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IDENTIFICATION OF TIME-VARYING SYSTEMS USING
MULTIRESOLUTION WAVELET MODELS

H.L. WEI, S.A.BILLINGS

Abstract: Identification of linear and nonlinear time-varying systems is investigated and
a new wavelet model identification algorithm is introduced. By expanding each time-
varying coefficient using a multiresolution wavelet expansion, the time-varying problem
is reduced to a time invariant problem and the identification reduces to regressor selection
and parameter estimation. Several examples are included to illustrate the application of
the new algorithm.
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1. INTRODUCTION

There are many cases where the signals encountered in applications, such as in speech processing and
seismic analysis, fail to satisfy the stationary assumption. This has led to a growing interest in
nonstationary signal processing including time-frequency representations [Jones & Parks, 1992: Sattar
& Salomonsson 1999; Potamianos & Maragos, 2001], time-varying spectral analysis [Cho et al, 1991;
Cakrak & Loughlin, 2001], and time-varying parametric methods [Kozin & Nakajima, 1980; Grenier,
1983; Niedawiecki, 1988: Tsatsais & Giannkis, 1993; Young, 1994]. In contrast with most
nonparametric methods including narrow-band filtering, complex demodulation, short-time Fourier
transforms and several transformations leading to time-frequency representations which are relatively
well established. alternative parsimonious descriptions can be employed in cases where the signal can
be described by a time-varying parametric model.

Several approaches have been adopted to deal with time-varying modelling problems. One of the
most popular approaches to identify a time-varying system is to employ an adaptive algorithm under
the assumption that the time-variations are slow so that the system trajectory can be tracked. In order
to guarantee that an adaptive algorithm can track time variation of the system, several assumptions are
needed and more explicit modelling of the variation of the coefficients is required. One approach is to
use a stochastic model structure where the coefficient trajectories are regarded as random processes,
the coefficients can then be estimated using Kalman filtering. The problem with this approach is the
need to determine an appropriate model for the coefficient trajectories and how to estimate the
parameters.

Parametric identification of linear and nonlinear time-varying systems is possible if the time-
varying coefficients can be expanded as a finite set of basis functions. The problem then becomes
time-invariant with respect to the parameters in the expansions and is hence reduced to regression
selection. The two main problems, which are encountered when this approach is applied to general
time-varying systems, include how to choose the basis functions, and how to select the significant
ones from the family of the basis functions. If these problems can be solved, the final model can be
expressed using these “significant” basis functions.

Several classes of functions have been proposed, as a solution to the first problem, including
Legendre polynomials and Fourier bases (sine/cosine functions) [Niedzwiecki, 1988]. The normal
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solution to the second problem is to truncate the function expansions at an appropriate order, and to
select significant terms according to some practical rule.

An alternative approach is to use wavelets as the basis functions. Wavelets have excellent
approximation properties, they outperform many other approximation schemes and are well-suited for
approximating general nonlinear signals, even those with sharp discontinuities. Wavelets have found
many applications in system identification including the works of Tsatsanis & Giannakis [1993]; Coca
& Billings[1997]; Billings & Coca [1999]; Sureshbabu & Farrell [1999].

Tsatsanis & Giannakis [1993] introduced a wavelet basis for time-varying system identification for
linear systems by expanding the time-varying coefficients as the combination of multiresolution
dyadic perfect reconstruction filter banks (PRFBs). The F-test and AIC method were then used to
select the significant terms. In the present paper nonlinear time-varying systems are studied and an
alternative approach is introduced. This consists of expressing the time-varying coefficients as
multiresolution wavelet series expansions and using the orthogonal least squares (OLS) algorithm and
the error reduction ratio (ERR) [Korenberg & Billings et al,1988: Billings et al,1989] to replace the
perfect reconstruction filter banks and the F-test and A/C method which were adopted by Tsatsanis &
Giannakis [1993] in the linear model case.

The paper is organised as follows. Section 2 introduces the input-output representation for nonlinear
systems. In section 3, wavelet theory is briefly reviewed to provide the basis of multiresolution
expansions for arbitrary functions. Although wavelets have been widely used in many fields, not much
work has been done on applying them in time-varying system identification. Based on a
multiresolution wavelet expansion, we propose a new approach for time-dependent parameter
estimation, and this is introduced in section 4. Examples are provided in section 5, and conclusions are

. given in section 6.

2. PROBLEM REPRESENTATION

2.1 Modelling nonlinear systems

A generic model for nonlinear systems, the NARMAX, which was introduced by Leontaritis &
Billings [1985], has been developed in several papers [see, for example, Chen & Billings, 1989;
Billings & Chen, 1989]. NARMAX can describe a wide range of nonlinear dynamic systems and
includes several other linear and nonlinear model types, including the Volterra, Hammerstein, Wiener,
AR, ARMA, ARMAX, and bilinear models as special cases.

The NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model takes
the form of nonlinear difference equation

YO = fOE =D,y =n,)u@ =1, ut =n,),e(t = 1), et —n,)) +et) (1)

where f is a nonlinear mapping, u(¢) and y(z) are the input and output vector, n, and n, are the

maximum input and output lags, respectively. The noise variable e(t), with maximum lag n,,

accommodates the effects of measurement noise, modelling errors and unmeasured disturbances. A
rigorous derivation of the NARMAX model and many applications have been proposed in the
literature, some examples are Leontaritis & Billings [1985]; Billings & Chen, 1989; Chen & Billings,
1989; Tabrizi, 1990:; Cooper, 1991; Noshiro et al,1993; Jang & Kim, 1994; Aguirre & Billings,1995;
Billings and Coca, 1999; Tabrizi, 1998; Radhakrishnan et al, 1999; Glass & Franchek, 1999].

2.2 Input-output representation of time-varying systems

Consider the time-varying NARX model as an example to illustrate the expansion of the coefficients
as a finite set of basis functions. Expanding (1) by defining the function f(-) to be a polynomial of

degree M gives the representation [Korenberg & Billings et al, 1988]
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y(1) = ia,(r)p,m +e(t) | )
where
Py =1, a, (1) = a, = const
a,(r) is time-varying parameter
pi(r)zy(z‘—-nl)l--y(r—n}.)u(t—ml)---u(r—mk), i=12,--.M
LEay 1y, 5m, sn,, 0<m,m,,--;m,<n,, k,j20.
and

J =0 indicates that p;(t) contains no y(-) terms
k =0 indicates that p, (¢) contains no u(-) terms

If each coefficient a,(r) can be approximated by a linear combination of some basis functions, AP
say, £=12,---,L

a,() = X,6,°¢,(t) 3)

then the identification can be implemented by estimating the time-invariant coefficients 6% ;,:ll"f i

Substituting (3) into (2), gives a set of linear equations, which can be solved by several methods in the
least-squares class of algorithms providing the significant terms can be selected.

In the approach proposed below, multiresolution wavelets and scaling functions, which will be
discussed in the next section, are used as the basis functions to express the time dependent coefficients
in time-varying models.

-3 WAVELET TRANSFORMS AND WAVELET SERIES

Among almost all the functions used for approximating arbitrary signals or functions, none has had
such an impact and spurred so much interest as wavelers. Multiresolution wavelet expansions
outperform many other approximation schemes and offer a flexible capability for approximating
arbitrary functions. Wavelet basis functions have the property of localization in both time and
frequency. Due to this inherent property, wavelet approximations provide the foundation for
representing arbitrary functions economically, using just a small number of basis functions. Wavelet
algorithms process data at different scales or resolutions.

Wavelet analysis is based on a wavelet prototype function, called the analysing wavelet, mother
wavelet, or simply wavelet. Temporal analysis is performed using a contracted, high-frequency version
of the same function. Because the signal or function to be studied can be represented in terms of a
wavelet expansion, data operations can also be performed using the corresponding wavelet
coefficients.

3.1 The continuous wavelet transform

For a given function f € L*(R), the continuos wavelet transform (CWT) with respect to the mother
wavelet @ is defined as [Chui, 1992; Daubechies, 1992].
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W, )a.b) = [ f(x)@,, (x)dx )
where @, (x) is obtained by scaling and dilating the mother wavelet @(x) as follows:

x_b), a,be Ra#0 (5)
a

0,0 =d " o

Equation (4) states that the continuous wavelet transform (W, f)Xa.b) is the correlation of f(x)
with a scaling of a@and a shift (translation) of 5. The over-star “*” above the function - (x)_
indicates the complex conjugate.

The CWT (4) is invertable subject to a mild restriction imposed on the wavelet @, in the sense that

da

1
f@=g [ W, f)@.b)lp, , (x)db (6)
with
&= L P “ @

]
where @ is the Fourier transform of the function @ .

The inverse transform (6) guarantees that the function f(x) can be reconstructed from the CWT
and it can be interpreted in at least two different ways. On the one hand, this shows how to reconstruct
the function f from the wavelet transform and, on the other, the inverse transform gives a recipe

showing how to write any arbitrary f as a superposition of wavelet functions @ (X))

3.2  Wavelet series

In practical applications the CWT is often discretised in both the scaling and dilation parameters for
computational efficiency. Based on this discretization, wavelet series can be introduced to provide an
alternative basis function representation to the conventional series expansion, for instance Fourier

series, for a function in L*(R).

The most popular approach to discetise the CWT is to restrict the dilation and translation parameters
to a dyadic lattice as a ;= 27 and b ik = k27 with J.-k€Z. Other non-dyadic ways of
discretisition are also available.

For a given orthogonal wavelet @ , introduce the following derivative functional family
@, (x)=2"p2 x-k), jke Z, (8)
then for any function f € L*(R), the CWT can be expressed as
e =W, )27 k27 y=< £.0,, >, j kEZ 9

Hence the discrete wavelet transform (9) and the wavelet family (8) can be viewed as discretised
versions of the CWT (4) and the inversion formula (6), and every f € L*(R) can be uniquely
described as




f(x)= i iCjSij_k (x)

j=—oa k=—oe
where the convergence of the series in (10) is in L’ (R), namely
Ja

fx)- Z chj.k(pj,k (x)

J==Jy k==K,

lim =0
1y J2 K, K=

In general, however, it is not necessary to require {@ ;4 } to be an orthogonal basis of L*(R)
Q4P >=0,,6,, ., jkimeZ (12)

The following two conditions are sufficient to guarantee a wavelet @ will form a wavelet series [Chui,
1992]

(i) The function family {¢@ ik }jkez 1S a Riesz basis of L*(R), in the sense that the linear span of

@, is dense in I? (R), and there exist positive constants A and B, with 0 < A < B < o, such

that

Z ZCJ.A-Q’J"&

== k=—co

2
<BY Y.l (13)

j=—eo k=0

Ai i'cﬂ,‘z =

J=—0 =—oa

for all doubly bi-infinite square-summable sequences {c -
(if) There is some function § € L*(R), such that the family {@, }, .7 defined as (8) is a Riesz
basis of L*(R) and is dual to {9, }j kez in the sense that
<SP Py >= 0,1 0 JkmeZ (14)

If {@,, }is an orthogonal basis of L*(R), then it is clear that (14) holds with @, , = PO P=g.
Theoretically, if the dual pair ({,¢) exits and the above conditions (7)and (i) hold, then every
fe L*(R) can be uniquely written as

fFO= 3<fi8,0 > 0,,) (1)

Jok=m—ca

and this is called a wavelet series. In comparison with the CWT, the wavelet seres is more
computationally efficient. But this is obtained at the expense of increased restrictions on the choice of
the basic wavelet @ .

3.3 Orthogonal wavelet basis and multiresolution analysis

It is known that for solving identification problems based on the regression representation it is useful
to have a basis of orthogonal functions whose support can be made as small as required and which

provides a uniform approximation to any L*(R) function. One of the original objectives of wavelet

theory was to construct orthogonal (biorthogonal) basis in L*(R).

The principles for constructing orthogonal wavelets are as follows:

n
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(1) There exits a function @, called a scaling function related to the mother wavelet @, such that the

elements of the family {¢(7 — &)}, are mutually orthogonal,
(if) For any given j€ Z, the family {;zﬁj‘,c 19, (x)= 2”3¢jlk (2/x~k),k € Z} constitute an
orthogonal basis for L*(R),

(1ii) The family { @, } constitutes an orthogonal basis for the space L* (R), and

(iv) The family {@, .., };s, w7 also forms an orthogonal basis for L (R).

To satisfy the above aims, an orthogonal wavelet can be constructed using multiresolution
analysis( MRA). First introduce wavelet subspaces W, , j€ Z, which are defined as the closure of

the linear span of the wavelets {@ & ez » Damely

W, = span{p, ke Z} (16)
which satisfy

W.NW, ={@)}, forany i # j (17)

where the over-bar denotes closure. It follows that 1* (R) can be decomposed as a direct sum of the
" spaces W, :

LZ(R)-—----@W_]EDWO@WIPB--- (18)
in the sense that every function f € L*(R) has a unique decomposition

fx)=-+g () +g,()+ g () += g, (x) (19)

jeZ
The circles around the plus signs in (18) indicate “orthogonal sums”. The decomposition of (18) is
usually called an orthogonal decomposition of L’ (R).

Foreach j€ Z, consider the closed subspaces of L*(R)

V, = @W,_, 0W,

T R

JEZ (20)
which have the following properties:

(@) €V, c¥cV -,

(if) (U V)= L*(R) (the over-bar here indicates closure),

jeZ

g @) [V, ={2},

jeZ
(v) V., =V, ®W,, je Z,and
v) f(xe V, e f(2x)e Vias JEL:

Then it is clear that every function f € L*(R) can be approximated as closely as desirable by the

projections P.f in V. Another important intrinsic property of these spaces is that more and more
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variations of Pj [ are removed as j — —oo. In fact, these variations are peeled off, level by level in

decreasing order of the rate of variations (frequency bands) and stored in the complementary W, . asin
property (iv).
Now for every function f € L*(R), the wavelet series expansion can therefore be expressed as
fx)= Zahvk@m»k () + Zzﬁm@j‘k (x) (21)
k JZip k

where the wavelet coefficients «;, and f,, are theoretically given by the inner products:
&, =< f,0;, >= [ F(00], (0)dx 22)

Bii =< f.0,, >= [ [0}, (1)dx (23)

However, in practice the above coefficients are usually estimated during identification. Using the
concept of tensor products, the series expansion (21) can easily be generalised to the muti-dimensional
cases, this will be discussed in a later section.

3.4 Multiresolution B-spline wavelets

For many applications, it is not essential for the wavelets to be orthonormal. Relaxing the condition of
. orthonormality results in semiothogonal, biorthogonal or other non-orthonrmal multiroselution
approximations. This provides, under some conditions, a more flexible framework for function
approximation.

34.1 B-spline wavelets

B-splines as piece-wise polynomial functions with good local properties, were originally introduced
by Chui and Wang [1992] as wavelet and scaling functions in multiroselution expansions.

The B-spline function of m th order is defined by the following recursive formula [Chui,1992]:

N,()=—N, ()+2—N, (x-1), m>2 (24)
m-—1 m—1
with
1 if xe[0,1)
N = = 25
(%) Ao (x) {O otherwise (25)

Setting IV, as the scaling function, that is, ¢(x) = N,_ (x), then both the wavelet and the scaling

function can be expressed in terms of the scaling function N, (x) as follows

0(x)= Y N, 2x—k) (26)
k=0
Im-2
o(x)= Y d,N, (2x~k) 27)
k=0

with the coefficients given by

1 [m
Ck = 2m—1 [k ) (28)




_NNk m
d, =5—%2m’vzm<k—j+l), k=01, 3m=2 (29)
2 =0l J

Clearly, the support of the m th order B-spline wavelet and the associated scaling function are

= suppN_ =0,
{suppcb supph,, =[0,m] -

supp ¢ =[0,2m —1]

Both the B-spline wavelet and the associated scaling function are symmetric in their own support:
The most commonly used B-spline wavelets are the linear (m = 2) and cubic (m = 4)cases, both of

which can be expressed explicitly.

The B-spline wavelets have been selected in the present study because they are particularly suitable
in system identification [Billings & Coca , 1999].

342  Mulitresolution B-spline wavelets

A multidimensional multiresolution wavelet decomposition(expansion) can be defined by taking the
tensor product of the one-dimensional scaling and wavelet functions. Let f € L*(R?), then f(x)
can be represented by the multiresolution wavelet series as

g

fOoyox)=Y o, @  (x,x,)+ YN BOW (k) (31)
k

izjy k1=l

where k = (k,,k,,"--,k,)€ Z* and

P " d .
D (xyeex,) = 202 T g(2% x, —k,) (32)
i=l

d
i, x,) =282T[n® 20 x, -k, (33)

i=1

with 7 = g or @ (scalar scaling function and the mother wavelet) but at least one 7 = ¢ .
Theoretically, the wavelet coefficients are given by the inner products:

0y =< f.®,, >= [ (0D}, (x)dx (34)
Rd

= x(l)

o =< ¥ >= [ FF T (xdx (35)
Rd

In the two-dimensional case, the multiresolution approximation can be generated, for example, in
terms of the dilation and translation of a two-dimensional scaling and wavelet functions

(@40 (5 9)=0,, (D9, ()
[k (5) =0, (90,4, ()
Y ey se i (00,4 ()
Yo BV =0,, (00, ()

(36)

Although many functions can be chosen as scaling and wavelet functions, most of these are not
suitable in system identification applications, especially in the case of multidimensional and
multiresolution expansions because of the curse-of-dimensionaliry. An implementation, which has




been tested with very good results, involves B-spline scaling and wavelet functions as the
regressors(expansion basis) [Billings & Coca,1999]. Furthermore, not all the B-spline wavelet and
scaling functions are used when modelling a dynamic system. Since the B-spline wavelet and scaling
functions have local support and since the position of each basis function is determined by an integer

multi-index k ={k ,k,,---,k,}, only a finite number of basis functions will have relevance for a

particular model structure. It is obvious that only the functions whose support contains data points
should be considered as candidate model terms. Thus in this case there is no need to solve the problem
of positioning the centers of the basis functions, which is normally associated with the radial wavelet
basis functions [Zhang, 1997]. Therefore, in practice most of the coefficients in the expansion (21) or
(31) have negligible values and can be ignored, and this will lead to a very economical representation
of the function f(x).

4. TIME-VARYING SYSTEM IDENTIFICATION USING WAVELETS

4.1  Expanding the time-varying coefficients into multiresolution wavelet series

The multiresolution wavelet and scaling functions will now be used as the basis functions to describe
the time-varying system models represented in section 2. Consider the model (2), and choose {,’f () in

(3) as multiresolution wavelet and scaling functions. In such a case, each coefficient a,(t) can be
expressed as

Ky : J K \
a,0)=a06, O+ 2%, @) (37)
k=kq J=Jok=ky
Substituting (37) into (2), yields
MK Mzl Ky
YO =a,+Y Y al, (Op,0+Y, Y B0, () p, (1) +e(t) (38)
i=1 k=k, i=l j=jo k=k,

This is a time-invariant equation with respect to the parameters of the wavelet coefficients { aj;) . }and
{ }“}L }. Define

@n  P@=[p,@), p,), -, p,, ()]

(@2) DO =10,4, O Bty ®), .8, 1 (D))

@) AO=10,4, O, 0,4,,@, .0, )]

d4) A@)=Pr)®TI(t)

(d5) Bj(z)zP(t)®Aj(t), IS Josdg Flioomd

T _ (1 m . m (2 (2) @) = .., U (M) (M)
d6) o =18 e Bty Fbyr B gk, “Finky» Xy > ’afu-f‘f]
— T T T
(d7) B(I)"'[BJ‘D(t)"Bjuq.[(r):'“:Bj(I)]
T _ a0 %) SV Te)) @ . B@ L gy oMy (M)
(d8) 181 _[131.::0’ kot PGk Pk Pigas™ " Prk, - T g B Jukg LR ’af-Kj]

(dg) ﬂT:[ﬂj’;’ ;+]3"'1ﬁf]
where the symbol “® * denotes the Kronecker product. Now, (38) can be recast as

9




y(@)=A@)a+ B(r)F +e(1) (39)

If N measurements of the input and output are available, (39) can be written in a compact matrix
form as

’ Y=HO+¢ (40)

where
YT =[y@) ¥(2) - y(N)]
£ =[e(l),e(2), -+, e(N)]
1 AQ) B
fre 1. A(.z) 3(2)
1. A(.N) B'(N)
0" =16, " B'1=16,.6,,".0,0]1, 6, =q,

Here, the symbol n(e,f3)is used to indicate that the number of unknown parameters in (40)
dependents on the selection of the basis functions in the wavelet expansions.

[ The parameter vector € in (40) can now be estimated using a least-squares-based algorithm or a
‘ . prediction error routine [Billings & Voon, 1986]. Notice, however, that the number of possible terms
" in the model is very large and this is why detecting the model structure is a vitally important problem
in nonlinear system identification.The problem is even more acute for nonlinear time varying models.
The orthogonal least-squares algorithm (OLS), whose purpose is to orthogonalize all the terms in (40)
by introducing an auxiliary orthogonal model, is one of the most efficient techniques that address this
problem. The error reduction ratio (ERR) values can then be used as a measure of the significance of
| each candidate model term. Because the values of the error reduction ratios depend on the order in
which candidate terms are orthogonalized into the regression equation, simply orthogonalizing
candidate terms in an arbitrary order may result in incorrect information regarding the significance of
terms. In order to overcome this problem, the forward regression orthogonal algorithm was introduced
[Billings et al ,1989; Billings & Chen, 1989].

|| ' Consider the time-varying ARMAX model, which is as a special case of the time-varying
. NARMAX model, to illustrate the approach

y() = Zai B)ye-i)+ ibi (Du(t - j)+ ick (D)e(t—k)+e(r) (41)
i=1 j=1 k=1

L where @, (2),b;(t) and c,(¢) are time dependent coefficients which can be estimated from measured

values of y(r),u(z) and e(t) by expanding a,(2),b;(t) and c, (¢) as multiresolution wavelet series.

The values of the noise e(z) are not normally available for measurement and these are usually replaced
: with the residuals computed as r(t) = y(r) - )“’(I’t —1), where j(tlz‘ —1) is the one-step ahead

predicted output. This leads to the modified model used in practice
2. q 5
y(t) = Za,- By -1+ Z b, (u(t —i)+ Edj (O)r(t—i)+e(r) (42)
i=1 i=l i=1

Expanding the coefficients a,(¢), b,(r) and d, () as a multiresolution wavelet series, the model
(42) becomes

10




Y1) =y () + y, (@) + y, (1) +e(r) (43)

where

/|

=Y Yawle Ovi-+Y 3 Y Y0 (1)t -i) (44)

il

=l i=l j=Jo
q b U j: b v
0= alie, Oue-0+Y SN B (i) (45)
=1k =l j=jy k )
s s I3 )
;=Y Yl Ort-+ Y3 Y B4 ()r@-i) (46)
i=1 k i=l j=j, k

In practice, J,,J, and J, are often chosen to be the same values, i.e., J, = J,=J,=J.

4.2  Selecting the multiresolution levels

Theoretically, the multiresolution wavelet expansion contains an infinite number of terms, but in
practice only a finite number of basis functions are needed to approximate a given nonlinear
signal/function. However, finding or selecting the appropriate basis functions, also known as the
structure selection problem, represents a very important step in constructing a parsimonious mapping
f from the regression space to the output space. The multiresolution wavelet basis set

' G={0, .9, jo.J k. L€ Z, j, < j} will in practice be truncated by including only the scaling
functions with the given initial resolution level j, and the wavelet functions with the resolution levels

from j, to a certain scale./ = j__ . In addition only those basis functions whose support contains the

sampled data points will be considered. The highest resolution or scale will be such that at least one
observation is within the support of the corresponding wavelet.

Assume that N-samples of observations are available from the following input-output system

y,=f(x)+e, i=12,--- N 47

where x;, =[x, x, ---,xd‘i]T €[0,1]°, fe L*(R) can be constructed from X; and Y, using the
d dimensional mutiresolution wavelet expansion (31) subject to some restrictions.If x, is uniformly

distributed on [0,1]%, then the loglog type of statistical laws offer a rough interval for selecting the
highest resolution scale j__ [Sjoberg et al.,1995]

N gt < 2N (48)
InN InN

Since most practical identification problems fail to satisfy the uniform distribution assumption, the
estimate (48) provides only a rough indication for the upper scale Jmax - A practical approach is to
select ... such that a minimum number of observations hit the support of each basis function @i k-

Features, such as the natural frequency, for example, of the sampled signal can also be considered
when determining the highest resolution scale. Assume that the maximum natural frequency of the

sampled signalsis f, ., then the upper scale Jmax €20 be empirically chosen as

max ?

Jmax = [108, (Mf )], where M is a positive number between 10 and 20 and [] denotes taking the
integer value of the corresponding number.
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Denote the support of the basis functions @ s S,

< {%; l%.k (:c), £0,j,ke Z,xe R"}, @, is compactly supported,

Jjk

{xs ’QDM, (x)! > 5m?x!¢j.k (x)], j.ke Z,xe R"}, @,, iscompactly supported,

where & is a small positive number. For each x€ [a,b]”, where [a,b]"is in the problem interval,

introduce the following index set

L? ={(j.k):x, € 8%, j.ke Z)

Analogue symbols S and I\¥ pertaining to the scaling functions ¢ ;.« can also be introduced, such

that
LY ={(j.k):x, € 5%, jke Z)

Then the union of I\”’,1” ;m,n=1,2,---,N , gives the indices of the wavelets whose supports
contain at least one data point. This results in a reduced set of basis functions

N N #
W = {gj’k (j,k)e (UI,S“”JU(UI,?’} Jo$j<jo ke z} (49)
n=|

m=1

where g denotes ¢, or @, . The basis functions set Win (47) forms the initial regressor set
* which is used to build the model structure.

Once the regressor set has been determined, the structure selection and parameter estimation
procedure can be implemented by means of several algorithms. In the present study the orthogonal
forward regression (OFR) algorithm [Billings & Chen, 1989; Billings et al, 1989; Billings & Coca,
1999] will be used because OFR can arrange the candidate model terms in the order of significance
and provides an effective and upwardly extendible method of selecting the relevant model terms.

4.3  Data pre-processing

In some cases it is more convenient to select the starting resolution level and the range of the shift
parameters if the sample data has been normalized to the unit interval [0,1], this is especially true
when the Haar wavelet (the first-order B-spline wavelet) and scaling functions are chosen as the
expansion basis. The Haar wavelet is very simple, but it does possess almost all the properties of
multiresolution analysis. In some cases, for example if the system coefficients are known to be piece-
wise constant, that is where the system exhibits discontinuous jumps, then the Haar basis may be the
best choice for depicting this behaviour.

Assume that all the observations fall into the finite interval [a,b], in order to deal with the end
effects at both ends of the data record, the common practice of periodically extending the available
data, as well as the coefficients a, () beyond [a,b] can be followed. The original data in [a,b] can

now be normalized to the unit interval [0,1] by means of the following simple linear transform %
B
fela,bl={ 0]
with

5=g:z (50)

This will result in equivalent data () = ¥(¢{) ,and equivalent coefficients @ &)= a,({).
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The algorithms proposed in this section can be summarised as

(i) Choose a class of wavelet @ and @,
(ii) Pre-process the sampled data (where necessary),

(1i1) Determine the start resolution scale j, and the maximum scale J, as well as the order of the

model, such as p, g, s in the time varying ARMAX model (41), based on prior knowledge and
computational constraints, '

(iv) For j = j,,j, +1,---,J , select the candidate wavelet and scaling functions from the family
composed of all the possible functions {@, },., and {@,,},.;. The candidate functions are

those, whose support contain sample data points.

(v) Perform model structure selection and parameter estimation using the OFR algorithm,

(vi) Validate the model using for example the tests in Billings & Voon [1983], Billings & Zhu
[1994,1995].

Notice that, the proposed identification procedure is not limited to the wavelet basis case. Other
bases can also be employed if there is strong evidence that they can yield a sparse expansion of the
time-dependent coefficients. In addition, the proposed identification procedure has the capability to

estimate the lagged model terms. For example in the simple case of an AR model of true order p,,

~ where p, is unknown. Assigning the order to be p(> p,) during the identification procedure, then
the OFR algorithm [Billings & Chen, 1989] will reject all the regressors corresponding to the
expansion of a,(¢) for p, <i<p.

3, EXAMPLES

A selection of examples are described below to show the application of the new multiresolution
wavelet models in the identification of time-varying systems.

51 Sunspot data

The Wolf sunspot data is a very well-known data set and records the annual sunspot index from
1700 onwards [Priestley, 1988]. The main feature of this time series is a cycle of activity varying in
duration between 9 and 14 years, with an average period of approximately 11.3 years. Another feature
of the series is that in each cycle the rise to the maximum tends to have a steeper gradient than that of
the fall to the next minimum. This suggests that a nonlinear model might be appropriate and many
different models have been fitted to this data set [Priestley, 1988]. However, few time-varying models
have been fitted to this data.

In the present study the application of the new wavelet identification procedure derived above will
be applied to fit a simple time-varying AR model to the sunspot data. The objective here however is
not to find the definitive model for the sunspot data but rather to use this data to illustrate the new
algorithm on a well known real data set. The initial candidate term set was defined by a 3-rd AR

model and the wavelet expansion scales j, = j . =2 and J = j_,, =4. The coefficient trajectories
corresponding to the model are shown in Fig. 1 together with the one-step-ahead predictions.
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Fig. 1. Parameter trajectories for the estimated 3rd-order time-varying AR model coefficients
and the one-step-ahead predictions for the sunspot data

(@) a,(1); (®) a,(t); (c) a,(2); (d) Sunspot data and one-step ahead predictions

(**” indicates true values; “—indicates one-step-ahead predictions)

5.2 Modelling a flight vehicle simulator

Fig. 2 shows 1000 sampled input and output data that were collected from a flight vehicle
experimental simulator. The nput u(z), a squared voltage excitation signal with unit amplitude, was
the input to the servo system. The output y(#) was the spin angle of the flight vehicle simulator. The

objective here is to build a simple model to describe the system input-output relationship using a time-
varying ARX model. The following time-varying ARX structure was chosen according to theoretical
analysis and prior knowledge

y@)=a,+a,@)yt-1)+ a,®)y(t—2)+a,(t)u—4)+e(t) (51)

Expanding the coefficients a,(z)into a multiwavelet series, the time-varying model (51) becomes a
time-invariant parameter estimation problem. Solving this problem by employing the OFR algorithm,
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the wavelet coefficients and hence the time-dependent parameters a,(r) can be identified. The

identified parameter trajectories are shown in Fig. 3. The one step-ahead predicted output and the
corresponding error are illustrated in Figd, which shows that although the model (51) is very simple, it
can describe the system well. '

L ! L L !

0 100 200 300 400 500 600 700 800 900 1000
(a)

LT

_20 L L 1 L i I Il i 1
0] 100 200 300 400 500 600 700 800 900 1000
Sample Index

(b)

20

o
=
=

The Output y(t)
o

o
=

Fig. 2. System input and output for a flight vehicle experimental subsystem
(a) The input—a squared voltage excitation signal with unit amplitude; (b) The measured output
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Fig. 3. Parameter trajectories of the time-varying ARX model in the section 5.2

16




'

Output

— —'0—-_ -
——
R

Predicted

S o

Predicted Output

=) o
—

%
o

'
no
o

200 250 300 350 400 600 650 700

Prediction Error
(=]

5 1 1 1 1 i | 1 L I
0 100 200 300 400 500 600 700 800 900 1000

Sampie Index
()

Fig. 4. One-step-ahead predicted output and prediction error for the flight vehicle experimental subsystem
in section 5.2. (a) ,(b) The measurements and the one-step-ahead predicted output; (c) The one-step-ahead
prediction error. (“*” indicates true values; “— indicates one-step-ahead prediction)
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3.3 Coefficient estimation for nonlinear time-invariant continuous time systems

Although the approach described in section 4 was proposed for time-varying systems, it can also be
used for the identification of time-invariant linear and nonlinear systems. As an example, consider the
Goodwin Equation[Coca, 1996], a nonlinear time-invariant continuous system mode]

5 + al’—(g—: $() +by(@) +cy* (0) = —Au(r) (52)

where a,b,cand A are time-invariant parameters.

Under the conditions y(0) = y(0) =0, u(r) = sin(z) , witha =0.1,b=—0.5, c =0.5and A = 37 :
a dth-order Runge-Kutta algorithm was used to simulate this model to obtain 1000 equi-spaced
samples from the input and output with a sampling interval of T = 0.01 time units. The sampled data
will be referred to subsequently as u ¢ =u(kT),y, = y(kT).

For this continuous time model identification, the model structure is assumed to be known. If the
derivatives y and ¥ can be observed or reconstructed, the time-invariant parameters @, and ¢ can be

estimated using the algorithm introduced in section 4.The model (51) can be re-written as

a2 O 56y 1 b6Y36) + ety () = £ 53)

yir)+1

where (1) =—3()— Au(z). Expanding a(t),b(r) and ¢(z) into multiwavelet series, the time-

. varying model (53) becomes a time-invariant model and the wavelet coefficients can be estimated.
" The trajectories of a(t),b(z) and c(z)are shown in Fig. 5.
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Fig. 5. The true and estimated values of the time-varying coefficients for the model in Eq. (53)
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5.4  Time-varying parameter estimation

The following system
y() = a()y@=D+b@)u-1) +v(r) (54)

was used to generate 500 data samples of y(z) (see Fig.6(a)), where u(z)and v(t) were independent
normally distributed random sequences with zero means and variances e = 0} =10. The
coefficients a(r) = 0.8 for 0 <t <500 and b(r) was a piece-wise function described as follows

2 0<7<100, 201<r<300, 401<t <500
bt} = (55)
5 101<7<200, 301<t <400
Assuming that no prior knowledge about the parameters a(t)and b(r) were known, the aim was to
identify these from the above simulated data using the algorithm introduced in section 4. Expanding
the coefficients a(f)and b(¢)into multiresolution wavelet series, the time-varying model (54)
becomes a time-invariant identification problem and the wavelet coefficients can be estimated using
the OFR algorithm. The estimated values of the parameters a(z)and b(z)are depicted in Fig. 6(b),

which clearly shows that the wavelet expansion can track the piece-wise varying coefficient very well.
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Fig. 6. System output [(a)] and the coefficient estimates[(b)] for the system in section 5.4.
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6. CONCLUSIONS

Parametric identification of nonlinear time-varying systems is simplified if each time-varying
coefficient can be expanded as a finite set of basis functions. The problem then becomes time-
invariant with respect to the parameters in the expansions and the main problem then becomes
regression selection. A multiresolutuion wavelet expansion of the time-varying model coefficients has
been proposed and implemented using an orthogonal least-squares procedure as a solution to this
important problem. This provides a flexible procedure that overcomes many of the limitations
associated with employing the F and A/C tests when many potential candidate terms are involved. The
new algorithm automatically selects the most significant model terms in the time-varying expansion to
provide a parsimonious representation for both linear and nonlinear time-varying systems.
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