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Abstract

Background: Heterogeneity and lack of targeted therapies represent the two main impediments to precision

treatment of triple-negative breast cancer (TNBC), and therefore, molecular subtyping and identification of

therapeutic pathways are required to optimize medical care. The aim of the present study was to define robust

TNBC subtypes with clinical relevance.

Methods: Gene expression profiling by means of DNA chips was conducted in an internal TNBC cohort composed

of 238 patients. In addition, external data (n = 257), obtained by using the same DNA chip, were used for validation.

Fuzzy clustering was followed by functional annotation of the clusters. Immunohistochemistry was used to confirm

transcriptomics results: CD138 and CD20 were used to test for plasma cell and B lymphocyte infiltrations,

respectively; MECA79 and CD31 for tertiary lymphoid structures; and UCHL1/PGP9.5 and S100 for neurogenesis.

Results: We identified three molecular clusters within TNBC: one molecular apocrine (C1) and two basal-like-

enriched (C2 and C3). C2 presented pro-tumorigenic immune response (immune suppressive), high neurogenesis

(nerve infiltration), and high biological aggressiveness. In contrast, C3 exhibited adaptive immune response

associated with complete B cell differentiation that occurs in tertiary lymphoid structures, and immune checkpoint

upregulation. External cohort subtyping by means of the same approach proved the robustness of these results.

Furthermore, plasma cell and B lymphocyte infiltrates, tertiary lymphoid structures, and neurogenesis were validated

at the protein levels by means of histological evaluation and immunohistochemistry.

Conclusion: Our work showed that TNBC can be subcategorized in three different subtypes characterized by marked

biological features, some of which could be targeted by specific therapies.

Keywords: Breast cancer, Triple-negative, Transcriptomics, Molecular subtypes, Immunome, Tertiary lymphoid

structures, Neurogenesis

Background

Triple-negative breast cancer (TNBC) represents 12 to

17% of primary breast cancer and is the most aggressive

and deadly breast cancer subtype [1]. Furthermore, het-

erogeneity and lack of targeted therapies represent the

two main issues for precision treatment of TNBC pa-

tients. Molecular subtyping and identification of thera-

peutic pathways are therefore required to optimize

medical care of these patients.

Recent works based on different approaches identified

various numbers of TNBC clusters [2, 3]. Six molecular

clusters were found in two in silico studies. In the first

study, basal-like 1, basal-like 2, immunomodulatory,

mesenchymal, mesenchymal stem-like, and luminal andro-

gen receptor clusters were described [3]. In the second

study, clusters were named immunity 1, immunity 2,
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proliferation/DNA damage, androgen receptor-like, matrix/

invasion 1, and matrix/invasion 2 [4]. TNBC status was

based on bimodal filtering of estrogen receptor (ER), pro-

gesterone receptor (PR), and human epidermal growth fac-

tor receptor 2 (HER2) gene expressions in the first study,

and bimodal filtering of estrogen receptor 1 and Erb-B2 re-

ceptor tyrosine kinase 2 genes, and median value of proges-

terone receptor gene in the second study. In addition, four

clusters (luminal androgen receptor, mesenchymal, basal-

like immunosuppressed, and basal-like immune-activated)

and three clusters (molecular apocrine, basal-like-enriched

with low immune response and high M2/M1 macrophages

ratio, and basal-like-enriched with high immune response

and low M2/M1 macrophage ratio) were found in two in-

ternal immunohistochemistry (IHC)-typed TNBC studies,

respectively [5, 6]. Although different number of clusters

was found, three clusters seem to be present in each of

these works: molecular apocrine and two basal-like-en-

riched clusters with opposite immune response (pro-tu-

morigenic and anti-tumorigenic). Today, TNBC subtyping

still needs to be refined.

In the present study, an unsupervised analysis was con-

ducted on an internal training cohort composed of 238

TNBC tumors. Fuzzy clustering was followed by func-

tional annotation of the clusters, and we intensively

focused on exploring the nature of immune response be-

tween the two basal-like-enriched clusters. Together, the

results identified three TNBC clusters: one molecular apo-

crine (C1) and two basal-like-enriched, of which one with

pro-tumorigenic immune response (immune suppressive),

high neurogenesis activity and high biological aggressive-

ness (C2), and the other with adaptive immune response

associated with complete B cell differentiation and im-

mune checkpoint upregulation (C3).

Materials and methods
Patients

Internal cohort was composed of 238 TNBC patients.

One hundred seven patients were part of a previous

study, and 131 other TNBC patients were enrolled in

the UNICANCER PACS08 (NCT00630032) adjuvant

multicenter trial described elsewhere [6, 7]. This last

study was approved by a French Ethic Committee (CPP

Ouest V, CHU Pontchaillou, Rennes, France; reference

number: 07/09-626).

An external cohort composed of publicly available

TNBC patients with available tumor genomic data was

built. To avoid cross-platform normalization issues, we

exclusively looked for Affymetrix® genomic datasets in

repositories such as Gene Expression Omnibus (GEO)

and ArrayExpress, selecting those with a medium to

large sample size [8, 9]. Non-TNBC data from these

studies were also retrieved (Additional file 1).

Tumor tissues

All tumor tissue samples were surgically collected and

processed in two parts by a pathologist. The first part

was fixed in 10% neutral buffered formalin for standard

histological analysis and IHC. The second part was im-

mediately dissected, snap-frozen in liquid nitrogen, and

stored until RNA extraction.

RNA extraction

Total RNA was prepared following standard protocols

then treated with DNase I using the RNeasy column

purification system (Qiagen, France). Assessment of

RNA quality, integrity, and purity was done through a

Bionalyser 2100 (Agilent Technologies, Palo Alto, CA).

RNA samples were considered for further analysis only

if they had distinct 28 S and 18 S ribosomal peaks.

Gene expression profiling

Gene expression analysis was performed using Affymetrix®

Human Genome U133 Plus 2.0 Arrays (Affymetrix®, Santa

Clara, CA) measuring over 54,000 transcripts representing

over 20,000 genes. cRNA synthesis, labelling as well as

chip hybridization, washing, and image scanning were per-

formed according to the manufacturer’s protocol. Affyme-

trix® na35 probe set annotation was used.

Bioinformatics

Internal and external data pre-processing

For both internal and external cohorts, raw data were

MAS5-normalized in the Affymetrix® Expression Con-

sole (v1.3.1) and then log2-transformed. Genes were

then median-centered and scaled in each cohort separ-

ately. All microarrays complied with quality criteria.

Microarray and patient clinical data have been deposited

in the GEO under the GSE83937 accession number. Five

publicly available datasets were pooled for a total of 257

TNBC (Additional file 1).

Unsupervised analysis

To organize data into groups with the same underlying

molecular characteristics, we performed clustering ana-

lysis, based on the 5% most variable probe sets (n =

1843; intersection of the 2 sets of most variable probes),

by means of fuzzy clustering method (6).

Cluster functional annotation

To annotate the clusters, we used clinicopathologic

characteristics, 54 gene-expression signatures (GES), Gene

Ontology enrichment analysis (GOEA), and non-TNBC

data. Depending on the nature of data, the following

methods helped to explore differences among the clusters:

one-way analysis of variance (ANOVA) with Tukey post

hoc test, Fisher’s exact test, Cox regression model,
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Kaplan-Meier curves with log-rank test, and Pearson’s cor-

relation coefficient.

Gene-expression signatures

Fifty-four GES were selected for functional annotation

of breast cancer tumors. Twelve GES were used for

breast cancer molecular subtyping: 4-TNBC, androgen

receptor (AR), basal-like, tumor identity card (CIT),

claudin-CD24, claudin-low, ER, ER-negative, ERBB2,

molecular apocrine, PAM50, and TNBCtype. Eleven

were used for immune response dissection: B-cell, Cell

type Identification By Estimating Relative Subsets Of

known RNA Transcripts (CIBERSORT) [n = 22] (http://

cibersort.stanford.edu/), cytolytic activity (CYT), inter-

feron (type I IFN), interleukin-8 (IL-8), M2/M1 macro-

phage ratios (M2/M1, M2/M1 [Becker]), MHC-1,

MHC-2, STAT1, and T cell [10]). Three relate to micro-

environment cells: epithelial cells, fibroblasts, and neu-

rons (http://xcell.ucsf.edu/). Three were linked to

metabolism evaluation: adipocytes, glycolysis, and iron

(IRGS); and 22 to critical biological pathways in cancer:

AKT, β-catenin, chromosomal instability (CIN), E2F3,

EGFR, HOXA, mitochondrial oxidative phosphorylation

(MITO/OXPHOS), MYC, p53, PIK3CA, perineural inva-

sion (PNI), prolactin (PRL), proliferation, PTEN loss,

RAS, reactive stroma, SRC, Stroma-CD10, TGFβ, VEGF,

wound response, and YAP1-WWTR1. Finally, three

prognostic GES were also used: 38-GES, van’t Veer

70-GES, and genomic grade index (GGI). Complete GES

list, methods, and references are described in

Additional file 2.

GOEA

Functional annotation of each cluster through GO bio-

logical process analysis was performed using the Topp-

Gene web tool [11]. Two methods were used to select

genes differentially expressed across the clusters. SAM

method was performed to obtain lists of genes with sig-

nificantly different expression between clusters (one ver-

sus one and one versus the others): genes for which all

corresponding probe sets had a q value of 0% were

retained. In addition to SAM method, expression of the

5% most variable probe sets was represented on a heat-

map, with patients ordered according to the clusters;

hierarchical clustering (centered Pearson correlation dis-

tance, Ward’s method) was performed on the probe sets

in order to visually detect groups of genes with high ex-

pression patterns corresponding to specific cluster(s) of

patients. Visually identified overexpressed gene sets in

heatmap were designated by “H” followed by a number,

which referred to the number of the corresponding clus-

ter (1, 2, or 3). If sets of genes contained different sub-

sets, this number was followed by “a,” “b,” or “c.”

Histological evaluations, tissue microarrays, and

immunohistochemistry

Eighty-seven cases of archival formalin-fixed, paraffin-em-

bedded tissues of the internal cohort were evaluated on tis-

sue microarrays, containing a median of 3 replicate 0.6mm

cores per case. Tissue microarrays (TMA) construction was

described elsewhere [6]. Furthermore, 42 full sections of

these surgical specimens were available for histological

evaluation. Immunohistochemistry was performed using

the Ventana BenchMark Ultra platform (Ventana Medical

Systems, Tucson, AZ). Details of the antigen retrieval tech-

nique and dilution of primary antibodies (CD20, CD21,

CD138, MECA79, UCHL1/PGP9.5, and S100) are de-

scribed in Additional file 3.

Tumor-infiltrating lymphocytes (TILs), especially

CD138-positive plasma cells and CD20-positive B lympho-

cytes, were assessed according to recommendations of an

international working group [12, 13]. The presence of ter-

tiary lymphoid structure (TLS) and lymphoid clusters, with

and without germinal centers, respectively, was evaluated

in the 42 specimens with available full sections, due to

their typical localization in the surrounding area of the tu-

mors. Furthermore, the number of CD21-positive follicular

dendritic network was assessed by counting positive struc-

tures by IHC on a representative full section per tumor

[14]. The presence of high endothelial venules (HEV) was

assessed on full sections by counting the number of

MECA79-positive vessels in five 400× magnification hot-

spots per tumor [15]. Cases were classified as nerve fibers

positive versus nerve fibers negative using UCHL1/PGP9.5

(neuronal marker) and S100 (pan-specific Schwann cell

marker). Pathologists were blinded for TNBC cluster

assignment.

Non-TNBC external data testing

Non-TNBC external data (n = 894) were used to refine

non-basal-like TNBC cluster (Additional file 1).

Statistical analysis

We considered a two-sided P value of less than 5% to be

statistically significant. For SAM method, 0% q values

were retained. All statistical analyses and figures’ genera-

tions were performed using R [16] and the packages affy

1.50.0, amap 0.8.14, cluster 2.0.4, citbcmst 1.0.4, fpc

2.1.10, and samr 2.0.

Results

Unsupervised analysis

Principal component analysis (PCA) with the projection

of the two internal TNBC cohorts onto the first principal

plane showed a homogeneous distribution of PACS08 pa-

tients compared to TNBC patients included in a previous

study, which rules out cohort and technical biases, and

permits us to merge these data (Additional file 4). Fuzzy
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clustering separated TN tumors into three clusters, named

C1 (n = 55; 23.1%), C2 (n = 98; 41.2%), and C3 (n = 85;

35.7%) (Additional file 5). Distributions of patients among

the three clusters in the two IHC cohorts were similar to

the one measured in the internal TNBC one (TMA, P =

0.8914; full section, P = 0.3362). This cohorts’ representa-

tiveness permits us to use these two IHC cohorts for

marker validation.

Cluster functional annotation

Clinicopathologic characteristics

Three clinicopathologic characteristics were differentially

represented in function of clusters (Table 1). Patients be-

longing to C1 were older than C3 patients (Tukey, P =

0.0066). Histological grade and Nottingham prognostic

index were higher in C2 compared to C1. Contrary to our

previous work based on 107 patients of this larger TNBC

cohort, no prognostic difference was found between the

three clusters: overall survival, P = 0.54; metastasis-free

survival, P = 0.64; and event-free survival (EFS), P = 0.41.

EFS analysis conducted on internal and external cohorts

showed no significant differences (P = 0.20 and 0.07, re-

spectively); however, pooling both cohorts (n = 427)

showed that C3 patients have a better prognosis compared

to C2 patients (P = 0.0480) (Additional file 6).

PCA results

First principal component (PC1) separated C1 tumors

from C2 and C3 tumors, while second principal compo-

nent (PC2) separated C2 from C3 (Additional file 7). The

20 probe sets of each of the two components with the

highest absolute weights were selected. A total of 20

unique genes (15 for PC1 and five for PC2) could be iden-

tified and were retained for bibliographic analysis (Add-

itional file 8). Eight PC1 genes were known to be linked to

molecular apocrine subtype. Seven belonged to a set of

genes upregulated in PIK3CA-mutated ERalpha-positive

breast cancer cells. Association between high AR level and

PIK3CA mutations was consistent with Lehmann’s work,

which showed that mutations in PIK3CA exon 9 and 20

Table 1 Clinicopathologic characteristics of the triple-negative studied tumors in function of cluster assignment

Variable All
(n = 238)

Cluster 1
(n = 55)

Cluster 2
(n = 98)

Cluster 3
(n = 85)

P

Age (years; mean ± sd) 54.6 ± 11.6 58.4 ± 11.4 54.4 ± 11.8 52.3 ± 11.0 0.0095

SBR grade

1 3 2 0 1 0.0054

2 40 16 10 14

3 195 37 88 70

Tumor size (mm; mean ± sd) 24.3 ± 12.7 24.3 ± 15.1 25.1 ± 11.7 23.5 ± 12.2 0.69

Nodal status

0 129 28 54 47 0.85

1 108 27 43 38

NPI

1 15 9 1 5 0.0075

2 160 31 71 58

3 61 14 25 22

Radiotherapy

No 11 3 3 5 0.67

Yes 224 51 94 79

Adjuvant therapy

No 13 6 5 2 0.10

Yes 225 49 93 83

Hormonotherapy

No 220 51 92 77 0.94

Yes 14 3 5 6

Metastasis

No 184 41 75 68 0.74

Yes 54 14 23 17

sd standard deviation, SBR Scarff Bloom Richardson, NPI Nottingham prognostic index
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were more frequent in luminal androgen receptor TNBC

subtype [17]. The five well-identified PC2 genes were spe-

cific of B cell lineage differentiation. In conclusion, PCA

showed that the two biological key features that distin-

guished the three TNBC clusters were molecular apocrine

phenotype for C1 compared to C2 and C3, and B cell

lineage differentiation for C3 compared to C2.

Gene-expression signatures

Molecular clustering

Various GES indicated that C1 clustered molecular apo-

crine (luminal androgen receptor) breast tumors (Figs. 1

and 2 and Additional files 9 and 10). Molecular apocrine

subtype identification by means of GES was concordant

with previous IHC results (AR, FOXA1) [6]. This sub-

type is known to be characterized by a molecular profile

common to ER-positive breast cancer and an enrich-

ment in ERBB2-positive tumors [18–21]. These two

characteristics were demonstrated by means of ER and

ER-negative GES, and ERBB2 GES, respectively.

Basal-like features were clearly displayed by C2 and

C3 based on different GES (CIT, PAM50, 4-TNBC,

basal-like) (Additional files 9 and 10).

Critical biological pathways in cancer

Numerous GES (CIN, EGFR, HOXA, MYC, p53, PNI, pro-

liferation, wound response) showed that the biological ag-

gressiveness of TNBC was high in C2 and C3 compared to

C1 and more pronounced (i.e., mesenchymal phenotype) in

C2 compared to C3 (E2F3, PNI, VEGF, YAP1-WWTR1)

(Additional file 10).

Immune response

We focused on immune response in C2 and C3 because

intratumoral immune response is known to play an

important role in basal-like subtypes and has prognostic

significance. Two immune GES, relative to M2/M1 macro-

phage ratios, displayed high scores in C2 compared to C3

(P < 0.0001), a finding which was confirmed by CIBER-

SORT analysis (Table 2). Since M2 macrophages are con-

sidered as immunosuppressive cells, this result underlined

an immune pro-tumorigenic signal in C2 compared to C3.

High TGFβ GES scores confirmed C2 pro-tumorigenic

status. Indeed, in late-stage tumors, TGFβ acts as a

pro-tumorigenic cytokine produced by tumor cells and

tumor-infiltrating immune cells [22].

All other immune GES (B-cell, IFN type I, CXCL8

[IL8], MHC-1, MHC-2, STAT1, T cell, and notably CYT

GES based on the expression of GZMA [granzyme A]

and PRF1 [perforin 1]) showed high scores in C3, which

suggested a pronounced adaptive immune response.

CIBERSORT analysis showed that 14 out of 22 immune

cells were differentially distributed among C2 and C3

(Table 2). According to relationships between these

hematopoietic subsets and survival in breast cancer, C2

tumors were highly infiltrated by seven immune cells

associated with adverse outcomes (hereafter named “pro-

tumorigenic” immune cells) [23]. On the contrary, C3 tu-

mors were highly infiltrated by six immune cells associated

with favorable outcomes (hereafter named “anti-tumori-

genic” immune cells). Contrary to Gentles’ results and

according to numerous studies, macrophages M1 were

considered as anti-tumorigenic immune cells [24]. Out of

14 immune subsets, only dendritic cells activated were dis-

cordant with this interpretation.

In brief, two opposite immunophenotypes have been

identified in basal-like TNBC; the first one characterized

by immune cells known to stimulate breast cancer growth

(pro-tumorigenic) and the second one by immune cells

known to inhibit it (anti-tumorigenic). Furthermore, prog-

nostic analyses based on immune continuous score GES

in internal and external cohorts showed that C2 and C3

patients with high CYT, MHC-2, and STAT1 scores,

reflecting an anti-tumorigenic immune response, have a

better prognosis (Additional file 11).

Metabolism

Gene expression related to iron metabolism clearly de-

creased from C2 to C3 and from C3 to C1 (Add-

itional file 10). Glycolysis seemed more elevated in C2

and C3 compared to C1. Considering biological know-

ledge, high iron metabolism and glycolysis are associated

with aggressive tumors [25, 26].

Prognosis

Scores calculated according to the three prognostic GES

were significantly lower in C1 compared to C2 and C3

(Additional file 10). The 70-GES prognostic score kinetics

pattern separated the three clusters in the following order:

C2 > C3 > C1. This finding was not corroborated by prog-

nostic analysis. Therefore, we can only conclude that it

more likely underlines biological aggressiveness of C2 and

C3 tumors.

GOEA and neurogenesis

Four clusters named H1, H2a, H2b, and H3 of highly

expressed genes, belonging to C1, C2, and C3, were visu-

ally individualized from heatmap composed of the 5% most

variable probe sets (n = 1843). Furthermore, eight gene lists

of most differentially expressed genes between the three

clusters were obtained by means of SAM. All these gene

lists were submitted to the ToppGene web tool (Add-

itional files 12 and 13). C1 was characterized by three lu-

minal hallmarks (hormone metabolic process, lipid

metabolic process, and oxidation-reduction process) on

one hand, and angiogenesis and developmental processes,

on the other hand. Mitotic cell cycle process, which is con-

sidered as a basal-like hallmark, was overrepresented in C2
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and C3 compared to C1. Genes highly expressed in C2 vs

C3 were notably linked to central nervous system develop-

ment process, here considered as neurogenesis, extracellu-

lar matrix disassembly, and collagen metabolic process, i.e.,

invasion and progression. To our knowledge, this is the

first time that high neurogenesis-related gene expression is

linked to a breast cancer subtype. This finding was associ-

ated with UCHL1/PGP9.5 neuronal marker and S100

pan-specific Schwann cell marker enrichment in C2 com-

pared to C3: P = 0.0249 and P = 0.0205, respectively (Fig. 3).

Neuron GES corroborated this difference. Finally, high

PNI scores in C2 (C2 > C3 >C1) could result from high

nerve density in this subtype (Additional file 10). Further

investigations are needed to unravel the role of nerve cells

and de-differentiated Schwann cells in cancer progression

and invasion [27, 28]. Immune response activation, and

notably B cell activation, was preponderant in C3.

H3 witnesses the presence of tertiary lymphoid structures in

close association with C3 TNBC subtype

Three gene subclusters (H3a, H3b, and H3c) could be

distinguished in H3. GenomicScape was used to refine B

Fig. 1 Subtype distributions of patients between the three clusters by means of categorical GES, for the internal (left) and external (right) TNBC

cohorts. a 4-TNBC. b CIT. c Claudin-low. d ER-negative. e PAM50. f TNBCtype
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lymphocyte subsets in these three gene subclusters [29].

H3c was strongly enriched in genes highly expressed in

plasma cells (Additional file 14). On the contrary, H3b

genes focused our attention on the early phase of B cell

differentiation. MS4A1, which encodes CD20, a B

lymphocyte surface molecule absent in plasma cells, was

found overexpressed in this subcluster. No clear infor-

mation emerged from H3a GenomicScape atlas screen-

ing. However, H3a GOEA underlined the following

immune response processes: CXCR3 signaling pathway

(CXCL9, CXCL10, CXCL11), TCR signaling pathway

(TRA, ICOS, ZAP70, MAP4K1, TARTP [CD3G], UBA-

SH3A), and T cell cytotoxicity (GZMB, GSMH, GNLY).

To conclude, high expression of genes encoding for lym-

phorganogenic chemokines (CCL19, CCL21, CXCL13)

and other TLS markers (ICAM1, ICAM2, ICAM3,

VCAM1, CCL22) were observed in C3 versus C2 (P

< 0.0001) [30, 31]. In brief, the presence of different B

lymphocyte subsets in C3 suggested that complete B cell

differentiation characterized this TNBC cluster and

might be orchestrated with Th-1 cells and Tfh in TLS lo-

cated in close proximity to tumors.

In TLS, intratumoral favorable immune phenotype relies

on coordinated activation of pro-inflammatory genes,

which include Th-1 transcripts (e.g., IFNG, STAT1, IL12A,

IL12B, IRF1, TBX21, CD8B), Th-1 chemokine genes (e.g.,

CXCL9, CXCL10, CCL5), Tfh chemokine gene (CXCL13)

and immune effector genes (e.g., GNLY, GZMB, PRF1),

and B cells genes (e.g., CD19, IGKC) [29]. This immune

process is accompanied by a counter activation of im-

munosuppressive mechanisms (e.g., CD274 [PD-L1],

CTLA4, FOXP3, IDO1, PDCD1), which will be discussed

further [3, 32]. In our study, differential gene-expression

analyses displayed a significant higher level of all except

two genes (FOXP3, CD8B) in C3 compared to C2.

CD274 (PD-L1), which is considered as an adaptive

immune resistance marker in basal-like breast cancers,

was overexpressed in C3 compared to C2 in internal and

external cohorts (P < 0.0001) [33]. This information has

to be pointed out because it may offer targeted thera-

peutic intervention for C3 patients.

Histological evaluation of TLS, TILs, B lymphocyte, and

plasma cell stromal infiltrates confirmed transcriptomic

results

Histological evaluation of TLS and lymphoid clusters

showed that they were more frequent in C3 (10/12) than

in C2 (9/22) (P = 0.0297) and in C1 (2/8) (P = 0.0194)

(Fig. 3). No difference was found between C2 and C1. This

result was corroborated by the presence of HEV

(MECA79-positive) and follicular dendritic cell networks

(CD21-positive) in C2 compared to C3: C2 (n = 22) vs C3

(n = 12), P < 0.0001 and P = 0.0017, respectively (Fig. 3).

TILs displayed the following profile: C3 > C2 = C1 (P =

0.0014). Furthermore, plasma cell (CD138-positive cells)

and B lymphocyte (CD20-positive cells) infiltrates were

Fig. 2 Molecular annotation of TNBC by means of continuous score GES in function of clusters. a Internal cohort. b External cohort. Differences in GES

scores according to clusters (ANOVA results) are represented as a radar plot, where each of the 47 radii represents a GES. Black circles represent significantly

different levels of expression from low (smallest circle) to high (largest circle). Expression level of each cluster is represented on the corresponding circle as

a blue (C1, C’1), red (C2, C’2), or green (C3, C’3) dot. Dots located on same circles correspond to clusters with not significantly different expressions. Dots

located on different circles correspond to clusters with significantly different expressions. Dots located in between black circles correspond to a cluster with

expression level not significantly different from clusters whose dots are located on both near circles. This figure is an illustration of Additional files 10 and

21 statistical analyses
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significantly higher in C3 compared to C2, P = 0.0297, and

P = 0.0001, respectively (Fig. 3).

Immune response gradients between C2 and C3

To explore the possible existence of biological gradients

between C2 and C3, we calculated correlation coeffi-

cients between C2 and C3 cluster probability orthogonal

projection on C2-C3 axis and GES scores for each tumor

(Additional file 5). Ten coefficients had absolute value

superior to 0.5 (P < 0.0001) for internal cohort (Add-

itional file 15). Nine of these correlations related to im-

mune response GES. These results showed that

anti-tumorigenic immune response decreases from C3

to C2 and, on the contrary, pro-tumorigenic immune re-

sponse increases from C3 to C2.

Immune checkpoints screening

Expressions of 47 immune checkpoint genes were com-

pared between C2 and C3 in internal and external cohorts

[34]. Only significant and concordant results in both co-

horts are discussed thereafter. Thirty-four immune check-

points, including CD274 (PD-L1), CTLA4, and PDCD1

(PD1), displayed a C2 < C3 profile, five a C2 ≈C3 profile,

and one (VTCN1) a C2 > C3 profile (Additional file 16).

Higher expression of a large majority (85%) of immune

checkpoint genes was observed in C3 compared to C2,

which was characterized by a marked immune response.

This finding should be interpreted as a consequence of an

immune response against tumor cells. In other words, im-

mune inhibitory response by means of immune check-

point upregulation could be triggered by a high

anti-tumorigenic immune response to fine-tune and limit

global immune response, i.e., to maintain immune

self-tolerance. In regard to these results, we can

hypothesize that immune checkpoints do not represent

the main effectors of C2 immunosuppression and that

they might contribute to the inefficacy of C3 anti-tumor

immune attack.

External cohort annotation: fuzzy clustering followed by

clinico-pathological, GOEA, and GES annotations

The same strategy as the one used for our internal co-

hort was applied on a TNBC external cohort to validate

unsupervised analysis results based on the intersection

of most variable probe sets in each cohort (n = 454). In-

ternal and external TNBC subtyping results were then

compared.

Table 2 C2 vs C3 CIBERSORT analysis results

Immune cells Tumorigenic effect in breast cancera P C2 vs C3 differential expression

B cells memory Pro-tumorigenic 0.0242 C2 > C3

B cells naïve No effect 0.0798 C2 ≈ C3

Dendritic cells activated Anti-tumorigenic 0.0177 C2 > C3

Dendritic cells resting Pro-tumorigenic 0.4011 C2 ≈ C3

Eosinophils Pro-tumorigenic 0.0243 C2 > C3

Macrophages M0 Pro-tumorigenic < 0.0001 C2 > C3

Macrophages M1 Anti-tumorigenic 0.0005 C2 < C3

Macrophages M2 Pro-tumorigenic < 0.0001 C2 > C3

Mast cells activated Pro-tumorigenic < 0.0001 C2 > C3

Mast cells resting Anti-tumorigenic 0.0414 C2 < C3

Monocytes Pro-tumorigenic 0.0169 C2 > C3

Neutrophils Pro-tumorigenic 0.4571 C2 ≈ C3

NK cells activated Anti-tumorigenic 0.5534 C2 ≈ C3

NK cells resting Pro-tumorigenic 0.3776 C2 ≈ C3

Plasma cells Anti-tumorigenic < 0.0001 C2 < C3

T cells CD4 memory activated Anti-tumorigenic < 0.0001 C2 < C3

T cells CD4 memory resting Pro-tumorigenic 0.0481 C2 > C3

T cells CD4 naive Anti-tumorigenic 0.2901 C2 ≈ C3

T cells CD8 Anti-tumorigenic 0.0001 C2 < C3

T cells follicular helper Anti-tumorigenic 0.2394 C2 ≈ C3

T cells gamma delta Anti-tumorigenic < 0.0001 C2 < C3

T cells regulatory Anti-tumorigenic 0.4372 C2 ≈ C3

aBased on results from Gentles et al. [21] except for macrophages M1 [22]
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Fuzzy clustering separated external TNBC patients

into three clusters, named C’1 (n = 61; 23.8%), C’2 (n =

97; 37.7%), and C’3 (n = 99; 38.5%). Naming of external

TNBC clusters was based on biological correspondence

with internal TNBC clusters (e.g., C’1 for C1). Distribu-

tion of patients among the three clusters was similar

(Additional file 17).

C’1 TNBC patients were older than C’2 and C’3 TNBC

patients (P = 0.0002). SBR1-2 histological grades were

overrepresented in C’1 compared to C’2 and C’3 (P =

0.0134) (Additional file 18). Prognosis of TNBC patients

belonging to C’3 showed no difference compared to C’2

patients (P = 0.10). No statistical difference was found for

cluster and SBR distributions and age according to the

Fig. 3 Immunohistochemistry and histological evaluations of neurogenesis and immune markers. a Detection of nerve fibers in C2 TNBC tumors. Nerve

fibers in the tumoral stroma, with their typical spindled and wavy morphology, detected with IHC against the axonal marker UCHL1 (60×) and the

schwannian marker S100 (60×). UCHL1 and S100 displayed a C2 > C3 profile. b Immune features of C3 TNBC tumors. Tertiary lymphoid structure (TLS) in

the vicinity of invasive front of carcinoma, defined by the presence of a germinal center (hematoxylin and eosin staining) (10×), highlighted by follicular

dendritic cells marker CD21 (20×). HEV, specialized blood vessels in lymphocytes recruitment, stained by MECA79 (20×), preferentially found in

lymphocytes-rich regions of tumors. Plasma cell and B lymphocyte infiltrates were analyzed, respectively, with CD138 and CD20 stainings in the tumoral

stroma (40×). Infiltrates were assessed according to recommendations of an international working group, by determining the area occupied by plasma

cells or B lymphocytes over the total intratumoral stromal area. TLS, CD21, MECA79, CD138 and CD20 displayed a C3 > C2 profile. Arrows indicate cells

expressing each marker (brown). Statistical plots on the right of each picture display the numbers (Pos: positive; Neg: negative) or percentages of marked

cells in C2 compared to C3
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internal and external cohort as a whole or split into the

three clusters (Additional files 18 and 19).

All categorical GES distributions, except for PAM50,

were quite similar (Fig. 1 and Additional files 9 and 20).

The main difference regarding PAM50 was a high propor-

tion of HER2E subtype in C’1 (47.5%) contrary to C1 (0%)

and a low proportion of Luminal B subtype in C’1 (6.5%)

contrary to C1 (54.5%). In fact, C1 is mostly composed of

molecular apocrine subtypes, which are known to be char-

acterized by luminal and HER2 features [18–21]. Further-

more, in C1, correlation coefficients with PAM50 Luminal

B and HER2E centroids were close (data not shown). Here,

subtype assignation should rather be “luminal B and

HER2E,” i.e., molecular apocrine. Our conclusion is that

PAM50 subtype assignment should be considered cau-

tiously when used for TNBC subtyping, in contrast to CIT

or TNBCtype GES which seem more appropriate.

Thirty-two out of 47 (68%) continuous score GES dis-

played exactly the same profile between internal and ex-

ternal cohort (Fig. 2 and Additional files 10 and 21).

When selecting GES with two similarities, 40 out of 47

(85%) GES gave the same information.

CIBERSORT analysis showed that seven out of 22 im-

mune cells were differentially distributed among C’2 and

C’3 (Additional file 22). These profiles were the same as

those observed in our internal cohort. C’2 tumors were in-

filtrated by three pro-tumorigenic immune cells and C’3

by four anti-tumorigenic immune cells.

When investigating the presence of an immune re-

sponse gradient between C’2 and C’3, as was done on in-

ternal cohort, results corroborated what had been found:

a continuous decrease of anti-tumorigenic immune re-

sponse and continuous increase of pro-tumorigenic im-

mune response from C’3 to C’2 (Additional file 23).

The same GOEA process was applied to the external

cohort. Four clusters named H’1, H’2a, H’2b, and H’3 of

highly expressed genes were visually individualized from

heatmap composed of the 5% most variable probe sets.

GOEA result comparison showed that the three clusters

of the internal and external cohort were very similar

(Additional files 12 and 13).

In conclusion, independent fuzzy clustering and func-

tional annotation of the three clusters by means of clini-

copathologic characteristics, GES, and GOEA indicated

that the same molecular entities defined the different

clusters in both the internal and external cohorts.

Non-TNBC external data testing

In regard to previous results, C1 can be considered as the

less aggressive TNBC subtype. The question is now: What

are the differences between C1 subtype and non-TNBC,

from a biological point of view? In order to answer this

question, non-TNBC external data were used.

PCA of TNBC (n = 257) and non-TNBC (n = 894) exter-

nal data showed that C’1 patients were close to non-TNBC

patients in the first plane (Additional file 24). PC1 sepa-

rated non-TNBC and C’1 from basal-like clusters (C’2 and

C’3) and PC2 separated C’2 and C’3 basal-like clusters as

also observed for internal TNBC cohort. Interpretation of

PCA result leads us to think that non-TNBC and

non-basal-like TNBC probably share some biological

similarities.

GES functional annotation comparison of C’1 (TNBC)

and non-TNBC tumors showed both similarities and differ-

ences (Additional files 25, 26, 27 and 28). Among the main

differences were intermediate prognostic scores for the

three prognostic GES for C’1, highest for C’2 and C’3, and

lowest for non-TNBC. Other results (ER, EGFR, and p53

GES scores) pointed out that aggressiveness of C’1 breast

tumors was intermediate between non-TNBC and basal-

like tumors. In conclusion, external data analysis showed

that C’1 patients were closer to non-TNBC patients and

that aggressiveness of C’1 tumors was intermediate between

non-TNBC and basal-like tumors (C’2 and C’3).

Discussion

The findings of this study strongly strengthen the fact that

TNBC can be divided into three subtypes with potential

therapeutic implications. To the best of our knowledge,

we identified for the first time links between neurogenesis,

tertiary lymphoid structures, plasma cells, B lymphocytes,

and triple-negative breast cancer subtypes (C2 and C3).

Overall, our data show that IHC-typed TNBC regroup

three different molecular subtypes of tumors, which would

necessitate different and appropriate therapies. C1 is

clearly a molecular apocrine cluster, which displays lu-

minal, PIK3CA-mutated, and HER2E hallmarks. Use of

non-TNBC data to refine C1 cluster annotation permitted

to take into account relativity, which can weaken TNBC

subtyping interpretation. When taking into account all

breast cancers (non-TNBC and TNBC), C1 has to be con-

sidered as an intermediate group, from a biological aggres-

siveness point of view, between non-TNBC and basal-like

enriched clusters.

C2 and C3 displayed basal-like hallmarks. However,

these two basal-like enriched clusters showed a major bio-

logical discrepancy relative to immune response, which

was characterized by a decreasing anti-tumorigenic im-

mune gradient from C3 to C2 and a decreasing pro-

tumorigenic gradient from C2 to C3. Furthermore, high

neurogenesis activity was found for C2 tumors. In addition

to immune response, the immune system is also known to

play a pivotal role in tissue repair and regeneration. It is as-

tonishing to notice that these two roles seem to be illus-

trated in C3 and C2, respectively.

We will not extensively develop the list of treatments,

including immunotherapies, which could be proposed
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for TNBC patients, as recent review articles have been

published on this topic [35]. We will select and discuss a

few points, which concern the potential therapeutic ram-

ifications of our findings and the treatment that might

be used in function of cluster functional annotation

(Additional file 29).

C1 tumors (molecular apocrine) could potentially be

treated by antiandrogens or, better, by an association of

PI3K inhibitors and antiandrogens, which demonstrated a

synergistic anti-tumor effect [17]. Despite the fact that

TNBC are defined by HER2 IHC negativity, ERBB2 GES

displayed high expression of ERBB2 pathway in C1 tumors.

The value of targeting the ERBB2 pathway in C1 tumors

warrants further investigations.

Immunotherapies, which aim to combat immunosup-

pression or stimulate adaptive immune response, could

potentially be proposed for C2 (basal-like pro-tumorigenic

immune response) and C3 (basal-like adaptive immune

response) patients, respectively [36]. TLS evaluation and

targeting represent a promising approach for the design of

immune-based strategies which aimed at stimulating C3

patient immune response [37]. Therapeutic regimens

should associate different immune checkpoint inhibitors,

to enhance global efficacy and cytotoxicity of chemother-

apy, because immunomodulators are not directly cyto-

toxic against tumor cells.

Immune checkpoints screening showed that upregula-

tion of these markers characterized C3 compared to C2.

We do not know if this immune response limitation is re-

sponsible for the global inefficacy of anti-tumor immune

attack. Whatever the solution is, we can hypothesize that

immune checkpoint inhibition should reinforce immune

response against tumor cells in C3 [38]. However,VTCN1

(B7-H4) displayed the only C2 > C3 profile. This gene

codes for a B7 immunoregulatory protein, which exerts an

immunosuppressive effect through inhibition of T cell acti-

vation, proliferation, and clonal expansion, and is consid-

ered as a protumorigenic factor [39]. In patients with

ovarian carcinoma and glioma, macrophages expressing

VTCN1 have been directly linked to inhibition of T cell im-

mune response [40, 41]. Therefore,VTNC1 might actively

participate in C2 immunosuppressive phenotype.

Tumor-associated macrophages are crucial actors of

tumor fate and therefore represent important and prom-

ising immunotherapeutic targets [42–45]. Consequently,

numerous macrophage-directed therapeutic approaches

are under investigation and should take into account

M2/M1 macrophage status according to TNBC subtype.

C2 patients could potentially be considered for anti-

neurogenic therapies as recent studies have unraveled the

role of neurogenesis in cancer progression and anti-neuro-

genic therapies are emerging in oncology [46–48]. In pros-

tate, gastric, skin and pancreatic cancers, it has been shown

that the infiltration of new nerves in the tumor

microenvironment is necessary to primary tumor growth

and metastasis [49–52]. The release of neurotransmitters

by nerve endings results in the stimulation of correspond-

ing receptors in both stromal and cancer cells, leading to

increased tumor growth and dissemination. In particular,

the release of noradrenaline by sympathetic nerves induces

an angiogenic switch via the stimulation of beta adrenergic

receptors in endothelial cells [53]. In breast cancer, neuro-

genesis has been reported in the tumor microenvironment,

in particular from nerves of sympathetic origin, and the

density of nerve infiltration is associated with cancer ag-

gressiveness [54]. Neurogenesis was found across all breast

cancer subtypes, including TNBC. Our present study shows

that neurogenesis-related gene expression level is more spe-

cifically increased in the C2 cluster of TNBC, suggesting

that anti-neurogenic therapies, such as those targeting the

neurotrophic tyrosine kinase receptor 1 (NTRK1) could be

relevant in C2 TNBC [46].

Conclusions

Three TNBC subtypes were characterized in this work:

one molecular apocrine and two basal-like with, inter

alia, opposite immune responses. Some of these marked

biological features could be targeted by specific therap-

ies. Various targeted therapies could be tested in com-

bination to produce synergistic effects and prevent

resistance in the different subtypes of TNBC identified

here. Today, molecular heterogeneity of TNBC partici-

pates in the limited efficacy of therapies used in unsub-

typed TNBC patients. There is a clear need to test, or

re-test, new or old targeted therapies, in new clinical tri-

als taking into account these three TNBC subtypes.
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