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Introduction

Community detection in large networks [1–3] is emerging in various kinds of applica-

tions. Network data contain a wealth of information, e.g., top-K nodes and top-K com-

munities based on community strength/influence; when uncovered, this data can bolster 

predictive models and elucidate general network dynamics. Moreover, when solving 

complex problems, a diverse set of domains—such as optical character recognition 

(OCR) analysis; protein complex detection; and community discovery in social net-

works, neurology, genetics, transportation, social network analysis, structural analysis, 

and computation—can be represented in the form of graphs and networks for data rep-

resentation. In particular, social networks are being represented in the form of graphs to 

address fundamental problems, such as discovering communities in the network [4, 5] or 

discovering the community that is most likely to contain the query node. Social-network 

graphs generally consist of nodes that represent users, and community detection on 

social-network graphs means identifying a set of similar nodes (users). In a network, the 

bond among the nodes inside a community would be denser than with those outside the 

community. Many existing clustering algorithms are available that converge the nodes 

in a graph with good bonding. Out of the entire network, by identifying the top users 
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of a community or of an entire network as well as top communities based on strength/

influence, the focus of interest could be limited to a set of nodes/communities capable 

of spreading information into the entire network. For example, consider an e-commerce 

business offer: instead of sending rewards coupons to all the users, instead, identify the 

top users, who are loyal and frequent buyers, and most likely to use the rewards cou-

pons. Sending these top users rewards coupons will benefit the business. Other strate-

gies can be applied to new or infrequent buyers.

In all previous studies on these problems, a community has been defined as a densely 

connected sub-graph. According to Faisal et  al. [6], this focus ignores another key 

aspect, namely, influence or importance; these authors presented interesting scenar-

ios that highlighted importance and need to find the most influential communities in 

a network. Previously, Doo [7] focused on detecting the top-K influential communi-

ties in undirected graphs. �ey defined the influence of a community as the minimum 

weight of nodes in that community; the top influential community was the one with 

largest influence value. On the other hand, Du et al. [8] ranked communities according 

to the strength of each community, which varies with time. In this paper, we define the 

strength of communities in terms of their average Katz Centralities, taking into consid-

eration each community’s distinctive nature. All the communities in this study were to 

connect to a maximum number of communities. If a community is immediately con-

nected to more number of communities than others are, then it can influence them all. 

By this means, a message can be propagated to the maximum number of communities 

present in the graph.

Related work

Ample of work has been done to find the most influential community in a network. One 

of the most significant methods used include the classic centrality measures, such as 

degree, betweenness, or similar kind of measures.

Xie et al. [4] proposed a method to extract the community structure, which appeared 

to be connected by means of a unique spectral property of the graph Laplacian of the 

adjacency matrix. �is group used such structural parameters as algebraic connectiv-

ity and node degree distribution for community exploration. Similar to our work, they 

took into consideration the edge structure; in addition, they used the greedy algorithm 

for modularity optimization. Li et al. [5] used another approach, which was to study the 

flooding time, which is the time taken for the information to spread from one node/

community to the other node/community. In this approach, processes were considered 

in which the topology of the graph at time t depended only on their topology at t-1. In 

their case, most of the dynamic graphs were Markovian and ergodic.

One emphatic approach for detecting the most influential community could be fore-

casted by detecting the number of nodes whose information radiates the most. One 

such model was proposed by Ma et al. [9], in which mining of social networks were done 

using heat-diffusion processes. Based on this, candidate was selected. �e basic formula 

used for undirected social networks was:

fi(t + �t) − fi(t)

�t
= α

∑

j:(vj,vi)εE

(

fj(t) − fi(t)
)
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where there is a social network graph, G  =  (V, E), where V is the vertex set and 

V = {v1, v2, . . . vn}. E =
{(

vi, vj
)

|there is an edge from vi to vj
}

. �e value fi(t) describes 

the heat at node vi at time t. f(t) denotes the vector consisting of fi(t). �e heat should be 

proportional to the time period Δt, and the heat difference fj(t) − fi(t). α is the thermal 

conductivity, and E is the set of edges.

Faisal et al. [6] proposed an approach of identifying the boundary nodes in a community, 

as they played a vital role in communication for energy-efficient graph processing. �ey 

calculated the similarity of the nodes by using the Jaccard similarity, which is given as:

where Adj(i) and Adj
(

j
)

 are the adjacent list of nodes i and j, respectively.

Sweeney et al. [10] used a game theoretic model to detect communities in large net-

works. Modified Laplacian matrices along with neighborhood similarities were used, 

and a given network was segregated into dense networks. Kim [11] computed the 

popularity of a node in a community. Wu et al. [12] described a new method using dis-

tance centrality, and detected the communities without a present community number 

by considering the most central node and determining the similarities among all other 

nodes. Zhang and Wu [13] found the core nodes for the local community detection, and 

Mahmood and Small [14] found that each node could only be represented efficiently as a 

linear combination of nodes spanning the same subspace.

Preliminaries

Katz centrality measures the relative influence of each node in a given network by tak-

ing into account the node’s immediate neighbors as well as non-immediate nodes that 

could be connected to the node by way of its immediate neighbors. Similar to Sub graph 

centrality and Total communicability, Katz centrality covers both local and global influ-

ence of a node on the entire network. �e matrix resolving (I − αA)
−1 first was used to 

rank nodes in a network in the early 1950s, when Katz used the column sums to cal-

culate node importance [15]. �e Katz centrality score of a node i was given by either 

[(I − αA)−1.1]i or (I − αAT
)−1.1]i, depending on whether broadcast or receiving scores 

were required (a directed graph) [16]. In an undirected graph in which the Adjacency 

matrix obtained is a symmetric matrix (A =  AT), either of the formulae can be used 

to compute Katz centrality scores. �e column matrix containing all number ones may 

be replaced by an arbitrary (positive) preference vector, v as required. Katz centrality 

of node i counts all walks beginning at node i, penalizing the contribution of walks of 

length k by αk.

�e bounds on α (0 < α < 1/�1) ensure that the matrix I − αA is invertible and that 

the power series in (1) converges to its inverse. �e bounds on α also force (I − αA)−1 to 

be nonnegative, as I − αA is a nonsingular M-matrix. Hence, both the diagonal entries 

Sim
(

i, j
)

=
|Adj(i) ∩Adj

(

j
)

|

|Adj(i) ∪Adj
(

j
)

|

(1)(I − αA)
−1

= I + αA + α2
A
2
+ · · · + αk

A
k
+ · · · =

∞∑

k=0

αk
A
k



Page 4 of 28Zhan et al. J Big Data  (2016) 3:16 

and the row/column sums of (I − αA)−1 are positive, and thus can be used for ranking 

purposes.

Given a graph, G  =  (V, E), a walk of length m denotes a set of m nodes 

{v1, v2, v3, . . . , vm}, and E = {e1, e2, e3, . . .} is the set of edges. �en, A is the adjacency 

matrix of the network G, denoting the immediate connectivity among the nodes. �e 

Katz centrality of a node vi is given by:

where α is a constant called damping factor, which is usually considered to be less than 

the largest eigenvalue, λ (i.e., α  <  1/λ1) and β is a bias constant (also called the exog-

enous vector), which is used to avoid the zero centrality values. Hence, each node has a 

minimum, positive amount of centrality that it can transfer to other nodes by referring 

to them. In particular, when measuring the receiving capacity, the centrality of nodes 

that are never referred to is exactly this minimum positive amount. When measuring 

the broadcasting ability of a node, linked nodes have a higher centrality or the central-

ity of nodes that are never broadcasting to any other nodes. It follows that highly linked 

nodes have high centrality regardless of the centrality of the neighboring nodes. How-

ever, nodes that receive few links still may have high centrality if their neighboring nodes 

have a large centrality.

From (2), it is evident that Katz centrality is a parameter dependent index, i.e., it 

depends on α and β. �eir values play a decisive role in obtaining Katz centrality values 

that fluctuate. Different choices of α and β lead to different centrality values, resulting in 

different node rankings. For instance, if α → 0+, then the Katz centrality reduces to a 

degree centrality [17]. If α → (1/λ1), then it reduces to an eigenvector centrality [18]; for 

example, if α = (1/λ1) and β = 0, then the Katz centrality is the same as the eigenvector 

centrality. Hence, these parameters can be taken as a medium to tune between the rank-

ings of nodes based either on a local influence (short walks) or a global influence (long 

walks).

In case of undirected graphs, both the receiving and broadcasting abilities are alike 

[16]. However, this is not the case for directed graphs. Table  1 provides the limiting 

behavior of various schemes.

�e right eigenvector of a person would be high if he or she is able to influence some-

one who already influences a great amount of people. �e left eigenvector of a person 

would be high if someone who gets a great many votes is voting him or her.

Furthermore, (2) can be generalized for the entire graph as:

(2)CKatz(vi) = α

n
∑

j = 1

Aj,I CKatz

(

vj
)

+ β

(3)CKatz = β

(

I − αAT
)

−1

.1

Table 1 Limiting behavior of various schemes

Method Limiting ranking scheme

Out-degree In-degree Right eigenvector Left eigenvector

Kb(α) α → 0+ α → 1/λ1−

Kr(α) α → 0+ α → 1/λ1−
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Consider the example in Fig. 1 to understand this concept in detail.

For the given graph in Fig. 1, the corresponding adjacency matrix is as follows:

�e eigenvalues of A are (2.64, −1.77, −1.00, 0.72, −0.58). With the given eigenvalues, 

the largest value of A is λ = 2.64. Assume that α = 0.2 < 1/λ and β = 0.3. �en, the Katz 

centralities are:

�erefore, nodes v1 and v3 have the highest Katz centrality, and would be the most 

influential nodes.

Definition: Let G = (V, E) be a strongly connected, directed, unweighted network rep-

resenting actors and their ties with the adjacency matrix A. K b
i
(α) =

[

(I − αA)−1
.1

]

i
 be 

the Katz broadcast centrality of a node i. Similarly, the Katz receive centrality of node I 

can be obtained as K r

i
(α) =

[

(

I − αAT
)

−1
.1

]

i

.

Now consider Fig. 2.

For the given directed graph in Fig. 2, corresponding adjacency matrix is as follows:

A =











0 1 1 1 0

1 0 1 0 0

1 1 0 1 0

1 0 1 0 1

0 0 0 1 0











CKatz = β (I − αA)
−1

.1 =











0.675

0.567

0.675

0.651

0.423











Fig. 1 An undirected graph with five actors
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Λ1 for the adjacency matrix A is 1, by choosing α = 0.85 and β = 1:

Matrix Cb
Katz

 gives the broadcasting ability of each node. Similarly, by using the same α 

and β values, the scores of each node for the Katz receive centrality scores are:

A =





























0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 1 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0





























C
b
Katz =





























41.381381

47.507508

41.381381

47.048048

41.381381

6.666667

6.666667

1.000000

47.048048

47.048048





























C
r
Katz =





























1.00000

21.98198

1.00000

19.68468

1.00000

120.35736

140.42042

19.68468

1.00000

1.00000





























Fig. 2 A directed graph with 10 actors
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�erefore, from these two broadcast and receive score matrices, it can be inferred that 

Node 2 is ideal for initiating a rumor spread into the network and Node 7 is ideal node 

for receiving the latest rumors in the network.

Map equation framework

�e clustering of the networks resembles the cartography of the traffic infrastructure for 

navigation, hence the term ‘map’. In this framework, the modules are identified that tend 

to stay in a cluster for a longer time. In a study by Rosvall and Bergstrom [19], this can 

be seen as a real scenario because a place could be called a ‘city’ if the traffic remains for 

a relatively long time. �e map equation is constructed on a flow-based infrastructure. 

A random walker’s lodge in a community can have either shorter or longer description 

lengths. For a good community structure, a shorter length is favored. �e random walker 

sometimes stays for a longer time at certain regions in a community. In those cases, the 

description can be condensed. It is better to derive the code length from the stationary 

distribution of the random walker on the nodes and links rather than measuring the code 

length of a long walk and dividing by the number of steps. In general, given a network 

with n nodes and weighted directed links 
(

Wα!β

)

 between nodes α, β , 2, 1, 2, . . . , n, the 

conditional probability that the random walker steps from node α to node β is given by 

the relative link weight Pα≥β = Wα≥β/
∑

βWα≥β .

Infomap clustering [19] arrives at two descriptions by which a random walker spends 

more time within a cluster. It looks for a module partition M (i.e., a set of cluster assign-

ments) of N nodes into m clusters that minimizes the following expected description 

length of a single step in a random walk on the graph:

�is equation has been efficiently demonstrated by Bae et al. [20]. and Shun et al. [21]. 

�e Infomap algorithm shadows the Louvian method, to an extent. It initially augments 

compact communities, which is done by modularity in a local way. Summing over all 

node pairs gives the equation for modularity, Q:

where n and m are the number of nodes and the number of links, respectively; s is a 

membership variable such that if node v belongs to some community h, then Sh = 1. A is 

the adjacency matrix and kv is a node degree.

Discussion

Given a graph with a set of distinct communities C = {C1,C2,C3 . . .Cn} with |C| = n. 

�is set of communities might represent various types of data, such as:

  • Facebook friends that belong to a community or group;

  • A group of users in Twitter who follow a celebrity or famous person;

  • A group of users who prefer a certain category of items on such e-Commerce web-

sites as Amazon, eBay, or Flipkart; or

L(M) = q ∗ H(Q) +

m∑

i=1

piH(Pi)

Q =
1

2m

∑

vw

[

Avw −
kvkw

2m

]

svsw + 1

2
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  • A set of groups in an organization.

Given this data, we tried to identify the most central communities that are capable of 

broadcasting given information into multiple communities. Most of the studies focused 

on finding the top influential communities based on the criteria: How far will the influ-

ence of a group or community propagate in a network?

In our work, the focus was on identifying the central communities that are capable 

of sending a message to the entire network with high influence values as well as into 

how many distinct communities; this information could be broadcasted immediately. In 

general, the influence of a message sent by a person in friends’ network decreases as the 

path of the message transfer increases; the approach using Katz centrality captures this 

property by penalizing a k step walk with αk. For calculating the influence of a commu-

nity over the entire network, we took into consideration the average Katz centrality score 

of individual nodes belonging to the community. At the community level, the interac-

tions of the current community nodes with distinct neighboring community nodes were 

calculated to determine the number of distinct communities into which the current 

community could broadcast a message. By using the above two factors, a community 

could be ranked as an influential community. A ‘community’ was defined as an influ-

ential community if it had a high amount of average Katz centrality scores and if it was 

capable of broadcasting a given message into a maximum number of distinct communi-

ties out of all the communities in the network, apart from the current community under 

consideration. Using this approach, we tried to improve the rankings of communities by 

using fewer actors, yet still capable of sending the information to distinct communities.

To calculate the average influence value of each community, first, the influence values 

of each node that belongs to a community needs to be calculated. �e Katz centrality for 

node i can be calculated as:

where A is the adjacency matrix of the graph G with eigenvalues � = {�1, �2, . . . , �n}.

�e Katz centrality computes the relative influence of a node within a network by 

measuring the number of the immediate neighbors (first-degree nodes) and also all 

other nodes in the network that connect to the node under consideration through these 

immediate neighbors. Extra weighting could be provided to the immediate neighbors 

by means of the parameter β. However, connections made with distant neighbors are 

penalized by an attenuation factor α, which should strictly be less than the inverse larg-

est eigenvalue of the adjacency matrix in order for the Katz centrality to be computed 

correctly. �e influence of a node on a distantly connected node will vary with this 

attenuation factor; this is analogous to real time, where the influence of a person on 

immediate neighbors would be relatively high compared to users who are connected 

to neighbors of the current user under consideration. �e influence of the current 

user under consideration would be less, and reduces with as the length of the walk to 

another user increases.

In turn, the Katz centrality has two variations, Katz broadcast centrality and Katz 

receive centrality. Katz broadcast and receive centralities of node i can be calculated 

(4)
Xi = α

∑

j

Ajixj + β
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using Cb
Katz

=

[

β(I − αA)
−1

.1

]

i
and C

r

Katz =

[

β

(

I − αAT
)

−1

.1

]

I

. In the case of an 

undirected graph, where A = AT, either of the formulas could be used to calculate the 

broadcast and receive scores. In the case of a directed graph, Cb
Katz

= [β(I − αA)
−1

.1]i 

could be used to calculate the broadcast centrality score of node i. After calculating the 

Katz centralities of each user or node in the network, we take the average influence val-

ues of each community by taking into account the influence values of all the nodes that 

belong to a given community. �is value accounts for the relative influence of a commu-

nity on the entire network. CKatz_average(i) represents the community level influence 

on the network of communities. CKatz_average(i) for community Ci with k number of 

nodes {n1, n2, n3, . . . , nk} is computed in the following manner:

In general, there two types of communities: Hard and Soft communities. Within the 

scope of this paper, we only considered hard communities; that is, given a node i, it only 

belongs to one community k at a given time. After computing the Katz centralities of 

each community, out of all the communities present in the network apart from the cur-

rent community under consideration, the distinct number were identified for immedi-

ate neighbors into whom each community was capable of broadcasting a given message. 

�is can be calculated as:

where |N| is the number of distinct neighboring communities and |TC| is the total num-

ber of communities within the network. After calculating the strength and normalized 

distinct neighboring communities value, the strength of community can be obtained by 

using:

where |Ni| represents the number of directly connected neighboring communities of 

community Ci and |TC| represents the total number of communities in the network. 

After calculating the strength values of each community, all the communities are sorted 

in the descending order of their strength values in order to retrieve the top-K communi-

ties later.

Implementation

�e proposed model was implemented in R language, with RStudio, an integrated devel-

opment environment (IDE); and by using IGraph packages extensively. An IGraph pack-

age was used for graph creation, both undirected and directed; community formation; 

and for capturing these details in a matrix. �is matrix was parsed for community-wise 

boundary-node detection. Further, to rank the communities, the average value of the 

Katz broadcasting centrality for each community is computed (by using the Katz broad-

cast centralities of all nodes in each community). In turn this average Katz broadcast 

centrality of each community is multiplied by the normalized value of the number of 

distinct neighboring communities.

(5)CKatz_average (i) = (n1 + n2 + n3 + cdots + nk)/K

(6)(|N|/(|TC| − 1))

(7)Strength (Ci) = CKatz_average (i) ∗ (|Ni|/(|TC| − 1))



Page 10 of 28Zhan et al. J Big Data  (2016) 3:16 

�e pseudo-code for populating a community matrix is given in Table 2. In this part 

of code, the input file (edge list format) is read and the graph object is created by using 

the read.graph() method of the IGraph package. �e default graph object is a directed-

graph object; in case the data is that of an undirected graph, the graph object needs to be 

converted to an undirected graph object. �is can be done by using the as.undirected() 

method of the IGraph package. �e graph object, either directed or un-directed, is 

passed to the Infomap.community() method to identify the communities in the network. 

�e membership of each node is captured in a list object of the R language, in this case, 

c_List. Later, this list object is parsed by using the indexes to construct the community 

matrix. If a node i belongs to community k, then Community_Matrix [i, k] consists of 

k (community number). �e later stages of the algorithm uses this community Matrix 

& c_List to identify the boundary nodes of each community and to identify how many 

distinct one-step neighboring communities connect to the current community.

For the Katz broadcast centrality, the pseudo code for the computation of the scores of 

each node is given in Table 3. For the Katz broadcast centrality, the score for node i can 

be obtained by computing 
[

β(I − αA)
−1

.v

]

i

; for the Katz receive centrality, the score for 

node i can be obtained by computing [β(I − αAT)−1
.v]i. �e pseudo-code in Table 3 is 

valid for both undirected and directed graph data. In the case of an undirected graph, 

Katz broadcasting and receiving scores are the same because A = AT, where matrix A is 

an adjacency matrix and symmetric in nature.

�e pseudo-code for identifying distinct communities that are in the neighborhood 

of each community is given in Table 4. In order to identify each community’s distinct 

neighbors, community_Matrix and membership list(c_List) are used. �e community_

Matrix is parsed column-wise; whenever the algorithm finds a non-zero value, the node 

(row#) belongs to the community (column#). (In the community_Matrix, row numbers 

Table 2 Construction of the community matrix

Table 3 Computation of the Katz broadcast centrality
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represent the node labels, whereas column numbers represent the community numbers.) 

All the outbound-edge neighbors of the current node are retrieved, and their member-

ship is tested to know whether they belong to a neighboring community or not. In this 

way, all the details of distinct neighboring communities are captured for every commu-

nity. After obtaining the list of distinct communities, unique function of the R language 

is applied to retrieve the unique neighbors; later, the length method of the R language is 

used to determine the number of unique neighboring communities. After obtaining the 

number of unique neighboring communities, the normalized value is calculated, as per 

line 21 in Table 4), and the values are stored in nMatrix. �is process is repeated for each 

column of the community_Matrix.

In addition, temp_Sum is a variable that captures the sum of the Katz centrality scores 

of all the nodes that belong to a community, and count_nodes keeps track of the total 

number of nodes in a community. By using these two features, average Katz centrality 

scores of each community can be calculated, and the values are stored in kMatrix. �is 

information is used to calculate the strength values of each community.

�e pseudo-code for the calculation of each community’s strength value is given in 

Table 5, kMatrix consists of the average Katz broadcasting scores of each community, 

and nMatrix consists of the normalized neighbor count of each community. Using these 

two values, strength of each community is calculated and stored in result matrix. Result 

Table 4 Detection of neighboring communities

Table 5 Identi�cation of a top-K community
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matrix is a two columned matrix, first column is used to store the community number 

and the second column is used to hold the strength values. Two columns facilitate the 

sorting operation, so as to keep track of community and community strength values 

after sorting. Later all the given communities are sorted in descending order of their 

strengths to allow us to pick the top-K communities.

The IGraph package

�e IGraph package in R consists of routines for simple graphs and network analysis. 

It can handle large graphs very well, and provides functions for generating random and 

regular graphs, graph visualization, centrality methods and much more. Many commu-

nity algorithms are available [22–26]; in our model, the infomap community-detection 

algorithm of IGraph library (in R language) was used to simulate communities from the 

given data file.

For generating a graph object using the IGraph package, node labels present in the 

input file (edge list file) when arranged in consecutive order and must start with the label 

‘zero’; the IGraph package expects the subsequent numbers to be in consecutive order. If 

the node labels in the input file are not present in this format—for example, if the edge 

list does not contain a node zero, then a node zero will be created by the IGraph pack-

age. �is behavior might cause problems because an additional row will be created in the 

adjacency matrix; further, the inverse might not be computed as there is a chance for a 

determinant of matrix A to be zero. Even if the node labels are in the order as expected 

by the IGraph package—that is, the node labels start from zero and the rest of the labels 

are in consecutive order—then, the IGraph package increments each node by a value 

‘one’. In other words, a node with the label ‘zero’ is converted into a node with the label 

‘one’, a node with the label ‘one’ is converted into a node with the label ‘two’, and so on. 

However, the type of conversion done by the IGraph package—incrementing the node 

labels by one—will not affect the results as long as all the node labels in the input file are 

in consecutive order from 0 to n nodes. After performing all the required operations on 

the converted node labels in the R environment, the results obtained can be converted 

back to an edge file format by subtracting ‘one’ from the node labels.

In order to make the effective use of the IGraph package’s functionality, in our pro-

posed model, we came up with a pre-processing algorithm (see Table 6), which reads the 

input file node label and aligns the node labels in the format as expected by the IGraph 

package. �e preprocessing algorithm will make sure that the newly obtained file con-

sists of node label ‘zero’; in addition, it ensures that there are no missing nodes in the 

Table 6 Processing of input �les
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input file, i.e., all the node labels are consecutively ordered. Please note that the preproc-

essing is required only if the input file is not present in the format as expected by the 

IGraph package.

After obtaining the pre-processed file, it was fed as input to construct the graph object 

(either undirected or directed). �e infomap community-detection algorithm was run 

on top of the graph object to capture information obtained from communities in two 

ways. First, all the communities and nodes that are members of each community were 

captured. Second, the community to which each node belonged were captured using a 

list object in R language, with node labels as indexes and community numbers as ele-

ments for the corresponding node labels. Later, these two attributes were used to con-

struct the community matrix, a matrix in which rows represent nodes, with the number 

of rows representing the total number of nodes in the graph and the columns represent-

ing the communities formed based in the graph topology, with number of columns as 

the total number of communities.

Initially, the community matrix was initialized to all zeroes; later, this matrix was pop-

ulated with community numbers such that if a node i belonged to community k, then 

the element Community_Matrix [i, k] consists of k. �e community matrix was used as 

the data structure, which was parsed column-wise (community-wise) to determine the 

nodes that fall into the community; then, the community matrix retrieves all the out-

bound neighbors and their community numbers to check if the outbound neighboring 

node belonged to a different community. If so, the neighboring community numbers was 

tracked, and the count of unique neighboring communities was retrieved for each com-

munity to be used in calculating the communities’ strengths.

Conclusions

�is paper presents a new way of calculating the top-K most influential communities 

in large networks. We designed a model that calculated the average Katz centrality of 

all the communities rather than following the standard approach using group centrality 

measures. After calculating the average, the communities connected to the most num-

ber of unique communities were considered, and defined as the community strength. 

We found that by contemplating the distinctive nature of the communities, the most 

influential one can be determined. From the experiments conducted on three sample 

datasets, the top 15 communities from all the datasets were ascertained, with the graphi-

cal representation. �e approach followed in calculating the strengths gave importance 

to the communities capable of propagating information into distinct neighboring com-

munities; the influence of the group was weighted over the network.

In the future, the model could be improved by considering the weights of edges. In 

addition, the internal nodal interaction could be improved by considering external com-

munity–community interactions.

Experiments

Experimental environment

All the test cases and output graphs were obtained when executed on the proposed algo-

rithm in Intel® Xeon® CPU E5-1607 0 @ 3.00 GHz with 16.0 GB RAM, which uses a 

64-bit Windows Operating System.
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Results

Facebook dataset

�e strength values for the Facebook dataset were dependent on every individual node 

influence on the network since individual node-centrality values were calculated as the 

average as well as at the community–community level; also included were the number of 

communities to which this community could directly contribute its Katz centrality value.

�is dataset consisted of 4039 nodes and 88,234 edges. Varying the number of com-

munities formed by using the infomap community detection algorithm tested the data; 

for each set of communities, also varied was the α value, used to compute the Katz cen-

trality values of each node over the entire graph. Largest λ value obtained for the value 

for the network would not change with the number of communities formed, and the 

largest λ value was 0.006. �e metrics used in distributing the data using IGraph’s info-

map method were the number of trails as 10 and modularity value as TRUE. Using the 

infomap community-detection method, 91 and 94 communities were formed in the first 

and the second attempt. Every time, the number of communities gets varied.

For each set of communities formed, the α value was varied as {0.003, 0.005}. Any 

value of α could be considered as far as it was less than the value of the highest λ value. 

After calculating the individual nodes for the Katz centrality values, community-wise 

average values were calculated. After that, the number of distinct neighboring commu-

nities was perceived for each community, and then strength values for each community 

were calculated. �e next step after calculating the strength values of each community 

was to sort the obtained results in descending order in order to determine the top-K 

communities, which in these experiments were the top 15.

With |C| = 91 and alpha value as 0.003, Table 7 shows the top 15 communities ranked 

in the descending order of their community numbers. Please note that the community 

numbers were arbitrary; they were not given numbers on the basis of the number of 

nodes contained in the community. Figure 3 gives the graphical representation of top 15 

communities given in Table 10, with α = 0.003.

With |C| = 91 and when alpha value is increased from 0.003 to 0.005, Table 8 consists 

the top 15 communities ranked in the descending order of their strength values. Fig-

ure 4 gives the graphical representation of the top 15 communities given in Table 7 with 

α = 0.005.

With the same graph object, and by using infomap clustering algorithm, another set of 

communities with |C| = 94 was generated. With |C| = 94 and the alpha value as 0.003, 

Table 9 consists the top 15 communities ranked in the descending order of their strength 

values. Figure 5 gives the graphical representation of the top 15 communities given in 

Table 9 with α = 0.003.

With |C| =  94 and alpha value as 0.005, Table  10 consists the top 15 communities 

ranked in the descending order of their strength values. Figure 6 gives the graphical rep-

resentation of the top 15 communities given in Table  10 in descending order of their 

strength values, with α = 0.005.

Autonomous systems dataset

�is dataset consisted of 6474 nodes and 13,895 edges. �e data was tested by vary-

ing the number of communities formed by using the infomap community-detection 
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Table 7 Top-K facebook communities (15) by  community strength with  |C|  =  91 
and α = 0.003

Top 15 communities Community strength

2 0.34827931

20 0.32542475

3 0.27217018

1 0.25541676

8 0.25301664

5 0.23070149

7 0.21545911

19 0.20524559

12 0.19873984

13 0.19409956

25 0.16872643

23 0.16562121

44 0.13891725

41 0.13763725

9 0.13538653

Fig. 3 The graph of top-15 communities when α = 0.003

Table 8 Top-K facebook communities (15) by  community strength with  |C|  =  91 
and α = 0.005

Top 15 communities Community strength

2 0.55987447

3 0.40251962

20 0.37294907

1 0.28959429

8 0.28351022

4 0.27519171

5 0.24827503

7 0.22899202

13 0.22514774

19 0.22327368

12 0.22228522

25 0.18739987

23 0.17738614

9 0.1628733

44 0.14628848
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algorithm on the data; for each set of communities, we tested by varying the α value. 

Largest λ value obtained for the value of the network would not change with the number 

of communities formed, and the largest λ value was 0.061. �e metrics used in distrib-

uting the data using IGraph’s infomap method were the number of trails as 10 and the 

modularity value as TRUE.

Fig. 4 The graph of top-15 communities when α = 0.005

Table 9 Top-K facebook communities (15) by  community strength with  |C|  =  94 
and α = 0.003

Top 15 communities Community strength

2 0.35309423

21 0.34203471

3 0.26339049

1 0.25965741

8 0.25724355

7 0.22047152

5 0.21150900

19 0.21030857

12 0.20434944

13 0.2011278

23 0.18324383

25 0.17492941

44 0.14563905

9 0.14412115

41 0.13319734

Fig. 5 The graph of top-15 communities when α = 0.003
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Using the infomap community-detection method, 406 and 411 communities were 

formed in the first and the second attempts. For each set of communities formed, the α 

value was varied as {0.018, 0.020}. After calculating the Katz centrality values for indi-

vidual nodes, community-wise average values were calculated. After that, the num-

ber of distinct neighboring communities was perceived for each community, and the 

strength values for each community were calculated. �e next step after calculating 

the strength values of each community was to sort the results obtained in descending 

order to pick the top-K communities, which were the top 15 in these experiments. �e 

graph outline was the same as the Facebook dataset, with the x axis representing the 

top 15 communities in the ascending order and the y axis representing the strength 

of the communities. Initially, the α value was taken as 0.018, and then incremented to 

0.020.

With |C| = 406 and the alpha value as 0.018, Table 11 shows the top 15 communities 

ranked in the descending order of their strength values. Figure 7 gives the graphical rep-

resentation of the top 15 communities given in Table 11 with α = 0.018.

Table 10 Top-K facebook communities (15) by  community strength with  |C|  =  94 
and α = 0.005

Top 15 communities Community strength

2 0.56761467

21 0.39507630

3 0.38953511

1 0.29450742

8 0.28837354

4 0.26631456

7 0.23462185

13 0.23396232

19 0.22878138

12 0.22855940

5 0.22762057

23 0.19593760

25 0.19428045

9 0.17338125

44 0.15336696

Fig. 6 The graph of top-15 communities when α = 0.005
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With |C| = 406 and the alpha value as 0.020, Table 12 consists the top 15 communities 

ranked in the descending order of their strength values. Figure 8 gives the graphical rep-

resentation of the top 15 communities given in Table 11 with α = 0.020.

With the same graph object, and by using infomap clustering algorithm, another set 

of communities with |C| = 411 was generated. With |C| = 411 and the alpha value as 

0.018, Table 13 consists the top 15 communities ranked in the descending order of their 

strength values. Figure 9 gives the graphical representation of the top 15 communities 

given in Table 13 with α = 0.018.

With |C| = 411 and alpha value as 0.020, Table 14 consists the top 15 communities 

ranked in the descending order of their strength values. Figure  10 gives the graphical 

representation of the top 15 communities given in Table 14 with α = 0.020.

Wikipedia dataset

�is dataset consists of 7115 nodes and 103,689 edges. �e data was tested by varying 

the number of communities formed by using the infomap community-detection algo-

rithm on the data; for each set of communities, the α value, used in computing the 

Table 11 Top-K communities for  autonomous systems (15) by  community strength 
with |C| = 406 and α = 0.018

Top 15 communities Community strength

1 2.382238856

2 1.420252055

5 0.965961599

3 0.774542642

9 0.723444622

27 0.722030104

36 0.53013892

7 0.508309547

19 0.489419269

10 0.477645542

25 0.378747968

8 0.374400865

31 0.340878789

55 0.32575921

13 0.304715633

Fig. 7 The graph of top-15 communities when α = 0.018



Page 19 of 28Zhan et al. J Big Data  (2016) 3:16 

Table 12 Top-K communities for  autonomous systems (15) by  community strength 
with |C| = 406 and α = 0.020

Top 15 communities Community strength

1 5.705042597

2 3.250283359

5 2.223298308

3 1.701964513

27 1.674371952

9 1.607148445

7 1.118534177

36 1.091291835

10 1.017736145

19 0.919028955

25 0.771858687

31 0.737656335

13 0.641765117

55 0.631717051

8 0.63080304

Fig. 8 The graph of top-15 communities α = 0.020

Table 13 Top-K communities for  autonomous systems (15) by  community strength 
with |C| = 411 and α = 0.018

Top 15 communities Community strength

2 2.352501069

1 1.395429598

5 0.969208061

34 0.915517939

3 0.778288328

9 0.721428051

35 0.521542166

7 0.50211065

18 0.483450742

10 0.465771614

8 0.374186001

23 0.37412909

58 0.339157028

29 0.33672173

12 0.300999589
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Katz centrality values of each node over the entire graph, was varied. Largest λ value 

obtained for the value for the network would not change with the number of communi-

ties formed, and the largest λ value was 0.022. �e metrics used in distributing the data 

using IGraph’s infomap method were the number of trails as 10 and the modularity value 

Fig. 9 The graph of top-15 communities when α = 0.018

Table 14 Top-K communities for  autonomous systems (15) by  community strength 
with |C| = 411 and α = 0.020

Top 15 communities Community strength

1 5.633347026

2 3.193476528

5 2.230770503

34 2.22796836

3 1.710195207

9 1.602668589

7 1.104893516

35 1.058384531

10 0.99243595

18 0.907821284

23 0.762445776

29 0.728660526

58 0.665951755

12 0.633938713

8 0.630441029

Fig. 10 The graph of top-15 communities when α = 0.020
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as TRUE. Infomap community detection method is used to identify communities in the 

network. We ran our proposed algorithm twice for each data set by varying the number 

of communities in the network. �e number of communities formed in the first run is 

499 and the number of communities formed in the second run is 508.

For each set of communities formed, the α value was varied as {0.018, 0.020}. Any 

value of α could be considered as long as it is less than the value of the highest λ value. 

After calculating the Katz centrality values for individual nodes, community-wise aver-

age values were calculated. After that, the number of distinct neighboring communities 

was perceived for each community, and then the strength values for each community 

were calculated. �e next step after calculating the strength values of each community 

was to sort the obtained results in descending order in order to pick the top-K commu-

nities, which were the top 15 in these experiments.

�e graph outline was same as for the Facebook dataset, with the x-axis representing 

the top 15 communities in the ascending order and the y-axis representing the strength 

of the communities. Initially, the α value was taken as 0.018, and then was incremented 

to 0.020.

With |C| = 499 and alpha value as 0.018, Table 15 consists of the top 15 communities, 

ranked in the descending order of their strength values. Figure  11 gives the graphical 

representation of the top 15 communities given in Table 15 with α = 0.018.

With |C| = 499 and alpha value as 0.020, Table 16 consists of the top 15 communities, 

ranked in the descending order of their strength values. Figure  12 gives the graphical 

representation of the top 15 communities given in Table 16, with α = 0.020.

With |C| = 508 and alpha value as 0.018, Table 17 consists of the top 15 communities, 

ranked in the descending order of their strength values. Figure  13 gives the graphical 

representation of the top 15 communities given in Table 17, with α = 0.018.

Table 15 Top-K wikipedia communities (15) by  community strength with  |C|  =  499 
and α = 0.018

Top 15 communities Community strength

1 3.85492836

3 3.102804589

2 2.266908015

194 2.124327059

307 1.959665344

112 1.917481845

356 1.663644178

210 1.564172792

357 1.513951074

20 1.409692808

52 1.298656076

195 1.213671439

211 1.00457403

88 0.909502948

116 0.863233235
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With |C| = 508 and alpha value as 0.020, Table 18 consists of the top 15 communities, 

ranked in the descending order of their strength values. Figure  14 gives the graphical 

representation of the top 15 communities given in Table 18, with α = 0.020.

Fig. 11 The graph of top-15 communities when α = 0.018

Table 16 Top-K wikipedia communities (15) by  community strength with  |C|  =  499 
and α = 0.020

Top 15 communities Community strength

1 7.461265545

3 5.766500756

194 4.062868307

307 3.831691768

2 3.744511405

112 3.700352434

356 3.231507336

210 3.167503039

357 3.136667658

20 2.69717456

52 2.49110016

195 2.355993439

211 1.913336252

88 1.628712712

116 1.559385089

Fig. 12 The graph of top-15 communities when α = 0.020
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Run time analysis

Table 18 gives the run time of each dataset. Please note that in these experiments, dif-

ferent sets of communities were generated for each dataset, and the alpha values were 

varied. However, varying the alpha value would not affect the run time for a set of com-

munities since Algorithm  3 in Table  4 mainly was based on the community_Matrix, 

which is not dependent on Katz centralities of nodes. If the alpha values are varied for a 

set of communities, still we get the same run time values. Figure 15 gives the graphical 

representation of the run time analysis for Table 18.

Declarations

Availability of datasets

�e datasets used as a part of the experiments were obtained from the Stanford Large 

Network Dataset Collection (SNAP). �e proposed model was evaluated against three 

different datasets obtained from SNAP; two of them were undirected graphs and one 

was a directed graph. All the three datasets contained more than 1000 nodes and 10,000 

edges shown in Table 19.

Table 17 Top-K wikipedia communities (15) by  community strength with  |C|  =  508 
and α = 0.018

Top 15 communities Community strength

1 3.814052017

3 3.234831068

98 2.34702595

204 2.170719198

2 2.125448543

316 1.977256028

131 1.957304243

9 1.877103812

363 1.578121684

41 1.349556847

91 1.307287049

7 1.285289776

295 1.158538397

16 1.008435912

218 0.970438161

Fig. 13 The graph of top-15 communities when α = 0.018



Page 24 of 28Zhan et al. J Big Data  (2016) 3:16 

Facebook dataset

Social Circles, consisting of ‘circles’ (or ‘friends’ lists’), were obtained from Facebook. 

�is data was collected by SNAP from survey participants using the Facebook app. 

�e dataset included node features (profiles), circles, and ego networks. Replacing the 

Table 18 Top-K wikipedia communities (15) by  community strength with  |C|  =  508 
and α = 0.018

Top 15 communities Community strength

1 7.32804825

3 6.119591593

98 4.585996403

204 4.131136885

316 3.866086457

131 3.777201614

2 3.47038453

9 3.405845787

363 3.269619035

41 2.577470714

91 2.446963852

7 2.183529557

295 2.154473777

16 1.843539259

218 1.830656073

Fig. 14 The graph of top-15 communities when α = 0.020

Fig. 15 Top 15 Wikipedia Communities
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internal ids of Facebook for each user with a new value anonymized original data. While 

feature vectors from this dataset were provided, the interpretations of those features 

were obscured by SNAP. For instance, such data where the original dataset may have 

contained a feature “political = Democratic Party”, the new data simply would contain 

“political = anonymized feature 1”. �us, it was possible to determine whether two users 

had the same political affiliations by using the anonymized data, but not what their indi-

vidual political affiliations represented.

Dataset statistics Nodes 4039 and edges 88,234.

We used this information (i.e., edge file) as the test dataset for evaluating the algorithm, 

and constructed communities using the infomap community-detection algorithm of the 

IGraph package. We tested our algorithm against this undirected dataset multiple times 

by using the infomap algorithm to generate a different number of communities each 

time; every time, the nodes that were close to each other were grouped together to rep-

resent a community. �is dataset [27] supports the conclusion of this article.

Autonomous systems dataset

According to Wikipedia [28], an autonomous system “is a collection of connected Inter-

net Protocol (IP) routing prefixes under the control of one or more network operators 

on behalf of a single administrative entity or domain that presents a common, clearly 

defined routing policy to the Internet”. �e graph of routers comprising the Internet can 

be organized into sub-graphs, called autonomous systems (AS). Each AS exchange traf-

fic flows with some neighbors (peers).

We can construct a communication network of who-talks-to-whom from the border 

gateway protocol (BGP) logs. In contrast to citation networks, where nodes and edges only 

get added (and not deleted) over time, the AS dataset exhibits both the addition and dele-

tion of nodes and edges over time. �is notion helped us to evaluate our algorithm again 

with multiple communities generated by the infomap community-detection algorithm.

Dataset statistics Nodes 6474 and edges 13,895. �e dataset [29] supports the conclu-

sion of this article.

Wikipedia dataset

Wikipedia is a free encyclopedia, written collaboratively by volunteers around the world. 

A small part of Wikipedia contributors are administrators, who are users with access to 

additional technical features that aid in maintenance. In order for a user to become an 

Table 19 Run time for each dataset

Dataset No. of communities Algorithm run time (min)

Autonomous systems dataset 406 1.221701

Autonomous systems dataset 411 1.324316

Wikipedia dataset 499 4.112323

Wikipedia dataset 508 4.296346

Facebook dataset 91 7.218095

Facebook dataset 94 7.491025
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administrator, a Request for Adminship (RfA) is issued, and the Wikipedia community 

decides who to promote to be an administrator by means of a public discussion or a vote. 

Using the latest complete dump of Wikipedia’s page edit history, all the data for admin-

istrator elections and vote history are contained in this dataset. �e network contains all 

the Wikipedia voting data from the inception of Wikipedia up until January 2008. Nodes 

in the network represent Wikipedia users, and a directed edge from node i to node j rep-

resent that user i voted on user j.

Dataset statistics Nodes 7115 and edges 103,689.

�is dataset was used as criteria to evaluate our algorithm against directed graphs. As men-

tioned in the above paragraph, a directed edge between nodes i and j represents that user i 

voted for user j. �e infomap algorithm was used for community detection, available in the 

IGraph package of the R language; this dataset also was used to simulate various communi-

ties each time when the infomap community-detection algorithm was run on this. (Because 

the structural properties of a graph were studied, group behavior and the behavior of an 

individual were not within the scope of this study.) By running this dataset, we analyzed and 

identified the top-K communities capable of influencing the maximum number of commu-

nities in their neighborhood. �is dataset [30] supports the conclusion of this article.
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stanford large network dataset collection.
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