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ABSTRACT
We have developed an approach to classify toxicants based
upon their influence on profiles of mRNA transcripts. Changes
in liver gene expression were examined after exposure of mice
to 24 model treatments that fall into five well-studied toxico-
logical categories: peroxisome proliferators, aryl hydrocarbon
receptor agonists, noncoplanar polychlorinated biphenyls, in-
flammatory agents, and hypoxia-inducing agents. Analysis of
1200 transcripts using both a correlation-based approach and

a probabilistic approach resulted in a classification accuracy of
between 50 and 70%. However, with the use of a forward
parameter selection scheme, a diagnostic set of 12 transcripts
was identified that provided an estimated 100% predictive
accuracy based on leave-one-out cross-validation. Expansion
of this approach to additional chemicals of regulatory concern
could serve as an important screening step in a new era of
toxicological testing.

Toxicologists employ a battery of tests to identify chemicals
with potential for human toxicity or that might cause envi-
ronmental harm. According to the United States National
Toxicology Program (NTP), a thorough analysis of each
chemical requires $2 to 4 million and several years to com-
plete (National Toxicology Program, 1996). Because of the
cost- and labor-intensive nature of these studies, the number
of chemicals currently tested by the NTP stands at 505 in
long-term studies, 66 in short-term tests, and one subchronic
study (http://ntp-server.niehs.nih.gov/). Given that there are
approximately 70,000 chemicals in commerce today (Nation-
al Toxicology Program, 1996), it is clearly impossible to apply
current testing methods to all chemicals of concern. It is
apparent that alternative testing approaches must be devel-
oped if science is going to maintain a significant role in
environmental and public health policy.

The development of a screen that would allow prioritiza-
tion of untested chemicals based upon their toxic potential
would have a significant impact on how efficiently we eval-
uate both synthetic and naturally occurring compounds. One
approach for predicting toxic potential is to classify chemicals
based upon their capacity to alter transcriptional programs
in a manner that is similar to known toxicants (Nuwaysir et
al., 1999). Test chemicals that induce transcriptional re-
sponses in a manner similar to those induced by a known
poison could then be classified as harboring toxic potential
and examined carefully by more thorough toxicological
means. This approach has two underlying assumptions: 1)
that we have enough scientific information to allow proper
classification of prototype toxicants and 2) that most if not all
toxic chemical exposures will alter gene expression at some
level. In support of this second assumption, signal transduc-
tion pathways that culminate in a transcriptional response
mediate the toxicity of many chemicals. In addition, toxicity
is commonly manifested as inflammation, proliferation, apo-
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ptosis, necrosis, and/or cellular differentiation. All of these
toxic endpoints are intimately linked to specific alterations in
gene expression.

To test the hypothesis that toxicants can be classified ac-
cording to their influence on global gene expression profiles,
we employed cDNA microarray technology (Schena et al.,
1995; Golub et al., 1999) and attempted to classify 24 proto-
type chemical treatments that fall into five well-character-
ized toxicological classes. Three of the classes include envi-
ronmental pollutants that are targets of regulatory concern
[i.e., peroxisome proliferators, AHR agonists, and noncopla-
nar PCBs (Schmidt and Bradfield, 1996; Carpenter, 1998;
Vanden Heuvel, 1999)]. The remaining two classes consist of
agents that stimulate other common toxic endpoints, such as
treatments that induce the inflammatory response and treat-
ments that stimulate the hypoxia signal transduction path-
way.

Materials and Methods
Animals and Treatment. All animals treated were male

C57BL/6J mice. The treatment, dose, vehicle, and time at sacrifice
were selected from the literature and are shown in Table 1. All
treatments were compared with their respective vehicle controls at
the corresponding time points. A summary of these agents and their
general toxicological category is provided in Table 2.

RNA Isolation. Total RNA from cells and frozen liver tissue was
isolated using the RNeasy system (QIAGEN, Valencia, CA). Poly-A
selected RNA was purified using the Oligotex kit (QIAGEN) and
checked using gel electrophoresis and/or spectrophotometric mea-
surements. mRNA from the livers of three or more mice were pooled
for analysis on the microarrays.

cDNA Microarray Construction and Analysis. Approximately
1200 minimally redundant cDNAs from internal expressed sequence
tag projects (http://edge.oncology.wisc.edu/) and the public expressed
sequence tag effort were identified and the glycerol stocks were
rearrayed into a separate set of clones. An aliquot from these clone
sets was amplified by polymerase chain reaction and used to con-
struct custom cDNA microarrays using methods described previ-
ously (Worley et al., 2000). Each cDNA clone was spotted four times
on each slide for replicate analysis. Labeled cDNA probe was pro-
duced from 1 �g of poly-A RNA by incorporation of Cy3- or Cy5-dCTP
(Amersham Pharmacia Biotech, Piscataway, NJ) during a standard
reverse transcriptase reaction as described previously (Penn et al.,
2000). The slides were scanned using a microarray scanner (Molec-
ular Dynamics, Sunnyvale, CA) and the fluorescence data were an-
alyzed using ArrayVision software package (Imaging Reseach, St.

Catharines, ON, Canada). For each hybridization, the four spots
corresponding to each cDNA were averaged and normalized to an
internal suite of 15 housekeeping transcripts coding for ribosomal
proteins. Normalization was carried out using methods described
previously (Chen et al., 1997).

To eliminate any dye bias, all samples were analyzed at least
twice, with one experiment using Cy3 to label the control mRNA and
Cy5 to label the treated mRNA and, in the replicate experiment, Cy5
to label the control mRNA and Cy3 mRNA to label the treated
mRNA. The results from the replicate hybridizations were averaged.
Significance thresholds based on 99% confidence intervals were also
calculated for each treatment using the variability in the normalized
housekeeping ratios (Chen et al., 1997). The average upper and lower
significance thresholds for all of the treatments in the study were
1.4-fold and �1.4-fold, respectively. As a verification of the quality of
the data from the microarray experiments, a replicate set of hybrid-
izations were performed of control mRNA compared against the
same sample of control mRNA (i.e., homotypic control versus control
hybridization). The average ratio from the homotypic hybridizations
was 1.01 with a 99% confidence interval of 1.30 to �1.27.

Data Reduction. Before statistical analysis, the data set was
screened for transcripts that did not respond to any of the treatments
used in the study and would not contribute significantly to the
classification. A threshold of 2-fold change in gene expression was
used as the cut-off value. The 2-fold cut-off value was slightly more
conservative than the confidence limit calculated using techniques
published previously (i.e., 1.4-fold) (Chen et al., 1997) and is similar
to a standard threshold level used in other studies (e.g., Schena et
al., 1996). Using this threshold value, we determined that approxi-
mately 500 of the 1200 transcripts changed significantly in response
to at least one treatment.

Additional screening was performed to identify a subset of tran-
scripts with a stable temporal expression and provide computational
savings by eliminating variables that would have little predictive
value. For those treatments with time course profiles, all time-points
were collapsed into a single average value representing the average
change in that transcript over time. After collapsing the data, only
transcripts that showed a change greater than 2-fold in more than
one treatment were selected for further analysis. After this data
reduction, only 74 transcripts remained. It should be noted that after
collapsing the data to identify the stable transcripts, the individual
time points were analyzed separately in the classification analysis.
Finally, the gene expression values were discretized such that tran-
scripts up-regulated greater than 2-fold were given a value of one,
transcripts down-regulated greater than 2-fold were given a value of
minus one, and transcripts with less than a 2-fold change were given
a value of zero. This data was considered the initial training set for

TABLE 1
Treatment, dose, vehicle, and time of sacrifice

Treatment Dosea
Vehicle

Time of Sacrifice
Substance Amount

Aroclor 1260 200 mg/kg Corn oil 8 ml/kg 48 h
BNF 50 mg/kg Corn oil 10 ml/kg 24 h
Cipro 250 mg/kg gavage DMSO 0.2 ml 2, 4, and 8 h
Cobalt chloride 60 mg/kg 0.9% Saline 10 ml/kg 48 h
TCDD 10 �g/kg DMSO 100 �l/kg 6, 12, 24, 48, 96, 192,

288, 384, and 480 h
IL-6 25 �g/kg PBS 10 ml/kg 6 h
LPS 1 mg/kg PBS 10 ml/kg 6, 12, and 24 h
PCB-153 80 mg/kg Corn oil 8 ml/kg 48 h
Phenobarb 100 mg/kg/day (3 days) 0.9% Saline 10 ml/kg 72 h
Phenylhyrzn 100 mg/kg PBS 10 ml/kg 48 h
TNF� 50 �g/kg PBS 10 ml/kg 6 h
Wy-16,463 0.125% w/w Powdered chow 2 weeks

DMSO, dimethyl sulfoxide; PBS, phosphate-buffered saline.
a Dose was administered intraperitoneally unless noted otherwise.
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use in the development of a model to allow organization of future test
chemicals into the five classifications defined in Table 2.

Statistical Classification Analysis. The Naı̈ve Bayesian clas-
sification used in this article is based on previous work by Kontkanen
et al. (1998). Briefly, the predictor variables X1,. . . ,Xk are assumed
to be independent of each other when conditioned on the class vari-
able C. Our model M is constructed by the joint probability distribu-
tion for a data vector (x, c) � (X1 � x1, . . . , Xk � xk, C � c) and can
be written as follows:

P� x,c� � P�C � c� �
i � 1

k

P�Xi � xi�C � c� (1)

Before incorporating any data, we also assume that all classes are
equally probable (i.e., the probability that a chemical will belong to a
certain class is the same for each class) and that within each class,
the gene expression values of each transcript are also equally prob-
able. Given these assumptions, we can use Bayesian probability
theory to calculate the conditional predictive distribution for the
class c given x and the data set D by:

P�c�x,D� �
P�c, x�D�

P� x�D�
(2)

where the numerator is calculated as:

P�c, x�D� �
tc � 1

Nt � NC �
i � 1

k
fcxi � 1
Fc � Vxi

(3)

where tc is the number of treatments in class c, Nt is the total number
of treatments, NC is the total number of classes, fcxi is the number of
cases in class c having a value equal to xi, Fc is the number of
treatments in class c, and Vxi is the number of possible values of xi.
The denominator is the same for all c and is calculated as:

P� x�D� � �c�
P�c�, x�D� (4)

The result of this conditional predictive distribution is then used to
classify the data vector. For the parameter selection, a modification
of forward parameter selection process outlined in Huberty (1994)
was employed. Specifically, an iterative process was used in which
transcripts were run individually using the Naı̈ve Bayes model and
the transcript with the best internal classification rate and highest
confidence (represented by the sum of all probabilities for correctly
classified treatments) was selected. In the subsequent round, the
selected transcript was fixed and the remaining parameters were
added individually to find which transcript, along with the first
selected transcript, produced the highest internal classification rate
and confidence. This process was repeated until all 74 transcripts
were added to the model in the order of their internal classification
rate. This type of selection ranks the transcripts in the order of their
estimated predictive value and adds them sequentially to the model.
It should be noted that the forward selection approach does not
necessarily yield the best set or even the smallest set. In addition,
genes with similar expression profiles may also be added to the set if
they significantly increase the accuracy or confidence. The approach
is simply a heuristic to look for a diagnostic set of predictors with a

high accuracy. A flow chart describing the data reduction and clas-
sification analysis is provided in Fig. 1.

To estimate the predictive accuracy of this approach, the pro-
cess of parameter selection was integrated with leave-one-out
cross-validation in which one of the treatments is removed from
the analysis, and the model is constructed and then used to
predict the left-out treatment. The predictive accuracy was then
assessed after each parameter was added and the number of genes
in the ‘diagnostic set’ was chosen based on the peak predictive
accuracy and confidence of the model. The final ‘diagnostic set’
was derived by following the same procedure on the complete data
set (i.e., no treatment left out). It should be noted that in choosing
the number of genes to include in the ‘diagnostic set’, we had the
benefit of understanding how the estimated accuracy changed
with the addition or removal of genes from this list. In a real
setting, however, this information would be absent and the deci-
sion on the number of genes to include may be more difficult.
Further research in this area is needed.

Results and Discussion
To allow the accurate classification of large numbers of

toxicants based on gene expression, several important fac-
tors were considered in the experimental design. First,
exposures were performed in inbred mice in an effort to
minimize the influence of genetic polymorphism on tran-
scriptional responses to toxicants. Second, gene expression
monitoring was focused on the liver, because this organ is
often the first significant site of chemical exposure and
exhibits a wide array of pathological and adaptive re-
sponses to a broad spectrum of toxicants. Third, gene ex-
pression was characterized using mRNA obtained from
whole liver after an acute exposure to a test chemical
because the whole-organ response better represents the
full range of transcriptional changes that can result from
toxicity. In contrast to cell culture studies, this in vivo
approach is particularly important when multiple cell-
types and paracrine signaling are required for the com-
plete toxic response (e.g., inflammation). Finally, in an
effort to understand and adjust for the influence of tempo-
ral and sample acquisition variables, multiple time-points
were analyzed for several of the treatments.

To represent the transcriptional response as a whole, a
two-dimensional hierarchical clustering method was em-
ployed (Eisen et al., 1998) and the relationships between
treatments based on gene expression profiles are highlighted
in the adjacent dendrogram (Fig. 2). A visual inspection of
the treatment-dendrogram indicates that individual chemi-
cals, with a few exceptions, generally fall into their antici-
pated toxicological classes. Specifically, the hypoxia treat-
ments (i.e., phenylhydrazine and cobalt) are intermixed with
the noncoplanar PCBs showing some similarity among the
gene expression profiles for these treatments (Fig. 2). Appli-
cation of a more formal nearest-neighbor classification anal-

TABLE 2
General toxicological classes and corresponding treatments classified in this study using gene expression profiles from cDNA microarrays

Noncoplanar-
PCBs

Peroxisome
Proliferators Inflammatory Hypoxia AHR

Agonists

PCB-153 Ciproa TNF-� Cobalt TCDDa

Aroclor-1260b Wy-16,463 LPSa Phenylhrzn BNF
Phenobarb IL-6

a Multiple time points investigated.
b Aroclor-1260 is a PCB mixture that contains primarily non-coplanar, phenobarbital-like PCBs (Harris et al., 1993; Ngui and Bandiera, 1999).
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ysis using a similar correlation based metric indicated that 7
of 24 treatments were closer to treatments outside of their
class as opposed to within (data not shown).

The imperfect classification scheme attained by the initial
clustering analysis on the transcriptional response across the
whole microarray was not surprising. Although our classifi-
cation scheme assumes that chemicals in each toxicant class
act through a common mechanism, individual members of
each class may stimulate unique pathways that may be sec-
ondary or unrelated to toxicity. For example, although con-
siderable pharmacological and genetic evidence indicates
that halogenated-dioxins lead to toxicity through their bind-
ing to the Ah-receptor, the agonist BNF is also known to
stimulate the antioxidant response pathway (Poland and
Glover, 1980; Radjendirane and Jaiswal, 1999). Similarly,
although agents that stimulate the transcriptional response
to hypoxia act through up-regulation of HIF1�, some of these
agents have also been shown to induce the acute phase re-
sponse (Wenger et al., 1995). The resulting pattern of expres-
sion across the whole microarray reflects small, chemical-
specific differences at the molecular level that result in a
virtual ‘fingerprint’ of expression for individual compounds.
Therefore, that subset of transcripts that allows classifica-
tion of these treatments must be defined according to our
understanding of the primary toxic mechanism. In other
words, predictor variables (in our case transcripts) must be
screened for their ability to discriminate between groups, and
a subset of these variables must be derived that allows accu-
rate predictions.

As a method of identifying a diagnostic set of predictor
transcripts, we applied a probabilistic approach based upon
Bayesian statistics (Duda and Hart, 1973; Kontkanen et al.,
1998). Here, gene expression values were discretized and a

standard forward parameter selection algorithm was em-
ployed to select predictor variables to be added to the model
(Huberty, 1994). This type of selection ranks the transcripts
in the order of their estimated predictive value and adds
them sequentially to the model. For example, in the first
round of selection, all transcripts were run individually using

Fig. 1. A flow-chart illustrating the method for the data reduction and
classification analysis leading to the diagnostic set of transcripts.

Fig. 2. Variation in expression of approximately 500 transcripts in 24
experimental treatments. The data are presented after two-dimensional
hierarchical clustering, which organizes transcripts and treatments on
the basis of similarity. Each row represents a single transcript and each
column an experimental treatment. For each treatment, the ratio of the
expression of each transcript to the expression of the transcript in control
samples is represented by the color of the corresponding cell in the graph.
Green represents down-regulation of the transcript, black means no
change, and red represents up-regulation of the transcript. Color satura-
tion reflects the magnitude of the change. Clustering was performed
using complete linkage clustering with a centered correlation coefficient
as the similarity metric (Eisen et al., 1998). A dendrogram representing
similarities between experimental treatments is shown at the top and the
approximate locations of the genes in the final diagnostic set are noted
with bars to the right of the figure. Wyeth, Wy-16,463.
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the Naı̈ve Bayes model, and the transcript with the best
internal classification rate and highest confidence (repre-
sented by the probabilities for all correctly classified treat-
ments) was selected. The internal classification rate for a
given set of predictor variables is measured based on the
classification rate within the training set. In the next round,
the selected transcript was fixed and the remaining param-
eters were added individually to find which transcript, along
with the first selected transcript, produced the highest inter-
nal classification rate and confidence. This process was re-
peated until all transcripts were added to the model in the
order of their internal classification rate. To estimate the
predictive accuracy of this approach, the process was inte-
grated with leave-one-out cross-validation, in which one of
the treatments is removed from the analysis, then the model
is constructed and used to predict the left-out treatment.

The results of this analysis show the predictive accuracy as
a function of the number of transcripts added to the model
during the forward parameter selection process (Fig. 3).
Based on this analysis, we found that the predictive accuracy
and confidence of the model began to level out after the
addition of approximately a dozen transcripts and even be-
gan to drop soon thereafter. Consequently, a set of 12 tran-
scripts was considered ‘diagnostic’ for the classification of
treatments into the toxicological classes investigated in this
study. The final ‘diagnostic set’ was derived by following the
same procedure on the complete data set (i.e., no treatment
left out). The transcriptional profile of the 12 diagnostic tran-
scripts, and their order of their addition to the model, is
shown in Fig. 4.

The forward selection and cross-validation process identi-
fied several properties in our toxicological profiles. First, a
‘diagnostic set’ of 12 transcripts was identified that allows an
estimated 100% predictive accuracy for the toxicological
classes chosen for this study. Interestingly, the transcripts in
this diagnostic set are a mix of transcripts previously known
to be altered by these treatments and relatively uncharac-
terized transcripts with respect to toxicant regulation. For
example, CYP1A2 and CYP4A10 are known to be up-regu-
lated by TCDD and peroxisome proliferators, respectively
(Bell et al., 1993; Schmidt and Bradfield, 1996). In contrast,
for IL-18 and betaine homocysteine methyltransferase, we
have little information regarding their response after toxi-
cant exposure. Overall, about half of the changes in the

optimal set were described previously at some level in the
literature. Second, the forward selection approach also ex-
plains the previously described 50 to 70% predictive accuracy
attained when using the whole data set (500 transcripts), in
that soon after the addition of the diagnostic set transcripts,
the estimated predictive accuracy begins to decline signifi-
cantly. In other words, the further addition of transcripts
beyond the diagnostic set begins to split out treatments and
the ‘individuality’ of the treatment profiles begins to take
over.

Despite the apparent success of our study in establishing
the potential for classification of toxic chemicals according to
diagnostic sets of genes, the success should be framed in a
couple ways. It should be noted that the exposures chosen in
this study represent single acute doses and may not reflect
the gene expression changes at lower, environmentally rele-
vant doses. In an organism, multiple factors converge to
ultimately influence the manifestation of toxicity and the
associated gene expression patterns. Among these factors are
time, dose, route of administration, age of the animal, and
sex. Characterizing the influence of all of these variables on
transcript profiles with even a small number of treatments
would require considerable resources (e.g., 12 treatments � 3
time points per treatment � 3 doses per time point � 3 routes
per dose � 324 microarray studies). Although in this study
we chose to primarily address the factor of time, additional
experimentation was also performed to look at how different
doses of TCDD affected classification. In these preliminary
dose-response studies, our statistical model proved to be re-
sistant to the variation in TCDD doses with correct classifi-
cation at doses as low as 0.05 �g/kg and as high as 100 �g/kg
(data not shown). Arguably, other chemicals may not be as
easy to classify over such a large dose range and additional
studies will be needed to address this issue and other factors
that may affect the predictive accuracy of the model. To
understand how our statistical model performed with a treat-
ment that was not in our five toxicological categories, results
from arsenic-treated mice were also analyzed. Interestingly,
the model did not classify the arsenic treatment with any

Fig. 3. Estimated predictive accuracy and relative confidence of the
classification model with the addition of selected transcripts. The order of
transcripts added to the model and the predictive accuracy were per-
formed using a forward selection scheme and leave-one-out cross-valida-
tion, respectively (see text for details).

Fig. 4. Variation in expression of the diagnostic set of transcripts used to
classify the 24 treatments into the five toxicological classes. Each row
represents a single transcript and each column an experimental treat-
ment. The order of the transcripts, from top to bottom, is in the order of
addition to the probability model. For each treatment, the expression
ratio of each transcript in a treated sample to the expression in the
control sample is represented by the color of the corresponding cell in the
graph. Green represents down-regulation of the transcript, black means
no change, and red represents up-regulation of the transcript. Color
saturation reflects the magnitude of the change and can be compared
with the ratio key. Wyeth, Wy-16,463.
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degree of confidence, with inflammatory as the closest cate-
gory and AHR agonists as the least similar category (data not
shown). This adds additional confidence that accurately pre-
dicting toxicological endpoints based on gene expression is
achievable.

Several interesting conclusions can be drawn from this
work. Most importantly, we have presented evidence that the
accurate classification of toxic chemicals according to their
transcript expression profiles is possible. This opens the door
to a new era of toxicological testing where relatively short
and inexpensive studies using transcript expression as an
endpoint allow the prioritization of untested chemicals based
upon their classification. This would mean significant sav-
ings in both animal usage and financial resources and would
reduce the disparity between the number of tested and un-
tested chemicals in commerce today. However, this study is
just the first step toward this goal. The toxicological catego-
ries selected in our study primarily reflect the model com-
pounds that toxicologists have studied extensively over the
last decade and represent only a small percentage of the
70,000 chemicals in commerce today.

Obviously, as the public gene expression database grows,
more toxicological categories can be added to the model and
the more predictive our model and those like it will become.
Another conclusion from this work is that large arrays with
thousands of transcripts are unnecessary to make these clas-
sifications. Although the large arrays are necessary to ini-
tially identify the diagnostic gene set, once these ‘diagnostic’
sets of indicator transcripts are identified, simple measure-
ments of only one or two dozen transcripts may allow the
average investigator the ability to make judgments as to the
relative toxicity of a particular chemical. Finally, we have
purposely chosen to use a robust set of statistical methods
and conservative assumptions to develop this predictive set.
The discrete nature of the approach does not require an
accurate measurement of transcriptional changes beyond the
assessment of only significant up- or down-regulation. This
should make subsequent evaluations more resistant to inter-
and intralaboratory variability such as that observed when
switching arrays or performing hybridizations in multiple
laboratories.
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