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Abstract

Background: The aim of the study was to assess whether texture analysis is feasible for automated identification

of epithelium and stroma in digitized tumor tissue microarrays (TMAs). Texture analysis based on local binary

patterns (LBP) has previously been used successfully in applications such as face recognition and industrial machine

vision. TMAs with tissue samples from 643 patients with colorectal cancer were digitized using a whole slide

scanner and areas representing epithelium and stroma were annotated in the images. Well-defined images of

epithelium (n = 41) and stroma (n = 39) were used for training a support vector machine (SVM) classifier with LBP

texture features and a contrast measure C (LBP/C) as input. We optimized the classifier on a validation set (n =

576) and then assessed its performance on an independent test set of images (n = 720). Finally, the performance

of the LBP/C classifier was evaluated against classifiers based on Haralick texture features and Gabor filtered

images.

Results: The proposed approach using LPB/C texture features was able to correctly differentiate epithelium from

stroma according to texture: the agreement between the classifier and the human observer was 97 per cent

(kappa value = 0.934, P < 0.0001) and the accuracy (area under the ROC curve) of the LBP/C classifier was 0.995

(CI95% 0.991-0.998). The accuracy of the corresponding classifiers based on Haralick features and Gabor-filter

images were 0.976 and 0.981 respectively.

Conclusions: The method illustrates the capability of automated segmentation of epithelial and stromal tissue in

TMAs based on texture features and an SVM classifier. Applications include tissue specific assessment of gene and

protein expression, as well as computerized analysis of the tumor microenvironment.

Virtual slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/

vs/4123422336534537

Keywords: Image analysis, Texture classification, Pattern recognition, Stroma, Epithelium, Local binary patterns, Har-
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Background
Tissue microarrays (TMAs) are the standard for high-

throughput analysis of diagnostic, prognostic and pre-

dictive tissue biomarkers [1] and for rapid validation of

molecular expression patterns in large-scale tissue mate-

rials [2]. However, the extensive tissue sample series

included in TMAs give rise to bottlenecks in the manual

microscopy-based evaluation of immunostaining and in

situ hybridization results.

Computer-assisted automated quantification of immu-

nohistochemical protein staining has previously been

shown to be feasible in TMAs [3-6] and resulted in

higher reproducibility compared to human-based judg-

ment [7]. Tissue compartment specific quantification of

molecular expression patterns remains a challenge for

computer-assisted methods. A skilled human observer

easily segments the tissue into compartments and can

report immunohistochemical staining in tumor cells and

stroma separately. Computerized segmentation of
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morphology, on the other hand, is currently largely

dependent on special dyes e.g. fluorescent tags that can

separate tumor cells from stroma [7]. Since the spatial

location (in tumor cells vs. stroma) of protein expression

can be of biological and clinical relevance [8-10], more

efficient methods for computerized segmentation are

needed.

In this study we have focused on the analysis of

image texture to improve segmentation of tissue into

specific tissue compartments. Texture analysis has

achieved high accuracy in a series of pattern classifica-

tion problems [11]. These techniques, stemming from

pattern recognition and machine learning, have

improved during the last years both due to methodolo-

gical advances, and because of extended computational

capacities. Texture is a fundamental property of sur-

faces, including sections of tissue. Various texture ana-

lysis methods have been developed. For example,

statistical methods based on co-occurrence matrices,

signal-processing methods based on local linear trans-

forms, multichannel Gabor filtering or wavelets, and

model-based methods such as Markov random fields

or fractals [11]. Only a few studies have been pub-

lished regarding automated segmentation of tissue

images and are either approaches taking advantage of

color space methods [12,13], texture analysis [14-16]

or other morphology-based algorithms [17].

A texture analysis method that has been efficient in a

variety of pattern classification tasks is based on local

binary patterns (LBP) [11,18,19]. Part of the success of

the LBP is due to the rotation and gray scale invariance.

We hypothesized that the rotation invariance would be

important in the analysis of microscopy images of tissue

specimen where control of the spatial sample orientation

is difficult or impossible to attain. Equally, the gray scale

invariance could compensate for variation in sample

staining (e.g. due to differences in color and sample

thickness), illumination conditions and camera settings.

For the purpose of evaluating a texture analysis

method for computerized segmentation of tissue sam-

ples, we here report the performance of an LBP algo-

rithm combined with a contrast measure (LBP/C) to

discriminate epithelial regions from stroma in a series of

digitized colorectal cancer TMAs. The performance of

the LBP/C algorithm was evaluated against correspond-

ing algorithms based on Haralick textures [20] and

Gabor filtered images [21].

Methods
Patient series

The study is based on tissue samples from a series of

643 consecutive patients who underwent surgery for his-

tologically verified colorectal cancer at the Helsinki Uni-

versity Central Hospital in 1989 to 1998. The clinico-

pathological characteristics of the patients in this series

have been described in detail previously [22].

Permission to use clinical data and formalin-fixed,

paraffin-embedded tissues for research purposes was

provided by the National Authority for Medical Affairs,

Finland (Permission# 3990/04/046/07). With reference

to the large number of patients studied and because a

considerable number of the persons from whom the

samples are derived were not alive at the time when the

study was started, the authorities granted permission to

use tissue samples without individual patient consent.

Additionally, the study was approved by the local Ethics

Committee and complies with the Declaration of Hel-

sinki (Permission# HUS 226/E6/06).

Tissue samples and preparation of tumor tissue

microarrays

Representative tumor regions in routinely fixed paraffin-

embedded samples were defined from H&E-stained sec-

tions and marked. Donor tissue blocks were sampled

and three cores punched from each donor block and

transferred to the tissue microarray blocks. From the

643 tumor samples, 27 tissue array blocks were pre-

pared, each containing 10-180 tumor samples. Eight tis-

sue arrays were selected for the study, representing one

core per tumor. Sections of 4 μm were cut from the

TMAs and further processed for immunostaning with

epidermal growth factor receptor (EGFR) antibody. Of

note is that this particular EGFR immunostaining is not

relevant with regard to the objectives of the current

study. For immunohistochemistry of EGFR a Lab Vision

Autostainer TM 480 (LabVision, Fremont, CA) was

used. Deparaffinised formalin-fixed, paraffin-embedded

tissue sections were heated in the pretreatment module

of the autostainer in Tris-HCl pH 8.5 buffer (for 20

minutes at 98°C). For inactivation of endogenous peroxi-

dises, the sections were incubated (for 5 minutes) in

Peroxidase Block Solution (DAKO, Carpinteria CA) and

incubated for 30 minutes with the primary antibody

NCL-EGFR (Novo Castra, Newcastle upon Tyne, UK),

diluted 1:10. The sections were then reacted (for 30

minutes) using the Advance HRP detection system

(DAKO, Carpinteria CA). The reaction products were

revealed with the brown colored chromogen diamino-

benzidine (DAB) and finally the sections were counter-

stained with haematoxylin (for 1 minute).

Digitization of stained tissue microarray slides

The tissue micorarray array slides were digitized with an

automated whole slide scanner (Mirax Scan, Zeiss, Göt-

tingen, Germany), using a 20 × objective (numerical

aperture 0.75) and a Sony DFW-X710 camera (Sony

Corporation, Tokyo, Japan) equipped with a 1/3” type

1034 × 779 pixel CCD sensor. The pixel resolution was
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0.26 μm. Images were compressed to a wavelet file for-

mat (Enhanced Compressed Wavelet, ECW, ER Mapper,

Erdas Inc, Atlanta, Georgia) with a conservative com-

pression ratio of 1:5.

The virtual microscopy platform

The compressed virtual slides were uploaded to our web

server (http://www.webmicroscope.net) running image

server software (Image Web Server, Erdas Inc, Atlanta,

Georgia). Virtual slides on the server can be viewed and

processed with image analysis algorithms (i.e. ImageJ

and MATLAB) using a standard web browser interface.

The user is able to navigate into an area-of-interest in a

whole slide sample or TMA, and store the current view

as a region-of-interest that subsequently can be pro-

cessed by image analysis. The image algorithms in the

current study were run on a server equipped with a 3.33

GHz Intel Core i7 processor and six cores, and 24,0 GB

RAM.

Annotation of representative tissue regions and image

data set

For training of the algorithm representative epithelial (n

= 41) and stromal (n = 39) regions-of-interest were

defined in the digitized TMA slides. The training set

images were only used for training. A separate validation

set (n = 576) was defined for optimization of the algo-

rithms and consisted of 360 images representing epithe-

lium and 216 images representing stroma. Finally, a test

set (n = 720) was defined for assessment of classifier

accuracy and consisted of 425 images representing

epithelium and 295 images representing stroma.

The images used for training, validation and testing

are stored in a database and available at http://fimm.

webmicroscope.net/supplements/epistroma. Image anno-

tation was carried out by one of the researchers (N.L.)

and verified by a pathologist (S.N.).

The dimensions of the annotated areas varied between

93-2372 in pixel width and 94-2373 in pixel height.

Magnification was constant i.e. images were always of

the same pixel resolution although the annotated area

was variable.

Preprocessing

To extract the texture features, the tissue sample images

are first scaled, then converted to grayscale and finally

possible background area is removed.

In the current study, images were scaled by a constant

of 0.5. The grayscale conversion is performed by comput-

ing a weighted sum of the R, G and B components of the

color image: 0.2989 * R + 0.5870 * G + 0.1140 * B.

Possible background was removed by creating a binary

mask in which the foreground tissue pixels were marked

by ones and the background pixels by zeros. In bright

field microscope images, the background pixels have

high luminance values. These bright areas were removed

from the gray-scale image by a threshold value of 240.

Structures in the resulting binary mask were smoothed

morphologically by closing and eroding the binary

image [23]. The binary mask was used later to prune

areas scarce of tissue i.e., the background.

Feature extraction

The downscaled images were divided into blocks and

the classification was performed by processing the

blocks independently. The blocks were defined by slid-

ing a square of 80 × 80 pixel window through the

image. The window was moved row by row from the

upper left corner to the lower right by 40 pixels at the

time, thus creating a 50% overlap. If the area of a back-

ground binary mask that corresponds to the area of a

block contained 50% or more tissue, the particular block

was processed, if not, the block was considered as back-

ground, and it was not further processed.

Texture features

Local binary patterns

The local binary pattern operator (LBP) compares each

pixel in an image to P pixels in a circular neighborhood

with radius R. The intensity value of the central pixel is

used to threshold the surrounding pixels forming a bin-

ary code (Figure 1). The pixels, which have a value less

than the value of the central pixel, are set to 0, and the

pixels that have a larger or equal value are set to 1. The

binary code is interpreted as a base-2 number i.e. its

digits are weighted by the powers of two to form the

analogous base-10 number, for instance a binary code

100110112 represents an LBP code number 15510. The

original LBP [19] was defined in a rectangular 3 × 3

pixel neighborhood (P = 8, R = 1) for gray-scale images,

but the radius of the operator can be extended to

include pixel neighborhoods farther from the central

pixel (e.g. P = 16, R = 2).

Invariance to rotation can be achieved using minimized

uniform patterns [18]. Patterns, which have at most two

transitions on a circular ring from 1 to 0 or vice versa are

called uniform. The uniform patterns are minimized by

bit shifting the LBP code to a position where it reaches

its minimum, for instance uniform patterns like

00011110, 11000011 and 11110000 are shifted to

00001111 = 15. When uniform patterns are used, all the

non-uniform patterns are mapped to one LBP code. This

restricts the number of possible LBP codes to P + 2.

By definition the LBP discards contrast, while the LBP

feature is strongly characterized by its capability to

detect variations in the structure of the texture pattern.

To capture also the contrast information, i.e. the

strength of the texture patterns, the LBP was combined

with a rotation invariant local variance (VAR) [18]. As

for the LBP, the VAR is formulated in a circular
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neighborhood, often with the same radius R and sample

points P as the LBP. Essentially the VAR represents the

variance of the gray values of the surrounding pixels i.e.,

the sample points.

The joint distribution of the above-described operators

is used to merge the contrast (C) with the LBP pattern,

i.e. LBP/C. To determine the joint distribution, the out-

put VAR is quantized to eight Q levels. The quantiza-

tion is performed by computing VAR for a set of

training images and then dividing the distribution of

VAR values into Q levels, each having an equal number

of pixels. This restricts the size of the joint distribution

to (P + 2) × Q discrete bins. MATLAB implementations

for LBP and VAR operators presented here are available

at http://www.cse.oulu.fi/MVG/Downloads. For each

block, a numerical representation of its texture was

computed by using two discrete joint distributions:

LBP
riu2

8,1 + VAR8,1 and LBP
riu2

16,2 + VAR16,2 . The histo-

grams were concatenated to one (8 + 2) × 8 + (16 + 2)

× 8 = 224 bins long feature vector. The Euclidean norm

of the feature vector was normalized to one.

Haralick textures features

The Haralick texture descriptor is a metric representa-

tion that is dependent on the spatial gray level depen-

dence matrices, i.e. co-occurrence matrix C∆x,∆yÎ RM×M,

where ∆x,∆y defines the offset used to construct the

matrix. In a certain image with M gray levels, the spatial

gray level dependence matrix at angle θ is a matrix of

size M × M. In the matrix, each element is a sum of the

total number of pairs of gray levels at the predefined

offset over the whole image. In the current study, image

gray scale values were linearly quantized to 8 levels;

which define the size of the co-occurrence matrix R8 ×

8. Three symmetrical co-occurrence matrices with offset

pairs (0,1), (1,1) and (1,0) were used to describe second-

order statistics. The following metrics were computed

from the matrices and used as input for the classifier;

autocorrelation, contrast, correlation, cluster promi-

nence, cluster shade, dissimilarity, energy, entropy,

homogeneity, maximum probability, sum of squares,

sum average, sum variance, sum entropy, difference var-

iance, difference entropy, information measure of corre-

lation 1, information measure of correlation 2, inverse

difference normalized and inverse difference moment

normalized [20,24,25].

Gabor filters

The Gabor filters are a group of Gabor wavelets, a filter

bank, which may be designed for different dilations and

rotations. For texture analysis purposes the input image

is filtered with the filter bank and then a set of descrip-

tors are computed from the resulting output images.

Gabor functions have properties that make them suita-

ble for texture applications, i.e. tunable bandwidths, the

option to be defined to operate over a range of spatial

frequency channels, and acting upon the vagueness prin-

ciple in two dimensions [21].

In the current study, Gabor features were computed

from the filter bank defined by the orientation para-

meter θ = nπ6, nÎ0,...,5 and scale parameter s Î 0,....,3.

For each parameter combination a unique Gabor trans-

formation was defined, and for classification purposes

the mean and the standard deviation of the magnitude

of the transformation coefficients were used. The above-

mentioned parameter settings yield component feature

vector that was used as input for the classifier.

Classification

A linear support vector machine (SVM) was used to

classify the image blocks extracted from the input

images. The SVM classifies data based on a model that

it has learned from a given training set. LBP/C, Haralick

and Gabor features and their class labels were used to

train the SVM classifier model. Then the trained classi-

fier was optimized with images from the validation set

and finally tested with the independent test set images.

The model describes the hyperplane that separates the

classes of the training set with the largest possible mar-

gin. A library for large linear classification (LIBLINEAR)

[26] was used to implement a linear capacity constant

SVM (C-SVM).

The algorithm output

The analyzed images differed in size (pixel dimensions)

and therefore contained a varying number of blocks that

the SVM classified (Figure 2). The average SVM score

of all blocks in an image defined to which class the test

image was assigned, i.e. epithelium or stroma. The sign

of the classification score indicates on which side of the

decision hyperplane a feature vector lays, i.e. it

Figure 1 Local binary patterns (LBP) are defined for an image (A) based on its grayscale values. For every 3 × 3 pixel neighborhood (B)

within the image, an LBP code is generated by thresholding the surrounding pixels using the value of the central pixel (C-D). A histogram (E) of

the all LBP codes within the analyzed image is formed to represent texture properties of the image
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represents the predicted class. Additionally, the absolute

value of the classification score is the distance between

the feature vector and the decision hyperplane. The

points near the hyperplane in the feature space are

more likely erroneous than the ones that are further

from it; hence the decision value is a measure of the

certainty of the prediction. Images with an SVM score

lower than -1 or higher than 1 were therefore regarded

as strong candidates for the respective classes, whereas

those closer to zero (SVM score between -1 and 1) were

considered as weak candidates. The decision value

threshold for the classification into the stroma and

epithelium categories was set to zero.

In the results images the pixels that correspond to the

pixels of the block in the original image are pseudo-

colored according to the decision value of the particular

block (Figures 2, 3, and 4). For the overlapping areas

average values of the overlapping decision values are

computed. A heat map (color map) that maps large

positive values to dark-red (most likely to be epithelium)

and large negatives to dark-blue (most likely to be

stroma) was used to generate the pseudo-colored seg-

mentation image (Figures 2, 3, and 4). The colors

between the extremes change from light blue and tur-

quoise to light green, and from light green to yellow

and orange. Light green color represents zero or almost

zero values, which corresponds to image blocks whose

correct class the algorithm is least certain of.

Statistical methods

The accuracy of the classifier was evaluated with regard

to discrimination by calculation of the area under the

receiver operating characteristic curve (AUC). The AUC

can be interpreted as the probability that for any ran-

domly chosen pair of tissue image samples, one that

represents epithelium and the other stroma, the classi-

fier will assign a higher score to the former. An AUC of

0.5 indicates a random classifier and AUC 1.0 a perfect

classifier. The agreement between the visual and auto-

mated methods in the assessment of tissue type was

estimated by percent-agreement and kappa-statistics.

Results
The LBP/C, Haralick and Gabor texture classifiers were

optimized on the validation set of 576 colorectal cancer

microscopy images (http://fimm.webmicroscope.net/sup-

plements/epistroma). Of these images, 360 represented

epithelium and 216 stroma. Optimization was done by

computing the accuracy (area under the ROC curve)

over a set of cost parameter values, C for the linear sup-

port vector machine classifier for each of the LBP/C-,

Haralick- and Gabor descriptors. The selected C values

based on the validation tests were: LBP/C; C = 300,

Haralick; C = 2048, and Gabor; C = 2 (Figure 3).

For testing of the LBP/C, Haralick and Gabor classi-

fiers, 720 colorectal cancer images (http://fimm.webmi-

croscope.net/supplements/epistroma) were used. The

images used for testing were different from those used

for optimization of the different texture feature sets. Of

the images used for testing, 425 represented epithelium

and 295 stroma. The accuracy (area under the ROC

curve) of the LBP/C texture classifier was 0.995 (CI 95%

0.991-0.998), for Haralick features 0.976 (CI 95% 0.966-

0-986) and for Gabor filtered images 0.981 (CI95%
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Figure 2 Principle of image annotation, block-based feature extraction and classification. Areas representative of pure tumor epithelium

and stroma were identified in the digitized tissue microarray spots (A) and then split into blocks of size 80 × 80 pixels (B). A local binary pattern

(LBP/C) operator was applied to the blocks and block-specific LBP histograms generated (C). The block histograms are then used as input to a

support vector machine (SVM) classifier (D), which assigns a tissue category (epithelium or stroma) score to the block. The SVM score for each

block is pseudo colored to visualize the output (E), and the average block score is taken to represent the predicted class of an image (F)
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0.973-0.990) for assigning the correct class to the test

images. A significant difference between the accuracy

for the LBP/C classifier and the Haralick features as well

as between the LBP/C classifier and Gabor filtered

images were observed (Figure 5). The running time for

analyzing the test set (n = 720) was 99 seconds using

the LBP/C algorithm, 47 seconds using Haralick fea-

tures, and 145 seconds Gabor filtering.

The highest accuracy for assigning the accurate class

to the test images was achieved by the LBP/C classifier;

therefore these results were analyzed in more detail.

The sensitivity of the LBP/C classifier for correctly iden-

tifying the stroma images in the test set was 99%

(CI95% 98%-99%) and the specificity was 94% (CI95%

Figure 3 Performance results for LBP/C, Haralick and Gabor texture descriptors on the validation set (colorectal cancer images; n =

576). A linear classifier was optimized for each of the descriptors by computing the accuracy, AUC (area under the ROC curve) over a set of C

values (Cost parameter) growing in exponential sequence C = 20,..., 220. The AUC was computed on block level. The selected C values based on

the validation tests were: LBP/C; C = 300, Haralick features; C = 2048, and Gabor filters; C = 2
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Figure 4 Contingency table for discrimination of colorectal

cancer stroma and epithelium images in the test set

(colorectal cancer images; n = 720) using the local binary

pattern (LBP/C) classifier. The value of the score generated by the

classifier defines to which class the test image is assigned, i.e. strong

or weak epithelium (black bars) or stroma (white bars)

Figure 5 Summary of feature types and accuracy (area under

the ROC curve) for each feature type in the test set (colorectal

cancer images; n = 720) respectively. CI = confidence interval.
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92%-95%). The agreement percentage between the tex-

ture classifier and the human observer was 97% (kappa

value = 0.93, P < 0.0001) (Table 1).

In the test set using LBP/C features, the average SVM

score in the epithelium images was 1.73 (SD 0.89, range

-2.3 to 3.8) and in the stroma images -2.37 (SD 1.16,

range -5.6 to 1.3) (Figure 4). Of the 425 epithelium

images, 364 were strongly assigned to the correct cate-

gory and 42 weakly (Figures 4 and 6A-E). Of the 295

stroma images, 263 were strongly and 28 weakly

assigned to the correct class (Figures 4 and 6F-J). The

algorithm incorrectly classified a total of 23 images, i.e.

4 images were wrongly classified as epithelium and 19

images were wrongly classified as stroma.

To visualize the result of the LBP/C texture analysis

method when processing larger areas of tissue we ana-

lyzed a whole TMA with 73 colorectal tumor tissue

spots (Figure 7, accessible at http://fimm.webmicro-

scope.net/supplements/epistroma).

Discussion
In the present study we evaluated a texture analysis

approach using LBP texture features in combination with

a machine learning method to identify tissue types in a

large series of digitized colorectal cancer TMAs. Segmen-

tation of tumor tissue into epithelium and stroma facili-

tates automated assessment of protein expression within

the respective tissue compartments. Protein expression

quantification can be performed as a sequential process

in which a primary algorithm performs the segmentation

and a secondary algorithm calculates the area and inten-

sity of an immunohistochemical staining. Computerized

tissue type-specific interpretation of immunohistochem-

ical staining has the potential to produce more reliable

and reproducible results as compared to visual quantifi-

cation methods by a human observer [27]. In addition, an

algorithm that identifies tumor epithelium could be uti-

lized for the purpose of identifying regions of interest to

be punched from the donor block in the process of TMA

construction or for laser capture micro dissection of spe-

cific cells of interest [28].

The tumor epithelium can exhibit a range of textures,

from an appearance close to the normal tissue in well-

differentiated cancer to the lack of organizational fea-

tures in poorly differentiated tumors. Epithelial tissue

texture is different from stromal texture which is orga-

nized in specific directions and is loosely arranged [29].

Several powerful pattern recognition methods have

emerged during the last few years, especially within tex-

ture classification [11]. As a rule many of these techni-

ques assume that the textures are uniformly presented

and captured in the same orientation. In the analysis of

tumor tissue, samples are cut in various planes and

positioned at different angles on slides for analysis.

Thus, uniform orientation is not possible to achieve and

analysis of tissue texture should be invariant to orienta-

tion. Also, the algorithm should be robust with regard

to variations in image contrasts due to tissue processing

and factors related to image acquisition.

The LBP operator is a rotation and grayscale invariant

texture descriptor and is therefore interesting in the

context of tissue texture analysis. LBP has been success-

fully used in various applications. For example, the LBP

algorithm is used for face recognition [30] and other

applications within biometrics, including iris recognition

[31] and fingerprint identification [32]. The LBP opera-

tor has been proven to be highly discriminative and its

key advantages are computational efficiency and invar-

iance to monotonic gray level changes [19].

Texture-based algorithms for classification of tumor

tissue have, to some extent, been previously studied, but

generally included only small specimen series. In one

study, image texture analysis was used for mapping dys-

plastic fields in colorectal tissue [33]. Another study

showed that identification of normal vs. abnormal pro-

static tissue components in large-scale histological

scenes was feasible using Haralick’s co-occurrence tex-

ture features [16]. For classifying breast histology

images, texture-based operators using supervised learn-

ing have been employed [34,35]. In a recent publication,

a wavelet-based, multiscale framework for texture-based

color image segmentation was used to differentiate var-

ious tissue compartments in ovarian carcinoma. In that

study an average of 71.5% of pixels were assigned to the

correct class by the algorithm i.e. five tissue types manu-

ally annotated in the images by the human observer

[36]. A direct comparison with our results is not feasi-

ble, since we focused on the discrimination between two

tissue types. Also, in the current study we analysed the

accuracy on an image-block level in comparison to stu-

dies that report pixel-level results. We argued that

obtaining a ground truth with regard the tissue cate-

gories (stroma and epithelium) as defined by a human

observer on a pixel-level would not be possible without

substantial inter-observer variability.

Table 1 Contingency table for discrimination of

colorectal cancer stroma and epithelium, in the test set

(colorectal cancer images; n = 720) using the local binary

pattern (LBP) texture algorithm.

Automated classifier

Stroma Epithelium

Human observer Stroma 291 4 295

Epithelium 19 406 425

310 410 720

Total correct classification was 97 per cent (kappa value = 0.93, P < 0.0001)
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In a few earlier reports, the LBP algorithm has been

adapted for tissue classification. In a previous report

that compared different histogram-based feature sets for

tissue images, the LBP obtained the highest classification

accuracy [37]. Another approach using LBP was

employed to determine tissue as either stroma-rich or

stroma-poor from digitized whole-slide neuroblastoma

slides. The approach was tested on 43 whole-slide sam-

ples and provided an overall classification accuracy of

88% [15]. The LBP/C algorithm described here discrimi-

nates between epithelium and stroma with a higher

accuracy (99%) than the method presented by Sertel et

al. This may be partly due to differences in the tissue

architecture in neuroblastoma as compared to the mor-

phology of the stroma in colorectal cancer tissue. In

addition, differing LBP parameters, classifier selections

(SVM vs. k-nearest neighbor), and incorporation of the

contrast information might explain part of the difference

A B C

Epithelium

Stroma

Figure 7 A part of a digitized colorectal cancer tissue microarray (TMA) immunostained with epidermal growth factor receptor (EGFR)

antibody (A) and the same TMA as processed by the local binary pattern (LBP/C) classifier (B). One representative tissue spot and its

corresponding LBP/C result image. The bar on the right shows the heat map for the LBP/C classifier score values
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T

Epithelium

Stroma

Figure 6 Example images of epithelial and stromal tissue in the test set (colorectal cancer images; n = 720). A-H represents examples of

histological images that have been strongly- and I-J images that have been weakly classified as epithelium by the local binary pattern classifier.

K-R represents examples of tissues that have been strongly assigned into stroma, and S-T images that have been weakly classified as stroma
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in accuracy. In another study LBP features were used for

classification of sub-cellular protein localization and

also, the algorithm has been applied on pap smears to

classify cervix cells as either normal or abnormal [38,39].

In the present study the accuracy of the LBP/C tex-

ture classifier for assigning the correct histological class

was significantly higher with the LBP/C operator as

compared to Haralick features and Gabor filters. The

LBP operator can be seen as a unifying method to the

traditionally divergent statistical and structural models

of texture analysis. The rotation invariance and toler-

ance against illumination changes of the LBP operator

may be factors that have an impact on the outcome in

our setting. Regarding Gabor filters, it has been sug-

gested they have a tendency to over-represent low fre-

quency components and under-represent higher-

frequency components and thus may not always be sui-

table for texture analysis of natural images [40]. Since

the discriminative accuracy of all three descriptors was

excellent (AUC > 0.95) no firm conclusions on the

superiority of one single approach can be drawn and

performance results may vary according to the analyzed

tissue type.

As mentioned previously, the current method is based

on image blocks, with a size of approximately 40 micro-

meters. Thin rows of tumor cell or non-stromal cells

interspersed with stroma might therefore be wrongly

classified as stroma. Future studies are needed to assess

resolution requirements for segmentation of specific tis-

sue types or disease states (e.g. infiltrating inflammatory

cells).

We used colorectal cancer as a model to test the abil-

ity of the texture algorithm to differentiate the two his-

tological tissue types. Whether our results will be

applicable to other cancer types than colorectal cancer,

needs to be explored in further research. In this study

we analyzed a series of tissue samples immunoassayed

for analysis of the EGFR protein and visualized by the

DAB chromogen. It cannot be ruled out that immuno-

histochemical staining process influenced the results,

although the algorithm should be invariant to color/

image intensity. Also, the methods used for antigen

retrieval may modify tissue architecture and thus the

texture of the tissue. The reason for us to choose the

EGFR protein staining was that the staining was of good

quality, i.e. there was only little cross reactivity between

the epithelial and stromal compartments. We analyzed

immunohistochemically stained tissue sections and not

haematoxylin-eosin stained tissue, because our aim was

to test the performance of the algorithm on samples

prepared for tissue protein expression analysis.

In future studies, it will be of interest to apply texture

analysis on other cancers, e.g. breast- and prostate

tumor samples. A computerized segmentation into

tumor epithelium and stroma would be of relevance in

studies regarding the tumor microenvironment, espe-

cially when applied to large series on digitized whole

slides samples. Stromal cells and their roles in cancer

prognosis [8] and response-prediction [9] have been

increasingly recognized. It has been proposed that

induction or loss of certain proteins in the stroma may

be critical in promoting the metastatic phenotype in

cancers [10].

In addition to the segmentation of tumor tissue to spe-

cific compartments described in this study, texture classi-

fiers for cancer tissue in combination with clinical and

bio-molecular data may act as prognostic markers [41].

By probing large sample areas and thousands of tissue

specimens, previously undiscovered texture patterns for

cancer with clinical and prognostic relevance could

potentially be identified. Texture-based algorithms also

have the potential to be used for more general tissue seg-

mentation and image quality assessment in whole-slide

images [42,43]. Texture features combined with color

information might be of interest and is currently a highly

investigated topic in computer vision [44].

Conclusions
In this study we have adopted texture-based methods

for classification of epithelium and stroma in a large set

of human colorectal cancer. The accuracy of classifiers

based on LBP/C, Haralick features and Gabor filters, in

discriminating between the two histological tissue types

was consistently high. Together with the rapid develop-

ment of large-scale image processing methods, computer

vision based texture classifiers are excellent candidates

for automated quantification of tissue-specific proteins

in tumor samples and to identify regions of interest for

TMA construction in high throughput settings.
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