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Abstract

Transposase-Accessible Chromatin followed by sequencing (ATAC-seq) is a simple protocol for detection of open

chromatin. Computational footprinting, the search for regions with depletion of cleavage events due to transcription

factor binding, is poorly understood for ATAC-seq. We propose the first footprinting method considering ATAC-seq

protocol artifacts. HINT-ATAC uses a position dependency model to learn the cleavage preferences of the transposase.

We observe strand-specific cleavage patterns around transcription factor binding sites, which are determined by local

nucleosome architecture. By incorporating all these biases, HINT-ATAC is able to significantly outperform competing

methods in the prediction of transcription factor binding sites with footprints.
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Background
DNase-I hypersensitive sites sequencing (DNase-seq;

[1–4]) and Assays for Transposase-Accessible Chromatin

sequencing (ATAC-seq; [5, 6]) are two widely used pro-

tocols for genome-wide identification of open chromatin.

DNase-seq andATAC-seq are based on the use of cleavage

enzymes (DNase-I and Tn5, respectively), which recog-

nize and cleave DNA in open chromatin regions. Sequenc-

ing and the alignment of reads from these fragments

allows the detection of open chromatin by identifying

genomic intervals with many reads [1, 2]. However, the

presence of transcription factors (TFs) bound to the

DNA prevents the enzyme from cleavage in an other-

wise nucleosome-free region. This leaves small regions,

referred to as footprints, where read coverage suddenly

drops within peak regions of high coverage.

Computational methods scanning open chromatin pro-

files to find footprints have been shown to predict tran-

scription factor binding sites (TFBS) with high accuracy in

DNase-seq data [7, 8]. Among others, computational foot-

printing has been used to detect the regulatory lexicon of
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several cell types [9, 10], to measure the effects of genetic

variants in TF binding [11] and to assess changes in the

activity of TFs, e.g., during inflammatory responses [12]

or fasting conditions [13]. Computational footprinting,

which only requires a single open chromatin experiment

per cell of interest, is a powerful tool to study regulatory

processes.

ATAC-seq has several experimental advantages over

DNase-seq: it requires fewer cells (50.000 to single cells)

and is less laborious [5, 6]. Not surprisingly, the number

of ATAC-seq-based studies deposited in Gene Expres-

sion Omnibus is twelve times higher than the number of

DNase-seq-based studies in the last year (366 ATAC-seq

vs. 29 DNase-seq)1. There is also two times more ATAC-

seq samples than DNase-seq samples per study, con-

firming that its experimental simplicity makes it a good

choice for studies with large sample size, for example in

clinical settings [14]. However, computational footprint-

ing is still poorly explored in ATAC-seq data. The single

study contrasting ATAC-seq and DNase-seq shows that

ATAC-seq footprints have inferior accuracy than DNase-

seq footprints [15]. It was also reported that ATAC-seq

average footprint profiles are not so well defined as aver-

age footprint profiles from DNase-seq [11]. However, all

the work with footprinting in ATAC-seq so far [5, 15, 16]

used computational methods tailored to DNase-seq data
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and ignored characteristics intrinsic to the ATAC-seq

protocol.

A possible reason for the lower performance of ATAC-

seq footprinting might be the cleavage enzyme Tn5 itself,

which has a large (17bp) “Tn5motif” [5, 17] and a complex

cleavage mechanism requiring a Tn5 dimer for action.

The large size of the Tn5 dimer makes cleavage events

dependent on structural features of the neighboring pro-

teins (TFs or histones) and on the size of accessible

DNA [18]. Cleavage events in small linker DNA between

nucleosomes are possible, but less likely than cleavage

of fragments from active regulatory regions [5]. Impor-

tantly, the DNA binding preferences of enzymes cause

sequence-specific cleavage bias. Thus, computational bias

correction is an important aspect of the analysis of DNase-

seq [19, 20] and ATAC-seq data [21]. Some work uses

position weight matrices (PWMs), which assume inde-

pendence between positions, to model DNase-seq bias

[22]. However, most bias correction methods infer bias

estimates using k-mer sequences around the start of

aligned reads, by estimating the probability of finding a k-

mer at read start sites against occurrences in the genome

[19]. For DNase-seq, a k equal to 6 was frequently used

[8, 11, 19, 20, 23]. This method requires the estimation

of a multinomial distribution and is likely to suffer from

overfitting for large k-mers [24]. Alternatively, position

dependency models (PDMs) allow flexibility in the type

of dependencies being modeled [25, 26]. They have been

shown to overcome the problem of overfitting in model-

ing protein-DNA binding preferences. We are unaware of

methods exploring effects of the local chromatin structure

in ATAC-seq or the use of PDMs for modeling the bias of

cleavage enzymes.

Here, we propose HINT-ATAC, which is the first foot-

printing method dealing with the characteristics of the

ATAC-seq protocol. First, we propose the use of a prob-

abilistic PDM based on sparse local inhomogeneous

mixtures (SLIM) models for the correction of cleav-

age bias [26] and evaluate it for both ATAC-seq and

DNase-seq protocols. Second, we model a novel obser-

vation that ATAC-seq cleavage events show a strand

bias, which is associated to the number of nucleo-

somes in ATAC-seq fragments. HINT-ATAC, which is

based on hidden Markov models, uses strand-specific,

nucleosome-size decomposed, and bias-corrected sig-

nals to identify footprints. We show that HINT-ATAC

significantly improves the recovery of footprints sup-

ported by TF ChIP-seq data [8, 27] from ENCODE

cell lines [9]. Moreover, HINT-ATAC footprints have

similar predictive accuracy using either ATAC-seq or

DNase-seq protocols. Finally, as an example of practical

application of footprint analysis, we use HINT-ATAC to

detect TFs associated with immune dendritic cell (DC)

specification.

Results

The transposase Tn5 has a complex cleavage bias

Cleavage bias is caused by the preference of enzymes

to cleave particular DNA sequences [19] as indicated

by the motifs around the start sites of DNase-seq and

ATAC-seq reads (Fig. 1a, b). Motifs are similar for distinct

ATAC-seq libraries and protocol variations such as stan-

dard [5], Omni-[6], and Fast-ATAC [28] (Additional file 1:

Figure S1). The Tn5 dimer cleaves the DNA by inserting

two distinct adapters in the DNA fragment ends. Cleav-

age leaves two 9 bps single-strand DNA ends that are later

extended in the ATAC-seq protocol (Fig. 1c). The fact that

Tn5 works as a dimer, where two Tn5 proteins bind to the

DNA in reverted orientations, causes the large (9–13 bps)

palindromic Tn5 motif (Fig. 1a). Moreover, the motif is

centered around position +5 relative to the read start,

which represents the middle position of the Tn5 cleavage

event. In contrast, DNase-I leaves a short motif close to

the start of reads in DNase-seq experiments (Fig. 1b).

Position dependency models improve cleavage bias

correction

We evaluate here the use of position dependency models

(PDM) to estimate the bias of Tn5 cleavage events. HINT-

ATAC considers the fifth base of ATAC-seq reads as the

cleavage event as in [5]. A PDM learns relevant depen-

dencies from the data and is less likely to overfit than

k-mer-based approaches, when large sequences need to be

considered. We compare the performance of PDMs to k-

mer or PWM-based bias correction, the twomethods pre-

viously used in the literature (see the “Method” section).

This includes an analysis of the optimal word size k nec-

essary to capture cleavage bias for both Tn5 and DNase-I.

Cleavage signals obtained by distinct correction methods

(and uncorrected signals) are given as input for the foot-

printing method HINT [7] (Additional file 1: Figure S2).

We then evaluate the recovery of footprints with binding

sites supported by ChIP-seq peaks on 32 TFs from the

GM12878 cell (training dataset). For this, we cal-

culate the area under precision recall curve (AUPR) and

the area under receiver operating characteristics curve

(AUC) for distinct false positive rates (1%, 10%, and 100%)

for each TF as in [8]. A final ranking score is obtained

by combining the ranking of a method for each of the six

statistics. A higher ranking score indicates higher recovery

of ChIP-seq supported footprints.

The comparative analysis indicates that PDMs are best

for footprint detection in all evaluated libraries with

the exception of Omni ATAC-seq, where k-mer and

PDM tied first (Fig. 2a, b, Additional file 1: Figure S4).

One important question is the robustness of methods

when estimated on libraries with different sequencing

depths. Therefore, we perform random under-sampling

of an ATAC-seq library by decreasing its size from
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Fig. 1 Cleavage enzymes of ATAC-seq and DNase-seq. Sequence motif relative to aligned read starts after cleavage with Tn5 and DNase I enzymes

on naked DNA ATAC-seq (a) and DNase-seq (b) experiments. Position 1 corresponds to the start position of the ATAC/DNase-seq read. The size of

the motifs is reflected by the structural protein contacts of Tn5 and DNase-I (Protein Data Bank entries 1MM8 and 2DNJ). c Tn5 inserts adapters in

both DNA ends. Moreover, DNA is cleaved into two 9 bps single ends, which are later repaired in the ATAC-seq protocol

70 to 35 million reads. We observe that the PDM

is ranked first when considering only 75% or 50% of

Omni-ATAC-seq reads (Additional file 1: Figure S4).

Moreover, bias estimates from PDMs remain highly

similar after under-sampling, while k-mer estimates

show increasing variance with less reads (Additional

file 1: Figure S5). Another relevant question is the

size of the sequence (k), which needs to be consid-

ered for capturing cleavage bias. Interestingly, smaller

sequences (4–8) are selected for DNase-seq data, while

larger sequences (8–12) are best for ATAC-seq protocols

(Fig. 2a, b).

These results fit with the observation that the most

conserved positions in the Tn5 motif, i.e., positions 1

and 9 in Fig. 1a, are farther away than in the DNase-I

motif, i.e., positions −1 and 2. As a consequence, a larger

sequence size is necessary to correct the Tn5 bias. We

also observe that the distribution of cleavage bias esti-

mates is more dispersed in ATAC-seq than in DNase-seq

(Additional file 1: Figure S6), which indicates more



Li et al. Genome Biology           (2019) 20:45 Page 4 of 21

Fig. 2 Strategies for cleavage bias correction. Comparison of bias estimation methods in standard ATAC-seq (a) and DNase-seq (b) on 32 TF

ChIP-seq data sets from GM12878 cells. The y-axis denotes the ranking score, where higher values indicate higher recovery of footprints supported

by TF ChIP-seq peaks. Numbers after methods names (x-axis) indicate optimal word size (k). p values are based on the Friedman-Nemenyi test (see

Additional file 1: Table S1–S12 for complete results). c The scatter plot contrasting AUPR of HINT with PDM-based estimation with 8-mers (y-axis) and

HINT without bias correction (x-axis) in GM12878 cells. d Bias estimates and average ATAC-seq signals centered around NFYB and SP1 motifs

supported by a ChIP-seq peaks in GM12878 cells. e Precision-recall curve also supports the improvement in prediction of SP1 ChIP-Seq supported

binding sites with cleavage bias correction. f ATAC-seq cleavage signals and footprint predictions with (HINT-PDM) and without (HINT) bias

correction in two selected genomic regions. Footprint predictions on bias-corrected signals match SP1 motifs supported by ChIP-seq peaks, while

no footprints are predicted in uncorrected ATAC-seq due to the presence of cleavage sites within the SP1 motif

extreme bias for particular sequences for ATAC-seq

libraries. Another important question is the dependen-

cies between sequence positions, which are observed on

parameters learned by PDMs or by a statistical test pro-

posed in [29]. While neighboring (first order) dependen-

cies are most relevant for both Tn5 and DNase-I enzymes,

a few higher order dependencies are relevant for ATAC-

seq (Additional file 1: Figure S7). These results support

the fact that PDMs, which learn relevant dependencies

from the data, are more suitable for modeling the bias of

Tn5. We adopt the use of PDM with k = 8 as standard in

HINT-ATAC in all experiments below.
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Another relevant question is the use of ATAC-seq and

DNase-seq libraries performed on naked DNA, which

were previously proposed as control libraries for measure-

ment of cleavage bias [30]. However, results indicate that

bias estimates based on GM12878 cells have higher ranks

than the use of naked DNA (Additional file 1: Figure S8).

This is also supported by the similarity of bias estimates

on several ATAC-seq libraries, where bias estimates based

on the naked DNA group apart from bias obtained in

the libraries themselves (Additional file 1: Figure S8).

Given that cleavage bias varies in distinct degrees for each

library, these results support the use of bias estimates

based on reads from the ATAC-seq library at hand.

Cleavage bias estimates and TF-specific impact

It was previously shown that the impact of cleavage bias

correction is TF-specific [8, 19, 30], i.e., TFs with motifs

similar to the enzyme motif will not leave clear foot-

prints. Therefore, we compare the AUPR of 32 individual

TFs predicted with bias-corrected and uncorrected sig-

nals (Fig. 2c). Most of the TFs (29 out of 32) have an

increase in AUPR, while the AUPR decrease for 3 TFs is

marginal (average of 0.003; Additional file 1: Figure S9).

As expected, TFs with the highest increase in AUPR

(NFYB and Sp1 Fig. 2d, e) have depletion of ATAC-seq

cleavage sites around their binding sites after bias correc-

tion. Moreover, ATAC-seq profiles in individual genomic

locations also support the advantage of cleavage bias cor-

rection in the detection of footprints (Fig. 2f ).

Incorporation of nucleosome density and strand

information improves footprinting

We observe strong strand-specific patterns on aver-

age ATAC-seq profiles around CTCF ChIP-seq peaks

(Fig. 3a), which was not reported before for ATAC-seq

data. This is also observed in individual genomic loci

with CTCF-binding sites (Additional file 1: Figure S10).

As strand specificity is particularly high in linker regions,

we reason that it could be associated with the number of

nucleosomes included in the ATAC-seq fragment. Sizes

of ATAC-seq fragments, which can be estimated from

paired-end sequencing libraries, have typical modal dis-

tributions associated to fragments with zero, one, two, or

more nucleosomes [5]. We observe that distinct ATAC-

seq protocols have slightly distinct fragment size distri-

butions, which reflect their bias towards more (or less)

nucleosome-containing fragments (Fig. 3b).

Therefore, we decompose ATAC-seq cleavage signals by

only considering reads from nucleosome-free fragments

or reads from fragments with a particular number of

nucleosomes (Additional file 1: Figure S11). We evaluate

the performance of HINT-ATAC by providing ATAC-seq

signals with reads from distinct decomposition strategies

(fragment sizes) as input and by varying the number of

HMM states (see the “Method” section and Additional

file 1: Figure S12). This includes considering all reads

(all), nucleosome-free fragments (Nfr), nucleosome-free

and nucleosome-containing fragments, (Nfr & +1N) and

nucleosome-free, one nucleosome, and two or more

nucleosomes fragments (Nfr & 1N & +2N). We fur-

ther evaluate the use of strand-specific and non-strand

specific signals, where the dimensions of input signals

vary from 2 to 122. HINT-ATAC models are evaluated on

the prediction of 32 TFs in GM12878 cells (training

dataset).

The comparative evaluation indicates that using Nfr is

best for standard ATAC and Fast-ATAC protocols, while

the combined use of nucleosome-free and nucleosome-

containing signals (Nfr & +1N) is best for Omni-ATAC

(Fig. 3c, Additional file 1: Figure S13). Moreover, optimal

HMMmodels are always based on strand-specific signals.

These results indicate the importance of considering frag-

ment sizes and strand information for improving footprint

detection in ATAC-seq data. From here on, we will use the

optimal HMM configuration for each ATAC-seq protocol

determined on the training dataset.

An inspection of the parameters of the Omni-ATAC

HMM gives insights on how HINT-ATAC uses nucleo-

some decomposed cleavage signals to detect footprints

(Additional file 1: Figure S14). This HMM includes states

associated to the footprint, flanking regions left/right

of the footprint and background regions. Interestingly,

the left flanking state has high emission values for Nfr

forward reads and +1N reverse reads, while the right

flanking state has high emission values on Nfr reverse

reads and +1N forward reads. This indicates the impor-

tance of strand-specific signals and the presence of

reverted strand-specific cleavage patterns on reads from

nucleosome-free and nucleosome-containing fragments

around the footprint.

Local nucleosome architecture and strand-specific

ATAC-seq cleavage profiles

Previous results indicate that the combination of strand-

specific signals and decomposition by nucleosome num-

bers significantly improves footprint prediction in all

ATAC-seq protocols. To understand the mechanism

behind strand bias, we define types of ATAC-seq cleav-

age events relative to the location of the TF binding site

(Fig. 4a). Next, we measure the amount of the strand

cleavage bias for distinct fragment sizes (All, Nfr, 1N

and +2N) around distinct intervals near the TF binding

site (Additional file 1: Figure S15). We observe in Fig. 4b

that there are more forward reads left to CTCF bind-

ing in nucleosome-free fragments (forward/reverse ratio

of 2.6), while there are more reverse reads left of CTCF

for nucleosome-containing fragments (ratios of 0.63 for

1N and 0.5 for +2N). This bias is not so prominent when
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Fig. 3 Local nucleosome architecture and footprints. a Cleavage profiles around CTCF ChIP-seq peaks indicate strand-specific cleavage preference

left/right of the TF binding site for distinct ATAC-seq protocols in GM12878 cells. Smaller peaks away from the center represent linker regions

between histones. b Fragment size distribution for ATAC-seq protocols on GM12878 cells indicates clear peaks representing fragments with

particular numbers of nucleosomes. Local minimum values were used to define nucleosome-free fragments Nfr, fragments with one nucleosome

1N and fragments with one or more +2N nucleosomes. c Comparison of HINT-ATAC models with distinct nucleosome decomposition strategies of

Omni ATAC-seq (left) and standard ATAC-seq (right) on GM12787 cells. A higher ranking score (y-axis) indicates highest recovery of ChIP-seq

supported binding sites. Labels in the x-axis indicate if strand information is used by the model. p values are based on the Friedman-Nemenyi test
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Fig. 4 Nucleosome architecture and strand-specific cleavage profiles. a Tn5 digests open chromatin regions left/right of the TF binding (regulatory

region) or in nucleosome linkers. Nucleosome-free fragments will generate reads with (Nfr type I) or without (Nrf type II) the TF bound

to DNA. As sequencing is performed from the 5′ to 3′ ends, Nfr type I fragments will always generate forward reads on the left (orange) and

reverse reads on the right (blue) relatively to the TF binding site. DNA fragments from 1N decomposition with a cleavage event in the regulatory

region will either include (1N Type II) or not (1N Type I) a TF. 1N Type III are produced by cleavage events between two neighboring

linkers. b Bias-corrected average cleavage profile around CTCF ChIP-seq peaks for Omni-ATAC in GM12878 cells for fragments with distinct number

of nucleosomes. Strand bias can be estimated as the ratio of reads in forward (orange) and reverse (blue) around intervals between nucleosomes

and CTCF. c Decomposition of Nfr, 1N and 2N fragments by types clarifies the origin of strand cleavage bias. Numbers in orange (blue) indicate

amount of reads in the forward (reverse) strand at each interval

considering all reads together (ratio of 1.38 for All). We

also observe high strand-specific bias in reads in linker

regions, i.e., more forward reads in linkers −2 and −1.

To further understand these observations, we separate

reads by the types as proposed in Fig. 4a and count

read frequencies in distinct regions (Fig. 4c). Considering

Nfr fragments, we observe that Nfr type I gener-

ates almost exclusively forward reads left of CTCF. As

sequencing is performed in the 5’ to 3’ direction, Nfr

type I reads will only give rise to forward reads left
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of CTCF, while type II reads will generate both forward

and reverse reads left of CTCF. Moreover, ATAC-seq pro-

tocols disfavor very short fragments associated to Nfr

type II (Fig. 3b). These two facts cause the presence of

a large number of forward reads from Nfr fragments left

of the TF binding site. Following a similar rationale, 1N

type I fragments generate reverse strand reads left of

CTCF, while 1N type II fragments generate forward

reads left of CTCF. There is a higher number of 1N type

I reads than 1N type II reads, as ATAC-seq proto-

cols bias disfavours too long fragments (Fig 3b). 1N Type

III reads are not relevant here, as their starting sites do

not help the delineation of footprints. Equivalent patterns

are also found in+2N reads. Similar strand bias for nucleo-

some decomposed signals are found in all ATAC-seq pro-

tocols and TFs (Additional file 1: Figure S17–S19), despite

some variance in the distance between TF and linker

regions [5].

Comparative evaluation of footprinting methods in

ATAC-seq data

Next, we evaluate the performance of HINT-ATAC and

state-of-the-art footprinting methods using an indepen-

dent dataset based on K562 and H1-ESC cells (in total

148 TFs). We use three footprinting methods (DNase2TF,

PIQ, and Wellington), which performed best in a recent

comparative study based on DNase-seq data [8], and DeF-

CoM, which was recently proposed for ATAC-seq data

[15]. We have adapted Wellington and DeFCoM to evalu-

ate them with PDM-based bias correction. As the baseline

method, we include Tag Count (TC), which simply con-

siders TFBSs inside peaks ranked by the number of reads

after cleavage bias correction.

As before, methods are evaluated with the ranking

scores, which combine AUPR and AUC values for distinct

false positive rates for each TF. A higher ranking score

indicates higher recovery of ChIP-seq supported foot-

prints. HINT-ATAC is the top ranked method followed

by Wellington and DeFCoM using PDM bias correction.

HINT-ATAC has statistically significant higher ranking

than all evaluated methods, and Wellington-PDM has

statistically significant higher ranking than TC (Fig. 5a).

One interesting question is the independent importance

of (1) PDM bias correction and (2) nucleosome decompo-

sition in HINT-ATAC performance. We observe that the

independent use of PDM bias correction or nucleosome

decomposition improves the performance of HINT, while

neither improvement is significantly better than the other

(Additional file 1: Figure S20).

Concerning competing methods, ranking of Wellington

and DeFCoM is improved with the use of PDM bias cor-

rection, but we observe no clear improvement when using

Nfr reads (Additional file 1: Figure S20)3. The overall

good performance of Wellington-PDM is likely due to its

use of strand-specific signals. DeFCoM, which is based on

a classifier, requires TF ChIP-seq data for training a model

for each individual TF and is the only method requiring

training on K562 and H1-ESC cells. Its performance is

likely to decrease when training and predictions are per-

formed across distinct cells. Taken together, these results

confirm the fact that bias correction based on PDMs is

crucial for prediction of ATAC-seq footprints and that

HINT-ATAC has the best recovery of ChIP-seq supported

footprints.

Omni-ATAC-seq and DNase-seq are equivalent in the

prediction of cell-specific transcription factor binding

There is a perception in the field that DNase-seq libraries

are superior to ATAC-seq for computational footprint-

ing [11, 15]. To address this, we compare the predictive

performance of HINT-ATAC on distinct ATAC-seq pro-

tocols and DNase-seq of single-hit [31] and double-hit

[32] protocols. We also analyze ATAC-seq experiments

on distinct number of cells (bulk 50.000, 500, or single

cells) [33]. To obtain a fair comparison, we first optimize

HINT models for DNase-seq to consider strand-specific

signals and the use of PDM-based correction (Additional

file 1: Figure S13). Altogether, double-hit DNase-seq and

Omni ATAC-seq are ranked best in all evaluated cells,

while fast-ATAC-seq or ATAC-seq experiments based on

500 cells obtain the poorest results (Additional file 1:

Figure S21). The lower performance of the former proto-

cols is explained by their low quality indicators, i.e., frac-

tion of reads insides peaks (FRIP) below 0.1 (Additional

file 1: Figure S21).

Another limitation of ATAC-seq, which was previ-

ously discussed in the literature, is its lower coverage in

enhancer regions [6, 34]. To inspect if this also impacts

on the prediction of footprints in enhancers, we divide

ChIP-seq peaks as being in a promoter and enhancer

regions using chromHMM annotations [35] and evaluate

AUPR on both subsets. Indeed, we observe that footprints

based on standard ATAC-seq have lower performance in

enhancer regions relative to footprints based on DNase-

seq data. However, no such difference is observed using

Omni-ATAC-seq (Additional file 1: Figure S22). This indi-

cates that improvements in the Omni-ATAC-seq protocol

have a positive impact on the prediction of TFBSs in

enhancers.

Finally, we inspect if one of the protocols is able to

predict more accurately the binding of particular TFs.

We observe that TFs with higher AUPR on ATAC-seq

have more ATAC-seq cleavage sites surrounding the bind-

ing site and vice-versa, as exemplified by YY1 and JunD

(Fig. 5b, c and Additional file 1: Figure S23). Interest-

ingly, grouping of TFs by family indicates that DNase-seq

obtains higher AUPR for bZIP and helix-loop-helix fam-

ilies (Fig. 5d and Additional file 1: Figure S24). This
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Fig. 5 Competing methods and protocols comparison. a Comparative evaluation of HINT-ATAC, HINT, Wellington, DNase2TF, DeFCoM, and PIQ on

the test dataset (H1-ESC and K562 cells). A higher ranking score indicates highest recovery of ChIP-seq supported binding sites. p values are

based on the Friedman-Nemenyi test. We only show the significant p values of the top 3 methods (see Additional file 1: Table S23–S24 for complete

results). b AUPR values of DNase-seq (DH) vs ATAC-seq (Omni) for 91 factors, of which 41 factors obtain higher AUPR using ATAC-seq. c The footprint

profiles of two factors with the highest AUPR difference are shown. d Difference in AUPR of double-hit DNase-seq and Omni ATAC-seq by grouping

TFs by transcription factor families as defined in JASPAR database. Only families with more than 10 TFs are shown, and p values are obtained with a t

test (mean = 0)

suggests that structural features shared by TF families

negatively affect Tn5 cleavage.

HINT-ATAC finds relevant transcription factors for

dendritic cell specification

To demonstrate the performance of HINT-ATAC, we use

HINT-ATAC footprints for detecting TFs in dendritic

cells (DC), a specialized immune cell type involved in

immunity and tolerance induction [36]. In short, we use

a two-step culture system [37, 38] to differentiate multi-

potent progenitors (MPP) from mouse bone marrow into

commonDCprogenitors (CDP). CDP are then further dif-

ferentiated into classical DC type1 and type2 (cDC1 and

cDC2, respectively) or plasmacytoid DC (pDC) (Fig. 6a).

Cross-presenting cDC1 and pDC are particularly interest-

ing and differ in specific immune functions, which is asso-

ciated with subset specific gene expression repertoires.

TFs are at the top of the hierarchy of gene expression net-

works driving cell identity and function and thus there

is a particular interest in TFs in DC. We perform Omni-

ATAC-seq experiments of cDC1 and pDC subsets and

employ HINT-ATAC to detect footprints within ATAC-

seq peaks for each of these two cell types. Next, we

estimate changes in binding activity for 579 TFs with a

motif in JASPAR [39]. Cell-specific TF activity is evaluated

bymeasuring the depth of footprints and the total number

of reads in flanking regions (see the “Method” section).

Higher and lower differences in activity suggest that the
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Fig. 6 Application to ATAC-seq data of dendritic cell (DC) differentiation. a A two-step culture system differentiates ex vivo multipotent progenitors

(MPP) to DC progenitors (CDP) and further to classical DC type1 and type2 (cDC1 and cDC2, respectively) or plasmacytoid DC (pDC). b Cell-specific

activity of 579 TFs with motifs in either ATAC-seq peaks or footprints by Wellington or HINT-ATAC. Y-axis indicates the difference in activity in cDC1

compared to pDC cells (pDC-cDC1). Names of TFs with significant differential activity values are shown (adjusted p value <0.05; t test) and represent

TFs above/below dotted lines. TFs with at least 0.5 log fold change (FC) in gene expression are highlighted (larger fonts), and known DC relevant TFs

are marked in green. c Area under the precision recall curve evaluated with Batf3 ChIP-seq in cDC1. d Average cleavage profiles of Tcf4 and Batf3

motifs supported by ATAC-seq peaks, Wellington or HINT-ATAC footprints. e Regions with ATAC-seq and Batf3 ChIP-seq peaks in cDC cells close to

DC relevant genes. We display all footprints from Wellington, HINT-ATAC, and all motifs found inside ATAC-seq peaks. While both Wellington and

HINT-ATAC find footprints supporting motifs matching summits of Batf3 ChIP-seq peaks (sites 3 and 5 in green), Wellington footprints also support

binding sites (2 and 4 in pink), which are not supported by the ChIP-seq signal

TF shows stronger binding in pDC and cDC1 cells, respec-

tively. We also evaluate motifs supported by Wellington

footprints or motifs inside ATAC-seq peaks 4. We observe

a number of TFs with statistically significant difference in

activity between cDC1 and pDC (Fig 6b; p value <0.05; t

test). We further filter TFs by only considering those with

an absolute log2 fold change in gene expression higher

than 0.5.
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Interestingly, the most prominent cDC1 and pDC spe-

cific factors, identified by HINT-ATAC, represent two

TFs shown to be important in these DC subsets: Batf3

[40] and Tcf4 [41]. Other known DC factors identified

by HINT-ATAC include Zeb2, which was shown recently

to be crucial in pDC differentiation [42], and Spi1 (also

referred as PU1 or SFPI1), which is a master regula-

tor of DC differentiation and mostly active in cDC [38].

The peak-based approach only detects significant activ-

ity changes for Batf3, while Wellington only predicted

significant changes for Batf3 and Tcf4.

The higher precision of HINT-ATAC is also reflected

in the higher AUPR for Batf3 (Fig. 6c), as supported by

Batf3 ChIP-seq data in cDC1 from [40]. The average cleav-

age profiles for Batf3 and Tcf4 (Fig. 6d) and other selected

TFs (Additional file 1: Figure S25) further exemplify this.

The naive peak-based method is less specific and predicts

five times more binding sites than footprinting meth-

ods. There is only a partial overlap between Wellington

and HINT-ATAC footprints, i.e., 52.18% of footprints pre-

dicted by Welligton were also predicted by HINT-ATAC

(footprints sharing at least 50% of bases). Notably, average

cleavage profiles fromWellington had less signals in flank-

ing regions than HINT-ATAC (Fig. 6d and Additional

file 1: Figure S25). This is possibly due to Wellington’s

inability to define exact cleavage positions of the Tn5

enzyme. At individual regions, HINT-ATAC footprints

are also more specific than other methods in detecting

Batf3 binding sites, as exemplified in regions close to the

DC relevant genes Irf8 [40] and Flt3 [38] (Fig. 6e).

Discussion
We demonstrate that the use of position dependency

models is crucial for correction of cleavage bias for ATAC-

seq and also improves correction for DNase-seq data.

As shown in the subsampling experiments, k-mer-based

estimates are less reliable than the PDMs for libraries

with lower sequencing depth, as an indication of overfit-

ting. Dependencies learned by PDMs for both Tn5 and

DNase-I are mostly based on adjacent positions. For Tn5,

dependencies were detected between the middle of the

Tn5 motif and positions 2 bps away. This might indi-

cate a complex dependency of nucleotide recognition by

the Tn5 dimer. These higher order dependencies might

be associated with DNA shape, as recently demonstrated

for DNase-I [29]. Previously, [11] reported difficulties in

detecting footprints around motifs associated with reg-

ulatory variants in ATAC-seq data. We observed that

PDM-based bias correction improves footprint profiles by

increasing the footprint shapes for the majority of these

motifs (Additional file 1: Figure S26), as an example of the

caveats of ignoring cleavage bias.

There is growing attention in the field on cleavage biases

present in sequencing protocols using cleavage/digestion

enzymes [23, 43]. For example, the “digestion bias” of

nucleases has been shown to induce artifacts in nascent

RNA-seq protocols [43]. The same enzyme is used in

ChIP-seq variants (ChIP-exo [44], ChIP-nexus [45]) and

is likely to influence the detection of ChIP-exo footprints.

PDMs represent a flexible framework for cleavage bias

correction, which is likely to improve downstream analysis

of any of these protocols.

The strand-specific cleavage patterns around transcrip-

tion factor binding sites represent another overlooked

aspect of ATAC-seq. Decomposition of DNA fragments

by nucleosome number shows intricate strand specific

cleavage patterns relative to TF binding. We demonstrate

here that the strand bias of ATAC-seq protocols arises

from the preference to particular cleavage events. Another

evidence of the importance of neighboring proteins to Tn5

cleavage is the fact that the relative predictive power of

ATAC-seq in relation to DNase-seq varies for particular

TF families. This includes TFs from the bZIP and helix-

loop-helix families, which bind as dimers and have large

structures. These structural properties are likely to impair

access of Tn5 to neighboring DNA regions.

Footprints predicted in Omni-ATAC obtained better

performance than standard and fast-ATAC protocols.

Omni-ATAC libraries have higher fraction of fragments

associated to mono and di-nucleosomes than standard

or fast-ATAC protocols. This suggests that improvements

introduced in Omni-ATAC protocol enrich for mono and

bi nucleosome fragments, leaving more attenuated strand

bias profiles in 1N and +2N reads than standard or fast-

ATAC-seq. While there is a perception of the field that

a large number of reads are necessary for footprint pre-

dictions, libraries with moderate number of reads (50

millions) are among the best for ATAC-seq. On the other

hand, the quality of the library, as indicated by the frac-

tion of reads within peaks (FRIP), impacts the predictive

power of footprints.

Finally, we show how footprints can be used to find

TFs associated to DC subset specification. HINT-ATAC

has the highest predictive power and identifies four TFs

already associated with DC specification. Other predicted

TFs with unknown (Zbtb18) or poorly understood (Jdp2)

functions in DC development represent interesting can-

didates for future functional studies. A similar approach

was used to identify TFs associated with regulation of

beta cells in fasting vs. normal diets with DNase-seq [13].

This study considered all motifs inside DNase-seq peaks.

As shown in our analysis, this simple strategy has lower

power in detection of cell-specific TFs given the inclusion

of a larger number of false positive binding sites.

Conclusions
We present here the first computational footprinting

method tailored to the ATAC-seq protocol. HINT-ATAC



Li et al. Genome Biology           (2019) 20:45 Page 12 of 21

corrects the cleavage bias of the Tn5 enzyme with a

position dependency model and explores strand-specific

bias, which is dictated by the local nucleosome architec-

ture, to detect footprints. HINT-ATAC predictions out-

perform competing methods and have similar accuracy

when applied to either Omni-ATAC-seq or DNase-seq

protocols. This indicates that improvements in proto-

cols and our computational approach make ATAC-seq

a competitive alternative to DNase-seq for identifying

TF binding sites, even for experiments based on moder-

ate number of reads (∼ 50 millions) and low number of

cells (∼ 25.000).

Method

HINT-ATAC

HINT is a computational framework for detection of foot-

prints from open chromatin data [7]. It works in two

major steps: first, genomic cleavage signals are gener-

ated from raw sequencing libraries after filtering reads by

fragment size, correction of cleavage bias, and signal nor-

malization. Next, cleavage signals are given as input to

a HMM, which segments the signal and finds the loca-

tion of footprints. HINT-ATAC extends HINT[7] by the

proposal of a generalized framework for cleavage event

counting and bias correction. This new framework allows

cleavage events to be displaced from the read start and is

based on a probability distribution assuming dependency

between nucleotide positions. This allows to consider bias

spanning larger genomic areas. HINT-ATAC also extends

HINT by the use of strand-specific and fragment-size

decomposition of cleavage signals as input. Finally, HINT-

ATAC includes a novel semi-supervised training proce-

dure, which uses a single TF ChIP-seq dataset for training.

In contrast, the first version of HINT required the man-

ual specification of the topology or data annotation for

training [7]. Here, we will describe these novel aspects of

HINT-ATAC.

Cleavage event counting and correction of sequence bias

For a given open chromatin library and a reference

genome sequenceGwith lengthN5, the first step is to gen-

erate the strand-specific genomic signals by counting the

cleavage events on the positive or negative strands. HINT-

ATAC considers the first position of aligned DNase-seq

reads as the cleavage event as usual in the literature [7, 19].

For ATAC-seq, the middle of the Tn5 cleavage event is

the fifth base after the fragment start (see Fig. 1a). Given

an ATAC-seq read aligned with start position i, HINT-

ATAC considers the position i + 4 as a cleavage event for

forward reads and i − 5 for reverse reads6. This is equiv-

alent to shifting positions of ATAC-seq reads as originally

proposed in [5].

More formally, the strand-specific signals are defined by

the vectors:

y+ =
〈

y+
1 , · · · , y

+
i , · · · , y

+
N

〉

y− =
〈

y−
1 , · · · , y

−
i , · · · , y

−
N

〉

,
(1)

where y+
i

(

y−
i

)

indicates the number of cleavage events at

a given genomic position i at positive (negative) strands.

In the case of paired end reads, it is possible to obtain

the fragment length �, by considering the differences

between left-most and right-most alignment positions of

the read pair. HINT-ATAC also counts cleavage events by

only considering reads in a particular fragment size range

(� < � ≤ �), which we denote y+(�,�). See below for

definitions of intervals. In the following, we only consider

the positive strand for simplicity.

Next, we correct the cleavage event profiles by

sequence-specific cleavage bias considering the word w[ i]

with size k around genomic position i. For a given genome

sequence G, this is defined as w[ i]= G[ i − ⌊k/2⌋, i +

⌈k/2⌉ − 1].

For an arbitrary word w, the bias is defined as

b(w) =
p(w|obs)

p(w|exp)
, (2)

where p(w|obs) is the probability of k-mer w around the

position of a cleavage event and p(w|exp) is the probability

of finding word w in the genome. For a position i in the

genome, the bias-corrected signal is obtained as [19]:

xi = (yi + 1)/
(

ŷi · b̂(w[ i] ) + 1
)

, (3)

where ŷi = 1
50

∑i+24
j=i−25 yj represents the average num-

ber of cleavage events around position i and b̂(w[i]) =

b(w[i])/
∑i+24

j=i−25 b(w[j]) is the bias of w[i] normalized by

the bias of surrounding genomic regions.

We describe below three distinct approaches to cal-

culate cleavage bias estimates b(w): (i) the k-mer-based

approach, which is widely used in the DNase-seq litera-

ture, (ii) a PWM-based approach, which is standard for

modeling DNA-protein interactions, and (iii) our novel

approach using PDMs.

k-mer-based estimation

The most common approach for bias estimation is to use

the frequency of k-mers to estimate the probability p(w)

[8, 11, 19, 20, 30]. Let W obs be a multiset with all words

with length k around individual cleavage events of an open

chromatin library and freq(w|obs) be the frequency of a

word w inW obs. Then, the probability is estimated as

p(w|obs) =
freq(w|obs)

|W obs|
, (4)

where
∣

∣W obs
∣

∣ denotes the total number of k-mer

occurences
∣

∣W obs
∣

∣ =
∑

w freq(w|obs). Similarly, p(w|exp)

is estimated on the background multiset (W exp). These

estimates are plugged in Eq. 2 to obtain the final cleav-

age bias estimates. Equation 4 is equivalent to estimating a



Li et al. Genome Biology           (2019) 20:45 Page 13 of 21

multinomial distribution of k-mers in multisetsW obs and

W exp. Estimates are prone to overfitting for large k or low

number of reads.

As standard in the field [8, 19], we define background

regions as all accessible genomic regions, i.e., ATAC-

seq or DNase-seq peaks of the corresponding library.

An exception are naked DNA experiments, where the

complete genome sequence is considered.

PWM-based estimation

An alternative approach, which is standard for transcrip-

tion factor binding models [46], is the use of models

assuming independence between positions of w. That is,

p(w|obs) =

k
∏

j=1

p(wj = b|obs), (5)

where wj is the jth position at word w and b ∈ {A,C,G,T}

a genomic base. We define freqj(b|obs) as the frequency of

base b to occur in position j in all words in multisetW obs.

Then, we can estimate the probability as

p(wj = b|obs) =
freqj(b|obs)

|W obs|
. (6)

Estimates for p(w|exp) are calculated similarly from the

background multisetW exp.

PDM-based estimation

A main disadvantage of PWM-based estimation is that it

assumes statistical independence between different posi-

tions in w. An alternative between models considering

all dependencies (k-mer approach) and no dependencies

(PWM approach) is provided by a position dependency

model (PDM). PDMs consider dependencies between par-

ticular pairs of positions j and l up to a particular distance

d, i.e., d ≥ |l − j| and l < j. We propose here the use of a

special class of PDMs (SLIM models) [26] to estimate the

probability of w, that is

p(w) =

k
∏

j=1

⎛

⎜

⎜

⎜

⎝

p(Cj = 0) · p(wj) + p(Cj = 1)
∑

l∈[1,k]
j−l≤d

p(Rlj) · p(wj|wl)

⎞

⎟

⎟

⎟

⎠

,

(7)

where p(Cj) is the prior probability that the distribution

at position j should be modeled conditional on other posi-

tions; p(Rlj) is the prior probability that position j should

be conditional on position l; p(wj) is the probability of a

base to appear in position j and p(wj|wl) is the probability

of base in position j conditional on the base from position

l. It is worth noting that the PWM-based estimation is a

special case of SLIM models with p(Ci = 0) = 1 for all

positions.

For a given multiset W, estimates p(wj) follow Eq. 6.

Conditional estimates p(wj|wl) can be derived analogously

using frequencies of bi-nucleotides found in positions j

and l in a multiset. The missing estimates p(Cj) and p(Rlj)

are obtained with a discriminative maximum supervised

posterior principle, which uses random sequences as neg-

ative models, see [26] for more details. These methods are

applied on multisets W obs and W exp to obtain p(w|obs)

and p(w|exp), which are then used as final bias esti-

mates with Eq. 2. In our experiments, we only consider

dependencies such that d < 6.

Strand and nucleosome number decomposition and signal

post-processing

For paired-end ATAC-seq libraries, we also filter signals

by only considering cleavage events from paired-ends with

a particular size range
(

y+(�,�
)

). We define distinct

fragment size intervals with contain distinct number of

nucleosomes by estimating local minima between modes

of the fragment size distribution of the ATAC-seq library

used for model training (Additional file 1: Figure S11). For

standard ATAC-seq, the first interval (0, 145] represents

nucleosome-free reads (Nfr), the interval (145, 307] rep-

resents one nucleosome reads (1N), the interval (145,∞]

represents one or more nucleosome reads (+1N) and the

interval (307,∞] represents two or more nucleosomes

(+2N). We then evaluate distinct strategies with com-

binations of these signals: all reads (All), signal from

nucleosome-free reads (Nfr), signals from nucleosome-

free reads and signals from reads with one or more nucle-

osomes (Nfr & +1N ), and signals from nucleosome free,

signals from one nucleosome, and signals from one or

more nucleosomes ( Nfr & 1N & +2N).

For each decomposition strategy, we apply the cleavage

bias correction, a within-signal normalization by averag-

ing non-zero counts inside bins and a between-signal nor-

malization by applying a logistic function. To estimate the

slope of the signals, we apply a Savitzky–Golay smoothing

filter by fitting the data into a second order polyno-

mial and performing a convolution (based on a specific

window length) with a vector containing Savitzky–Golay

coefficients. Normalization steps are described in details

in [7].

For example, in the case of All cleavage events with

strand specific signals, we have a signal and a slope value

for either positive and negative strands, that is:

X =
{

x+
norm, x

+
slope, x

−
norm, x

−
slope

}

. (8)

HMM training and decoding

We take the previously described multivariate cleavage

signals X as input for the HMM model. The HMM

contains a multivariate normal density function with

full covariance matrix as emission probability for each

state. The dimension depends on the decomposi-

tion strategy and varies from 2 (non-strand specific)
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to 12 dimensions (strand-specific models consider-

ing 3 distinct fragment size intervals). For a given

TF, we obtain regions with ChIP-seq peaks and a

motif predicted binding site (MPBS) as described

in the “Evaluation of footprinting prediction”

section. We then estimate the average ATAC-seq profile

for the region ± 500 bp to the motif center and annotate

the center with the label FOOTPRINT. Next, we use a

fully connected HMM with S states and select one state

to represent the FOOTPRINT. We use a semi-supervised

algorithm to train the HMM [47]. This algorithm learns

the parameters of the HMM in a supervised manner

for the FOOTPRINT state and using the Baum-Welch

algorithm for all other S − 1 states (see Additional

file 1: HMM Training). The initial model parameters are

obtained after execution of a M-step with random poste-

rior distributions with the exception of the FOOTPRINT

state, which has the posterior distribution defined by the

labels.

To detect footprints in a novel sequencing library, we

use the Viterbi algorithm [49] to find the most proba-

ble sequence. We consider positions annotated with the

FOOTPRINT state to be the active TFBS. This approach

has clear advantages over previous HMM-based foot-

printing methods [7, 8, 50], which require the manual

specification of a HMM topology and manual annotation

of training data to estimate models. We have evaluated

the use of different ChIP-seq datasets of several factors for

GM12878 cells for training (CTCF, EGR1, SP1, USF2 and

ZNF143). We observed no statistical differences between

themodels. Thus in order to simplify experimental design,

we have arbitrarily selected the model based on EGR1

ChIP-seq in GM12878 cells. The model was employed in

all further experiments including ATAC-seq from other

cells. EGR1 ChIP-seq was excluded from any evaluation.

The number of states S can also be varied and will be

therefore optimized for each protocol and signal decom-

position.

Cell-specific TF activity

We propose here a simple statistic (activity score-ACT)

to measure the strength of TF binding in a particu-

lar biological condition. First, we identify all binding

sites of a particular TF overlapping with footprints F =
{(

f l1 , f
r
1 ), . . . , (f ln, f

r
n

)}

, where f l and f r represent the left-

most and rightmost genomic positions of the binding site.

The activity score of a TF is defined as

ACT(TF)=
1

|F|

∑

(f l ,f r)∈F

⎛

⎝

1

2

fl−1
∑

j=f l−e−1

xj+
1

2

f r+e+1
∑

j=f r+1

xj−

f r
∑

j=f l

xj

⎞

⎠+

⎛

⎝

f r+100
∑

j=f l−100

xj

⎞

⎠ ,

(9)

where e is the length of the binding site and xj is the

cleavage event signal (after bias correction) at genomic

position j.

The activity score can be seen as a combination of

the protection score [8], which measures the difference

in cleavage events between the footprint and flanking

regions (left term), and the openness score [51], which

simply measures the number of cleavage events around

the binding site (right term).

Here, we are interested in identifying TFs with change in

activity between two conditions. This is given by the dif-

ference in ACT scores between two biological conditions,

this is:

�ACT(TF) =
ACT2(TF)

ω2
−

ACT1(TF)

ω1
, (10)

where ω1 and ω2 are normalization factors based on

median-of-ratios [52]. These factors correct for differ-

ences of sequencing depths of libraries of the two con-

ditions. Here, the set F corresponding to binding sites

supported by footprints in at least one of the conditions.

We use this score to rank TFs with a known motif, where

highest �ACT(TF) indicate TFs with specific binding in

condition 2.

Materials and experimental design

Low level analysis of DNase-seq and ATAC-seq libraries

We used ATAC-seq data of cell lines GM12878 and K562

from [5, 6, 28, 53] and single-cell ATAC-seq data from

cell lines GM12878, K562, H1-ESC [33], mouse blood cells

from [54], and DNase-seq data of GM12878, K562, and

H1-ESC from [55]. We also used naked DNA ATAC-seq

data from [21] and naked DNA DNase-seq data from [30]

for estimation of cleavage bias.

First, adapter sequences were trimmed from FastQ files

using Trim Galore [56] with the following settings (-q

30 –paired –trim1). Reads were mapped to the reference

genome using Bowtie2 [57] with the following parameters

(-X2000 –no-mixed –no-discordant) allowing fragments

of up to 2 kb to align. Duplicates were removed and

reads were filtered for alignment quality of >Q30 using

samtools [58]. Next, MACS2 [59] was used to call ATAC-

seq or DNase-seq peaks with the following parameters

(–nomodel –nolambda –keep-dup auto –call-summits).

The overlapping peaks were merged and then filtered

for q-value >10. The same preprocessing was applied to

naked DNA ATAC-seq and DNase-seq except for peak

calling. All organism-specific data are based on human

genome build 37 (hg19) and mm10. Reads mapping to

the mitochondria, unmapped contigs and chromosome

Y were removed from all subsequent analyses. Concern-

ing ATAC-seq experiments performed on single cells, we

combined all sequence libraries to consider them as a
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bulk experiment. See Additional file 2 for complete list of

libraries and quality statistics.

ATAC-seq on dendritic cell specification

Dendritic cells (DC) are professional antigen presenting

cells that comprise different subsets: classical DC type1

and type2 (cDC1 and cDC2, respectively) and plasmacy-

toid DC (pDC). In this study cDC1 or pDC were obtained

in a two-step in vitro culture system according to [37].

Briefly, mouse bone marrow cells were first amplified with

a specific cytokine cocktail and then induced to differen-

tiate into DC with Flt3 ligand. cDC1 are CD11c+ CD11b+

XCR1+ and pDC are CD11c+ CD11b- B220+ and thus

cDC1 and pDC subsets were purified by FACS sorting and

subjected to Omin-ATAC-seq analysis. Omni-ATAC-seq

was performed according to [6] with minor modifica-

tions. Prior to transposition dead cells were removed by

centrifugation (800 rpm, 4 min, 4 °C). The transposi-

tion reaction was with 7.5 μL Tagment DNA Enzyme

1 (TDE1) for 60 ‘min at 37 °C. Pre-amplification was

with NEBNext Ultra II Q5 Master Mix and Nextera PCR

Primers (5 cycles). Quantitative PCR amplification was

with NEBNext Ultra II Q5 Master Mix, Nextera PCR

Primer and SYBR Gold to determine the number of addi-

tional cycles. PCR amplification of additional cycles was as

for pre-amplification. PCR fragments were purified with

Qiagen MinElute PCR Purification Kit and library con-

centration and quality were determined by Agilent High

Sensitive DNA Kit and Bioanalyzer, respectively. ATAC-

seq libraries were sequenced with a Illumina NextSeq

500 Platform with 75 bps paired-end reads in duplicates.

Trimming, alignment (to mouse genome mm9), and peak

calling were performed as for other ATAC-seq libraries.

Replicate libraries weremerged previously to footprinting.

Evaluation of footprinting prediction

ChIP-seq of TFs and motif-predicted binding sites

(MPBSs) were used as ground truth to evaluate the foot-

printing prediction in this work following [8, 27]. We used

here peaks from 124 TF ChIP-seq datasets provided by

the ENCODE analysis working group on cell lines K562

(60), H1-ESC (31), and GM12878 (33) [60]. We obtained a

PWM for each factor from the Jaspar database [61]. For a

few exceptional cases were a motif was not found in Jaspar

(5 TFs), we used matrices from Uniprobe [62], or Trans-

fac [63]. See Additional file 1: Table S31 for stastistics of

ChIP-seq data andmotifs. Next, we used a motif matching

tool based on theMOODS C++ library [64] to findMPBS.

We determined a bit-score cut-off threshold by applying

the dynamic programming approach described by [65]

with an FPR of 10−4. Then, we created labels by combin-

ing MBPSs with ChIP-seq data for every TF. Specifically,

MPBSs with ChIP-seq evidence (MPBS located within

100 bp from the ChIP-seq peak summit) are considered

true binding sites and MPBSs without ChIP-seq evidence

are considered false binding sites. Footprint/MPBS pairs

supported by ChIP-seq peaks are considered true posi-

tives (TP), while footprints with no ChIP-seq support are

considered false positives (FP). TN and FN are defined

accordingly. We rank the predictions for all methods by

tag count (TC) as this has been shown to be the best

method for ranking predictions [8].

To assess the accuracy, we created receiver operating

characteristic (ROC) curves and evaluated area under

ROC at 100%, 10%, and 1% FPR by using the contingency

table (TPs, FPs, TNs, and FNs). We also measured the

area under Precision-Recall (auPRC) at 100%, 10%, and

1% recall as these measures are more suitable for data

with skew on negative classes [66, 67]. As the relative per-

formance of methods might vary on distinct evaluation

measures, we combine these with the approach used in

the ENCODE-DREAM Challenge (https://www.synapse.

org/#!Synapse:syn6131484/wiki/405275). This score is

equal to the sum over all six normalized ranking measures

of −log(r/(N + 1)) where r is the rank of an algorithm

for a specific performance measure (e.g., auROC) and N

is the total number of methods. Therefore, best measures

should have a high ranking in several of the evaluated

measures.

Evaluation data sets

We divided our evaluation data in three distinct sets. The

first set (training dataset) is composed of 32 TFs

ChIP-seq from the GM12878 and different ATAC/DNase-

seq data. To evaluate bias correction methods, we used

ATAC-seq data from standard protocol based on 50.000

cells [5], Omni protocol [6], Fast protocol [28], and naked

DNA [21]. We also used DNase-seq (single hit) of the

same cell line from ENCODE and naked DNase-seq from

[30] to evaluate the impact of novel bias correction strate-

gies on DNase-seq data. In addition, we included double-

hit DNase-seq of GM12878 to evaluate HMM learning

strategies. The next data set (test dataset) is based

on 148 combinations of TF ChIP-seq and ATAC-seq

experiments from H1-ESC and K562 cells. This data set

was used to compare HINT-ATAC with other footprint-

ing methods. ATAC-seq data K562 from 50.000 cells from

[14] and combined single cell ATAC-seq data from H1-

ESC and K562 cells [33] and Omni-ATAC K562 cells from

[6]. In above analyses, we excluded the TF ChIP-seq data

from EGR1, which was used as label for the model (see

Additional file 2 for full description of ATAC/DNase-seq

data).

Finally, for the comparative evaluation of ATAC-seq

andDNase-seq protocols, we defined a comprehensive

data set by combining all TF-ChIP data (124) from

previous data sets. This dataset is further enhanced by

using single cell ATAC-seq libraries (GM12827, K562).

https://www.synapse.org/#!Synapse:syn6131484/wiki/405275
https://www.synapse.org/#!Synapse:syn6131484/wiki/405275
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We also annotated transcription factors regarding their

structural family in accordance to JASPAR [39]. For sta-

tistical power, we only kept families with more than 10

annotated TFs. Concerning the comparison of footprint-

ing performance on enhancer versus promoter regions, we

obtained histone based segmentation of the correspond-

ing cells with chromHMM [35] for GM1878 and K562

cells. We combined all states associated with enhancer

or promoter regions which were used to split our TFBS

prediction sets into two (Additional file 1: Table S31).

Statistical comparison of computational methods

regarding TF binding sites was performed with the

non-parametric Friedman-Nemenyi hypothesis test.

Such a test provides a rank of the methods as well as

the statistical significance of the out-performance of a

particular method. Comparisons based on non-paired

distributions were performedwith theWilcoxon rank sum

test. All reported p values based on multi-comparison

tests were corrected using the Benjamini-Hochberg

method.

Endnotes
1Query performed using the words “ATAC-seq” and

“DNase-seq” at August 16, 2018 considering the number

of series and samples deposited within the last year
2For each cleavage signal, HINT-ATAC also gener-

ates a slope signal to help detection of regions with

increase/decrease on cleavage sites
3Given the fact Wellington and DeFCoM do not sup-

port multivariate signals, it is only possible to evaluate the

Nfr decomposition for these methods.
4DeFCoM cannot be used in this unbiased analysis as it

requires TF ChIP-seq data to train models, which is not

given for all 579 TFs deposited in JASPAR.
5For sake of simplicity, we assume genomes are formed

as a single chromosome.
6An additional base pair is required to define the posi-

tion of a cleavage event from reads mapped to negative

strand (−5 instead of −4), as the right most positions of

genomic intervals include an extra base.
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