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Introduction

With the outbreak of social networking platforms such as Facebook, Twitter, Instagram, 

etc., there has been a trend in big data community researches to engage themselves in 

social network studies, as these networks have proven to be the excellent sources of hid-

den information patterns [1–3]. Extensive studies have been conducted on identifying 

characteristics and heuristics of these network types, by transforming these datasets into 

a network graph. Undoubtedly, network theory enabled researchers to address many real 

time complex problems such as product recommendations in e-commerce, friendship 

in social networks, computing the personalized PageRank between two nodes in quick 

time, web page ranking for efficient information retrieval, etc. Of these, one of the major 

concerns for network theory researchers is to find the optimal solutions to maximize 

node interactions and develop algorithms with minimal time complexity. For example, 

instead of sending news about an offer to all the actors in the network, a set of precisely 

chosen actors capable of efficiently spreading the information, can be identified as infor-

mation propagators to ingest the offer message into the network. For this purpose, find-

ing popular or most influential nodes in the network has proven to be helpful [4]. Such 

Abstract 

Network theory concepts form the core of algorithms that are designed to uncover 

valuable insights from various datasets. Especially, network centrality measures such 

as Eigenvector centrality, Katz centrality, PageRank centrality etc., are used in retrieving 

top-K viral information propagators in social networks,while web page ranking in effi-

cient information retrieval, etc. In this paper, we propose a novel method for identifying 

top-K viral information propagators from a reduced search space. Our algorithm com-

putes the Katz centrality and Local average centrality values of each node and tests 

the values against two threshold (constraints) values. Only those nodes, which satisfy 

these constraints, form the search space for top-K propagators. Our proposed algo-

rithm is tested against four datasets and the results show that the proposed algorithm 

is capable of reducing the number of nodes in search space at least by 70%. We also 

considered the parameter (α and β) dependency of Katz centrality values in our experi-

ments and established a relationship between the α values, number of nodes in search 

space and network characteristics. Later, we compare the top-K results of our approach 

against the top-K results of degree centrality.

Keywords: Top-K nodes, Katz centrality, Social networks

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

RESEARCH

Zhan et al. J Big Data  (2017) 4:16 

DOI 10.1186/s40537-017-0076-5

*Correspondence:   

justin.zhan@unlv.edu 
†Sweta Gurung and Sai Phani 

Krishna Parsa contributed 

equally to this work

Department of Computer 

Science, College 

of Engineering, University 

of Nevada Las Vegas, Las 

Vegas, NV 89154, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-017-0076-5&domain=pdf


Page 2 of 19Zhan et al. J Big Data  (2017) 4:16 

nodes can act as a hub or a medium to optimize internal as well as external commu-

nication. In the same way, one can get to know about the latest trending topics in the 

network, by identifying the actors who are capable of receiving the information from 

multiple actors in the network.

�e trends of searching most influential nodes are not just popular in social networks 

but also in many other fields. For instance, in Biology, there are many biological net-

works, such as Protein–protein interaction networks, Cell signaling networks, Gene reg-

ulatory networks, etc. where identifying the influential nodes plays a vital role in a new 

discovery. Recent research on these areas [5–7] have used various forms of topological 

centralities such as weighted sum of loads Eigenvector centrality (WSL-EC) [5], Motif-

based centrality [7], etc. to either capture the important proteins or identify important 

features of the genes. Using concepts from graph theory such as cliques formation, cen-

tralities, etc. along with data mining algorithms like K-means, Random Forest, Naive 

Bayes, etc., many scientists have been successful in identifying proteins involved in many 

life-threatening diseases: cancers, AIDS, and many others.

Generally in specific types of research, the researchers have a tentative idea on what 

they are looking for and what they want to get as the output. During these types of stud-

ies, the researchers are concerned for a specific set of nodes instead of the entire node 

lists. However, analyzing the entire list of nodes is time-consuming, when only particu-

lar set of nodes having particular characteristics is of interest. In general, researchers are 

aware of the insights that can be deduced from a dataset by considering the characteris-

tics of the dataset. By utilizing these characteristics, one can eliminate the unwanted lists 

of data narrows the space on which the top-K nodes query is to be executed. �ere are 

various network reduction algorithms such as disparity filter, k-core decomposition, etc. 

which prune the unwanted edges on the basis of certain filter functions. Similarly, we 

can apply some filtering strategies on nodes so that the focus is only on the desired lists 

of nodes.

In this paper, we propose a novel method for identifying top-K viral information prop-

agators from a reduced search space. Our algorithm is based on network topology and 

constraints. �e algorithm starts by identifying the user-defined constraints, and applies 

those constraints on the nodes to extract only those nodes that satisfy them. Giving an 

option to filter out unwanted lists of data (which in our case is out-of-the-scope nodes) 

will make the important nodes or top-K nodes much more efficient and desirable. Katz 

centrality was used as a measure of topological centrality that helps to discover the rela-

tive influence of each node on the network. Given the global Katz centrality, users were 

required to provide the desired centrality for initial filtering of the nodes. Once the can-

didate nodes’ list was collected, the top-K nodes were identified based on their local 

influence (i.e., local Katz centrality) and on a global scenario (i.e. global Katz centrality). 

Our proposed algorithm is tested against four datasets and the results show that the pro-

posed algorithm is capable of reducing the number of nodes in search space at least by 

70%. We also considered the parameter (α and β) dependency of Katz centrality values in 

our experiments and established a relationship between the α values, number of nodes 

in search space and network characteristics. Later, we compare the top-K results of our 

approach against the top-K results of degree centrality.
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Related work

A significant amount of research has been conducted towards the identification of top-K 

influential nodes and search space reduction in a given network. Centrality theory [8–

12], diffusion models [13], heat diffusion theory [14], evidence theory [15] etc., are the 

most frequently used techniques for obtaining top-K influential nodes in a network.

In a recent paper by Li et al. [15], a method based on evidence theory was proposed to 

identify influential nodes in a network of networks (NON) by dividing the complex net-

work into sub-networks such as a series of similarity networks. For each of these indi-

vidual networks, distance matrix (D) is computed which represents the similarity among 

the nodes. �is matrix D is further used to compute similarity networks which in turn 

assist in finding basic probability assignment (BPA). �e nodes with high similarity value 

in the fused similarity network are considered to be influential nodes in NON.

Kimura et al. [16] came up with a method that used the theory of bond percolation 

along with graph theory to extract influential nodes. �e purpose of their method was 

to maximize the influence for information diffusion. �eir method begins by finding a 

set of nodes A, for initial activation by using greedy hill-climbing algorithm. Using A, 

the initial set of nodes and deterministic diffusion model on Gr, F(A, Gr) is computed, 

where F(A, Gr) is the final set of active nodes.

Doo et al. [14] came up with an activity-based social influence model, using the con-

cept of heat diffusion for measuring the influence diffusion in networks. Every interac-

tion between any two nodes are labeled as either heat diffused DHi(δt) or heat received 

RHi(δt) based on the direction of an edge. Similarly, activities like comments, likes, 

shares, etc between any two nodes, vi and vj can be classified as interactive activities 

(IAij ) and activities like status update, photo uploads, etc are classified as non-interac-

tive activities (NIAij). Each of these activities is assigned a weight of 1 unit. �e higher 

the number of non-interactive activities at node vi, the higher the amount of heat col-

lected at vi and the slower the heat diffusion to its neighbors. Based on the DHi(δt) and 

RHi(δt) values, heat diffusion is calculated for each node, vi and finally influences cover-

age (ICi )—the list of nodes which are influenced by vi are generated. Finally, the top-K 

nodes are selected on the basis of the |ICi|.

Zhang et al. in [17] and Leung et al. in [18] gave importance to user preferences for 

identifying the top-K nodes. Zhang et  al. in [17] proposed a two-staged mining algo-

rithm (GAUP), for finding the top-K nodes in the social networks by considering the 

users’ preferences. �e initial stage involves estimating user preferences with a set of 

latent items for a specific topic by adopting the Latent Semantic Indexing (LSI) method. 

�ese estimations are then used in the second stage, which is based on Extended Inde-

pendent Cascade Model to maximize the influences on active nodes and then discover a 

selected set S of top-K nodes.

Leung et al. in [18] proposed an algorithm that reduces the search space based on the 

user-specified constraints and uses the MapReduce model to discover interesting pat-

terns from uncertain data which satisfies those constraints. �e algorithm first mines 

frequent singleton patterns followed by non-singleton patterns. Map function com-

putes individual existential probability for each item in a transaction. Reduce function 

then filters the items which satisfy the user-specified constraints and then computes the 

expected support, expSup for each item and compares them with the minimum support, 
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minSup. Only those items whose expSup ≥ minSup, are selected for the singleton pat-

tern. Using the individual expSup, non-singleton patterns are discovered.

Other works include that of He et  al. [19], where top-K nodes are identified using 

influence maximization strategies in complex networks using community structure and 

in Liu et al. [20] propose a method to identify the top-K nodes based on a specific topic.

Besides the above-mentioned theories and methods, centrality has also been widely 

used in research related to network analysis. Centrality approaches are generally classified 

into two types, classical centrality measures and parameterized centrality measures. Clas-

sical centrality measures include Degree centrality, Closeness centrality and Betweenness 

centrality, whereas Eigenvector centrality, Katz centrality, PageRank centrality, etc are the 

parameterized centrality measures. Cupertino et al. came up with a network-based method 

that uses Katz centrality to predict the pattern class the given group of invariant transfor-

mations of the same pattern belongs to [21]. Using another measure of network centrality 

called Principal Component Centrality (PCC), Ilyas et al. [22] identified groups of nodes, 

social hubs, in the network which are at the center of influential neighborhoods. �ey then 

compared their results with the ones from the method using Eigenvector centrality (EVC). 

To further enhance the usage of α-centrality, Ghosh et al. introduced a normalized version 

of this centrality by generalizing a modularity maximization-based approach. �eir method 

identified not just the local communities but also the global ones [23].

Constraint-based data mining [24] has been widely used for finding frequent items 

or patterns in a given pool of data [17, 18]. Various types of constraints can be used 

in mining, such as knowledge type constraints, data constraints, dimension constraints, 

interestingness constraints, rule constraints, etc. Providing a means to apply certain 

constraints on the data allows users to be specific in their search, so that only those data-

sets satisfying the constraints are looked for in the database. �ese types of searches 

improve speed and reduce unnecessary computations. At the same time, only favorable 

and desired outputs are received. Our proposed approach (“using Katz broadcast cen-

trality”), falls under the category of centrality approach and constraint-based mining as 

the user has control over the choice of threshold used for the first level filtering.

Preliminaries

Graph de�nitions

Directed graph

A graph G = (V, E) where V is the set of nodes or actors (say “n”) and E is the set of edges 

or connections (say “m”) is directed, if E is a set of ordered pairs meaning that (v1, v2) �= 

(v2, v1), where (v1, v2) ∈ E and v1, v2 ∈ V.

Undirected graph

A graph G = (V, E) where V is the set of vertices or nodes or points (say “n”) and E is the 

set of edges (say “m”) is undirected, if E is a set of unordered pairs meaning that (v1, v2) = 

(v2, v1), where (v1, v2) ∈ E and v1, v2 ∈ V.

Walk of length l

For a graph G = (V, E), a walk of length l denotes a set of nodes {v1, v2, v3, . . . , vl} such 

that there exists an edge between vi and vi+1, ∀1 ≤ i < l.
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Centrality measures

Degree centrality

Degree centrality equals the number of ties that a vertex has with other vertices. �e 

equation for it is as follows:

where d(ni) is the degree of node ni.

In a directed network, there are two separate measures of Degree centrality, namely 

in-degree and out-degree. In-degree is a count of the number of ties directed to the node 

and out-degree is the number of ties that the node directs to others. Accordingly, the 

equations for them are as follows:

where din(vi) (in Eq. 2) and dout(vj) (in Eq. 3) are the corresponding in-degree and out-

degree centralities of nodes vi and vj.

Closeness centrality

Closeness centrality of a node is the average length of the shortest path between the 

node and all other nodes in the graph. It can be regarded as a measure of how much 

time it takes to spread information into the network from a given vertex. It can be used 

to identify nodes which are capable of quickly spreading a rumor into the network. �e 

equation for it is as follows:

where Cc is the closeness centrality of a node vi.

Betweenness centrality

Betweenness centrality quantifies the number of times a node acts as a bridge along the 

shortest path between two other nodes. Being between means that a vertex has the abil-

ity to control the flow of knowledge between other nodes in the network. Linton Free-

man introduced this and as per his conception [25], vertices that have a high probability 

to occur on a randomly chosen shortest path between two randomly chosen vertices 

have a high betweenness. �e betweenness of a node vi is given by the formula in Eq. (5).

where gjik is all geodesics linking node j and node k which pass through node i; gjk is the 

geodesic distance between the vertices of j and k.

(1)CD(ni) = d(ni)

(2)Cin(vi) = din(vi)

(3)Cout(vj) = dout(vj)

(4)Cc(vi) =

N∑

j=1

1

d(vi, vj)

(5)
CB(vi) =

∑

j=1,k �=1

gjik

gjk
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Eigenvector centrality

Eigenvector centrality is an extension of degree centrality. In the degree centrality, all 

node connections are credited of equal importance. But in real life, each node may have 

different importance. For example, a node connected to highly important nodes itself is 

an important node. �us, Eigenvector centrality provides a relative score to each node 

depending on the type of nodes (high-scoring and low-scoring) it is connected to. For a 

given graph G = (V ,E) containing n nodes, let A be the adjacency matrix of G and � be 

the eigenvalue. �en Eigenvector centrality is given by:

Katz centrality

Katz centrality measures the relative influence of each node in a given network by taking 

into account it’s immediate neighboring nodes as well as non-immediate neighboring 

nodes that are connected through immediate neighboring nodes. �e Katz centrality of 

a node vi is computed as:

where α is a constant called the damping factor, usually considered to be less than the 

largest eigenvalue, � i.e. α < 1/� and β is a bias constant, also called the exogenous vec-

tor, used to avoid the zero centrality values. With α ≥ �, the centrality tends to diverge.

Besides these centrality measures, there are PageRank centrality, Sub-graph centrality, 

Evidential centrality and Total communicability etc. According to the concept of cen-

trality, a node is identified as “important”?, if its centrality value is higher than that of 

other nodes in the network. Many papers have been written to show co-relations among 

various centrality measures and to date, research has been carried out to answers these 

questions: which centrality measure is best for obtaining the top-K influential nodes in 

a given network, which centrality measure is the best fit for a given type of data etc. Yan 

et al. [8] studied the correlation between degree centrality, closeness centrality, between-

ness centrality and PageRank centrality in a co authorship network. Benzi et al. [9] stud-

ied the correlation between sub-graph centrality and total communicability.

Discussion on Katz centrality for top-K node analysis

In our proposed algorithm, we use Katz broadcast centrality and local average centrality 

(LAC) for obtaining top-K influential nodes in a given network. Based on Katz broadcast 

centrality and LAC, all the nodes are ranked in the order of importance. Katz broad-

cast centrality captures the behavior of spreading a rumor into the network and a high 

value of Katz broadcast centrality means that the given node is efficient in spreading 

out a rumor/marketing message into the network. �e concept of using Katz central-

ity to rank the actors in a social graph was first proposed by Katz [26]. �e very fact 

that a human’s influence in his/her social group decreases as one moves further from 

his/her close connections to loosely connected distant members forms the base of Katz 

(6)Ce(vi) =

1

�

n∑

j=1

diaj,iCe(vj)

(7)CKatz(vi) = α

n∑

j=1

Aj,iCKatz(vj) + β
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centrality. Moreover it is also proven that Katz centrality is computationally efficient for 

filtering out the most central nodes, especially in the case of large directed networks 

[18]. Katz centrality of a node i counts all walks beginning at node i, instead of the usual 

shortest path approach, such that the longer walks are penalized through the attenuation 

factor α. �e immediate neighbors, i.e. walk of length 1, are given the value α1, whereas 

the farther neighbors, i.e. walk of length k, are assigned as αk with the notion that k-step 

walk has αk probability of being effective. �us, farther the neighbors from the node in 

consideration, lesser is its influence on them.

Equation (7) can be generalized for the entire graph as [28]:

where 1 is a column vector of ones.

From the Eq. (8) it is also evident that Katz centrality is a parameter dependent index, 

i.e. it depends on α and β. �eir values play a decisive role in getting fluctuating Katz 

centrality values. Benzi et al. [27] in their paper, showed that different choices of α and β 

lead to different centrality values. For instance, if α → 0+, then Katz centrality reduces 

to degree centrality. �e degree centrality of a node i gives importance to connections 

that are one step away starting from i. If α → (1/�)−, then it reduces to Eigenvector cen-

trality, for example, if α = (1/�) and β = 0, then Katz centrality becomes equal to Eigen-

vector centrality. In short, the degree centrality of node i measures the local influence of 

a node and the Eigenvector centrality measures the global influence of a node within the 

network. On the other hand, Katz centrality covers both the local and global influence 

of i. Hence, these parameters can be taken as a medium to tune between the rankings of 

nodes based on either local influence (short walks) or global influence (long walks).

In the case of a directed network graph, there are two centrality measures, which are 

Katz broadcast centrality and Katz receive centrality. Let G = (V, E) be a strongly con-

nected, directed and unweighted network representing actors and their ties, represented 

by adjacency matrix A.

Katz broadcast centrality

Katz broadcast centrality of a node i is calculated as:

Katz receive centrality

Katz receive centrality of a node i is calculated as:

Clearly from the Eqs. (9) and (10), it is evident that we are considering row sums to 

obtain the outboundness of a node and column sums to obtain the inboundness of a 

node. Graph theory notations and symbols are summarized in Table 1.

(8)(I − αA)−1
= I + αA + α2

A
2
+ · · · + αk

A
k

+ · · · =

∞∑

k=0

αk
A
k
, 0 < α < 1/�

(9)CKatz = β(I − αAT )−1
· 1

(10)Katz
b
i = β(I − αA)−1

· 1

(11)Katz
r
i = β(I − αAT )−1

· 1
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Algorithm

In this section, we will discuss our algorithm to find the top-K influential nodes. For a 

given network data, first the Katz broadcast centralities of all the nodes are computed. 

�e nodes are then ranked in descending order of their centrality values. On the basis of 

their rankings, the least important/influential nodes from a centrality point of view are 

eliminated in order to reduce the size of search space, by using filtering constraints. �e 

first filtering constraint is user defined and it can be varied as per the users’ choice. �is 

constraint tests whether the Katz centrality of a node is greater than the user defined 

threshold value or not. �e second constraint is tested for only those nodes, which sat-

isfy the first or user defined constraint. �e second filtering constraint tests whether the 

average of centrality values of a node and its immediate neighbors (LAC) is greater than 

the average centrality of the all the nodes in the network. Nodes, which satisfy both the 

constraints are included into the search space. �e first filtering constraint helps the 

users to focus only on the nodes of interest, while the second constraint further refines 

the set of nodes which satisfy the first constraint. �us a finely refined set of nodes are 

returned to the user for executing the top-K query. �e first filtering constraint denoted 

as Const keeps the users’ in control on the choice of nodes they are interested in and 

it shows the succinctness property. While the second filtering constraint prioritizes the 

nodes with more number of immediate highly connected nodes.

Succint set: A set is said to be a succinct set if it is formed as result of a selection opera-

tion, σaθb where a and b are attributes and θ, a binary operation [18, 24].

�e average centrality values of a node and its neighbors is denoted as LACKatz (local 

average centrality) and the average centrality value for the entire network is denoted as 

GACKatz (global average centrality).

Table 1 Notations and symbols

Notation De�nition and description

G Given graph

V Set of nodes

E Set of edges

v1, v2, vi, vj, ni Nodes

CD Degree centrality

Cin In-degree centrality

Cout Out-degree centrality

Cc Closeness centrality

CB Betweenness centrality

gjik, gjk Geodesic paths

α Damping factor or attenuation factor

β Exogenous vector

� Eigenvector

CKatz Katz centrality

A Adjacency matrix

LACKatz Local average centrality

GACKatz Global average centrality

Const User defined constant

isimk Intersection similarity
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where ni is the number of neighbors of a node, vi and n, the total number of nodes in the 

network.

We present our approach in thre different sections. In Algorithm  1, Katz broadcast 

centrality values are calculated. Algorithm  2 shows the identification of neighboring 

nodes for each node. In Algorithm 3, it returns the reduced search space for identifying 

the top-K nodes.

Working of the algorithm on karate club dataset

�e karate club dataset shows data related to friendships among members of a karate 

club at a US university in the 1970s. �is undirected network dataset consists of 34 

nodes and 78 edges. �is dataset is obtained from Mark Newman network datasets 

repository [29].

�e visualization in Fig. 1 was created using D3.js (Data Driven Documents) [30].

(12)
LACKatz(vi) =

CKatz(vi) +
∑ni

j=1
CKatz(vij)

ni + 1
=

LSCKatz(vi)

ni + 1

(13)GACKatz =

∑
n

i=1
CKatz(vi)

n
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Let A represent the adjacency matrix of this network. �e largest eigenvalue � 

obtained for A is 6.725 and to satisfy the constraint that α < 1

�
, α values chosen are less 

than 0.148. We also tested the algorithm with various values for α, while keeping β value 

constant as 1. Constraint Const denotes the user’s interest in finding only those nodes 

whose Katz centrality (CKatz) is greater than or equal to Const. Here, Const shows the 

succinctness property and its value which is used for filtering out the nodes/actors in 

the network, is chosen as the sum of standard deviation and average of Katz centralities 

of all the nodes in the network. As mentioned earlier, the second filtering constraint is 

the average centralities of all the nodes in the network. �e user can run the top-K node 

query from the set of nodes obtained after filtering. For all the datasets, we used the 

same formula as the first filtering constraint, kept β value as 1 and varied the α values 

and studied the effect of varying α values coupled with two sets of filtering contraints 

on the number of nodes in search space and ordering of the nodes obtained upon que-

rying for top-K nodes. Below table captures the number of nodes obtained by varying α 

values.

Figure 2, clearly depicts that the filtering condition is effective in filtering the nodes, 

thereby the user has more control over the search space from which the top-K nodes are 

retrieved. �e top-5 nodes obtained using the proposed algorithm are 33, 0, 32, 2, and 1. 

�e top node is node 33, which corresponds to the president of the karate club, and the 

second is node 0, which corresponds to the instructor. �ese were the two most influen-

tial members of the club and their fight with each other eventually led the club to split 

into two factions aligned around each of them [31].

Fig. 1 Karate club membership network
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Experimentation

For the implementation of our approach, the code was written in Java using Jblas [32] 

and Graph-stream [33] packages. �e algorithms were written using the java data struc-

tures like Lists and Hashmaps.

Experimental setup

�e code was run on 64-bit Windows 7 Enterprise (Server Pack 1) with Intel(R) 

Xenon(R) CPU E5-1607 0 with 3.00GHz and 16GB RAM. Eclipse IDE with Java 1.7 was 

used for programming.

Datasets

�e networks’ data, as shown in Table 2, were collected from Mark Newmann datasets 

[29], SNAP Stanford Large Network Database Collection [34] and ILAB-Data Centre 

[35].

Facebook dataset

Facebook is an online social networking platform [36], where nodes represent the users 

and edges represent the relationship among the users. Our Facebook dataset consists of 

1034 nodes and 53,498 edges. �e largest eigenvalue of the network is ≈123.215. Keep-

ing the fact that the value of α should be less than 1
�
 (0.008 in this case) in mind, the 
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Fig. 2 Figure showing the relationship between α values and the number of nodes in search space

Table 2 Network dataset summary

Dataset Type Number of nodes Connectivity

Facebook-I Undirected 1034 53,498

CA-GrQc Undirected 5242 14,496

Epinions-I Directed 1247 51,558

Epinions-II Directed 1799 61,037
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values for the parameter α values are varied as 0.0005, 0.001, 0.0015, 0.002, 0.0025, 0.003, 

0.0035 . . . 0.008.

Collaboration network dataset

CA-GrQc dataset covers the scientific collaboration between authors’ papers submit-

ted to General Relativity and Quantum Cosmology category from January 1993 to April 

2003 (124 months). If an author i co-authored a paper with author j, the graph contains 

an undirected edge from i to j. �is dataset consists of 5242 nodes, 14,496 edges and the 

largest eigenvalue is ≈45.616. As, the value of α should be less than 0.021, α values are 

varied as 0.005, 0.01, 0.015 and 0.02.

Epinions network datasets

Epinions.com [37] is a who-trusts-whom social network of general consumer review site. 

Members of the site can decide whether to “trust” each other or not. A Web of Trust is 

formed basing up all the trust relationships interactions and then combined with review 

ratings to determine which reviews are shown to the user. Epinions-I and Epinions-II are 

directed network datasets. Epinions-I dataset consists of 1247 nodes and 51,558 edges. 

Epinions-II dataset consists of 1799 nodes and 61,037 edges. As, the largest eigenvalues 

of the two networks are ≈83.751, α values should be less than 0.011. For both the data-

sets, α values are varied as 0.001, 0.004, 0.007, and 0.011 and results are analyzed.

Results and discussion

For all the datasets, we analyzed the results from two different perspectives. Firstly, we 

analyzed the relationship between α values, number of nodes obtained for each α value 

and dataset characteristics. Secondly, we compared the top-K results of our algorithm 

with the top-K results of degree centrality algorithm using intersection similarity as a 

measure and analyzed the significance of our algorithm. Intersection similarity (Inter-

section distance) captures the notion of union minus the intersection. Previously, Benzi 

et al. used intersection similarity measure in their research in [9].

Let xk and yk be the top-K ranked items in two ranked lists x and y respectively. �en, 

the top-K intersection similarity can be computed as:

where � is the symmetric difference operator between the two sets. If the lists are identi-

cal, then isimk(x, y) = 0 for all k. If the two sequences are disjoint, then isimk= 1 [9].

Figure 3a, shows the relationship between α values and the number of nodes in search 

space for Facebook dataset. �e number of nodes in search space followed an increase–

decrease pattern for α values between 0.0005 and 0.004. For α values between 0.004 and 

0.008, the number of nodes in search space increased with an increase in α values. On 

the whole, there has been an increase in the number of nodes, with an increase in α 

value. Figure 3c, shows the relationship between α values and the number of nodes in 

search space for CA-GrQc dataset and unlike Facebook dataset, the number of nodes in 

search space decreased with an increase in alpha values (on the whole). Figure 3b and d 

(14)isimk(x, y) :=
1

k

k∑

i=1

| xi�yi |

2i
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Fig. 3 Experimental results of undirected datasets. a α vs number of nodes in search space for Facebook 

dataset. b Degree centrality distribution of Facebook dataset. c α vs number of nodes in search space for CA-

GrQc dataset. d Degree centrality distribution of CA-GrQc dataset
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shows the degree distribution frequencies of Facebook and CA-GrQc datasets respec-

tively. For Facebook dataset, a large number of nodes have small degree values or no 

degree values and yet there are a considerable number of nodes with high degree values. 

But, in case of CA-GrQc dataset a very large number of nodes have smaller degree val-

ues and the number of nodes with high degree values are negligible when compared to 

this. As mentioned before, Katz centrality is a measure which captures both the local 

and global influences of a node. If the value of α → 0+, then Katz centrality is approxi-

mately equal to that of degree centrality. And as α values start moving from 0+ to 1
�

−

 Katz 

centrality values starts capturing the global influences of the nodes as well. As there are 

a very less number of nodes with high degree values, compared to the number of nodes 

with smaller degree values in case of CA-GrQc, the number of nodes that can exhibit 

local and global influence are very less than the number of nodes which can exhibit local 

influence (as α → 0+). Hence, there is a decrease in the number of nodes in search space 

with an increase in α value. �e converse of this can be observed in case of Facebook 

dataset, where there are a considerable number of nodes with higher degree values in 

comparison to those with a smaller degree values. Figure  4a and c show the relation-

ship between α values and the number of nodes in search space for Epinions dataset. 

It can be seen that there is an overall increase in the number of nodes in search space 

with an increase in α value. �e degree distribution frequencies of Epinions dataset, in 

Fig. 4b and d, are similar to that of Facebook dataset in Fig. 3b. Hence, the relationship 

between α values and the number of nodes in search space is similar to that of in Face-

book dataset.

Figure 5a–d show the intersection similarity values for top-K nodes between degree 

centrality and our algorithm. For Facebook dataset, intersection similarity values are 

computed for top 20, 50, 80, 100, 120, 150 and 166 nodes, with α value as 0.004. It can be 

observed from Fig. 5a, that in all of the cases, intersection similarity values are around 

0.2. For CA-GrQc dataset, intersection similarity values are computed for top 40, 140, 

240, 340 nodes, with α value as 0.015. It can be observed from Fig. 5b, that in all the 

cases, intersection similarities are around 0.4. For Epinions-I dataset, intersection simi-

larities are computed for top 5, 10, 15, 24, 25 and 27 nodes, with α value as 0.007. Inter-

section similarity values are increased with an increase in k value, with a maximum 

values around 0.6. For Epinions-II dataset, intersection similarities are computed for top 

20, 40, 60 and 71 nodes, with an α value as 0.007. On the whole, the intersection similar-

ity values are around 0.8. Except Facebook dataset, experiments performed on the other 

datasets show that, intersection similarity values are more than 0.4. �is highlights the 

fact that there is a significant difference in the rankings produced by degree centrality 

measure and our algorithm. Moreover, the top-3 nodes obtained in each case are same, 

but there is a considerable difference in rankings of the remaining nodes as our concept 

of giving importance to a node, based on LAC proved to give importance to nodes with 

high local and global influence rather than nodes with high degree values. �is confirms 

that the results obtained by using degree centrality and our algorithm are different and 

both the approaches capture different perspectives in giving importance to nodes. Also, 

our approach gives more power to the user in choosing the parameters and narrowing 

the search space for running the top-K query. �ese results support our algorithm as a 

new method for ranking nodes in a given network.
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Fig. 4 Experimental results of directed datasets. a α vs number of nodes in search space for Epinions-I 

dataset. b Degree centrality distribution of Epinions-I dataset. c α vs number of nodes in search space for 

Epinions-II dataset. d Degree centrality distribution of Epinions-II dataset
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Fig. 5 Intersection similarity distances between Katz centrality and degree centrality. a Intersection similarity 

distances for Facebook dataset. b Intersection similarity distances for CA-GrQc dataset. c Intersection similar-

ity distances for Epinions-I dataset. d Intersection similarity distances for Epinions-II dataset
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Conclusion and future work

With growing interest in finding the most important nodes, centrality measures have 

been one of the sought after methods for this purpose. Our algorithm uses Katz cen-

trality measure to discover the top-K nodes in the network. �e centrality is computed 

using the user-preferred values for the first filtering constraint and additionally the user 

can choose the values of α and β. �e first level of filtering constraints is controlled by 

the user, denoted by Const. �e second level of filtering is done by filtering out those 

nodes which have higher degrees and a mixture of neighbors with much higher and 

much lower centralities. While the first filtering constraint can be varied by the user, 

the second filtering constraint is constant for a given network and varies from network 

to network. �is is done by using the formula, LACKatz greater or equal to GACKatz. 

Our experimental results show that the number of nodes obtained in search space are 

decreased by a factor of more than 75%. �is shows the effectiveness of filtering con-

straints in our approach. We performed experiments with various α values and analyzed 

the relationship between the number of nodes in search space, α values and network 

characteristics such as degree distribution. �ese experiments aid the user in choosing 

α value for running the algorithm. Also, we showed that there is a significant difference 

in rankings produced in both the approaches and this enables the users to capture two 

different perspectives while studying the properties of top-K nodes. Using the centrality 

measures gives only the topologically important nodes. But there are various other fac-

tors that affect the nodes’ importance, such as how active they are, the different types of 

activities they perform, their overall performances, etc. Our future work will be related 

to incorporating activity analysis along with centrality measures in finding the top-K 

nodes.
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