1 1i id r     

1( )t

i i i
i t

i i

R R R

R R
  
   

1 1i i i iD R D     

1i i   and return to step 2. 

In step 3, the test stop is based on a preassigned small 

scalar  , the calculus of i follows the prescription of Polak 

and Ribière [11].  

3.3. Identification results  
The Conjugate Gradient method developed in the last section 

is applied to the simulated temperature fields obtained by 

analytical resolution of the direct problem. The material is 

supposed to be anisotropic with diagonal thermal conductivity 

tensor. The results from our identification algorithm without 

noise are shown in the table 1 below.  

Table 1. Identified Values from simulated temperature 

fields without noise 

Parameters 
Values used in 

the simulation 
identified Values 

λ1(W/m/°C) 0.45 0.4309 

λ2(W/m/°C) 0.17 0.1687 

ρc(J/m3/°C 1.666 .106 1.6759.106 

 

The table 2 shows the values identified from the noisy 

temperatures 

Table 2. Identified Values from simulated noisy 

temperature fields 

Parameters 
Values used in 

the simulation 
identified Values 

λ1(W/m/°C) 0.45 0.4309 ±0.0170 

λ2(W/m/°C) 0.17 0.1638 ±0.0140 

ρc(J/m3/°C) 1.666 .106 1.6573 .106 ±0.027 .106 

 

4. CONCLUSION 
The finite element method meets the requirements imposed by 

the sample geometry and the boundary conditions. Its 

application on a homogeneous anisotropic material enabled us 

to transform the Fourier’s heat conduction equation in a first 

order ordinary differential equation. Therefore, the resolution 

of the direct problem needs solely a time integration 

algorithm. The developed algorithm allows us to simulate the 

temperature field in the bidimensional case. The accuracy of 

the simulations ensured the validity of our approach. 

Moreover, our code proved to be fast handling, as well for 

varied geometric dimensions,, than for varied boundary and 
initial conditions.  

The identification algorithm is based on the conjugate 

Gradient method. It allows to characterize the thermal 

conductivity tensor and the specific heat. of materials. The 

identification results revealed to be in good agreement with 
the values used in the simulation of the direct problem.  
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