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Abstract: This article establishes a mathematical description of a self-organizing
neural network used for cluster analysis with a subsequent sampling of its effective-
ness as an example of identification of the type daily diagrams of electric energy-
consumption of complex intelligent buildings within an electric micro grid, namely
for a typical work day and a day off on the basis of its annual history. The men-
tioned type daily diagram can be used to predict power consumption. This method
is given in the context of the commonly used procedure for cluster analysis. The
experiment was processed in the computer program Artint c⃝ 2010.
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1. Introduction

With the development of computing technology and the growth of its computational
power, there has been an increasing focus on artificial intelligence methods since
World War 2. These methods include terms such as artificial neural networks, fuzzy
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sets or evolutionary algorithms. However, their massive utilization in practical
applications across all human activities only occurred in the eighties of the previous
century, due to the development of personal computers.

Artificial neural networks are used to process and evaluate incomplete, indeter-
minate or inconsistent information, especially for tasks involving recognition, diag-
nostics, classification of objects with respect to provided categories or prediction of
the time development of the given variable, compression and coding information,
noise filtering, extrapolation or interpolation of the trends of a given variable and
last but not least the cluster analysis of multidimensional data, as described in
this article. More precisely, by recognition we mean the recognition of visual or
acoustic information, such as written text or spoken words, and by diagnostics we
mean diagnostics of the residual service life of technological equipment or human
organisms including bio-medicinal signals such as ECG or EEG.

2. Competitive Model of Neural Network

We define an artificial neural network as the oriented graph with edges and vertices
rated dynamically, i.e. as the ordered quintuplet [V,E, ε, w, y]:

V set of vertices (neurons)
E set of edges (synapses)
ε mapping edges with incidence vertices (ε : E → V × V )
w dynamic valuation of edges (w : ε(E)×T → R)
y dynamic valuation of vertices (y : V × t → R).

The vector w⃗(T ) = [wij(T )|[i, j] ∈ V ×V ] is called the network configuration in
time T , (∀[i, j] ̸∈ ε(E) ⇒ wij(T ) = 0) and the vector y⃗(t) = [yi(t)|i ∈ V ] is called
the network state in time t. The configuration respectively state of the network
as a vector function of time T or t is referred to as adaptive dynamics respectively
active dynamics of the neural network. Active or adaptive dynamics of a neural
network in continuous time can be defined as a vector solution of the following
systems of differential equations [1]:

d

dt
xj(t) + xj(t) =

∑

i

fi(xi(t−∆t))wij − ϑj (1)

respectively

d

dT
wij(T ) + βgj(xj(T ))wij(T ) = αfi(xi(T ))gj(xj(T )) (2)

i, j ∈ V, α, β ∈ ⟨0, 1⟩, and then analogously to biological neural network we have:

xi potential of the i-th neuron
fi activation function of the i-th neuron (fi(xi) = yi)
gj adaptation function of the j-th neuron
ϑj threshold of the j-th neuron
wij synaptic weight links of the i-th neuron to the j-th neuron
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α measure of plasticity of synapses
β measure of elasticity of synapses
∆t signal delay time.

If we replace in (1) and (2) the derivations by analogous expressions for discrete
time:

d

dt
xj(t) ≡

xj(t+ 1)− xj(t)

t+ 1− t

d

dT
wij(T ) ≡

wij(T + 1)− wij(T )

T + 1− T

and if we set ∆t = 0, then we obtain the following systems of difference equations
and the vectors of its solutions define the active and adaptive dynamics of a neural
network in discrete time:

xj(t+ 1) =
∑

i

fi(xi(t))wij − ϑj yj(t+ 1) = fj

(

∑

i

yi(t)wij − ϑj

)

(3)

respectively

wij(T + 1) = (1− βgj(xj(T )))wij(T ) + αfi(xi(T ))gj(xj(T )) (4)

i, j ∈ V.

We approximate the dependence of the state on the potential of the neuron
by sigmoid function: f(x) = 1

(1+e−px) where the parameter p > 0 expresses the

slope of the sigmoid. For a slope approaching zero or infinity we get the activation
function in the shape of linearity respectively non-linearity:

lim
p→0

f(x) =
1

2
lim
p→∞

f(x) = 0 x < 0 lim
p→∞

f(x) = 1 x > 0

and we can finally define the following network function: F⃗ (x⃗(t)) = y⃗(t + ∆t),
where ∆t is the response time of the network.

Let us divide the population of the neurons in V to two disjoint populations
V1 and V2 (V1 ∪ V2 = V, V1 ∩ V2 = ∅, |V1| = n, |V2| = m), and let us connect
them by edges so that there is an edge from each neuron in V1 to each neuron in V2

(ε(E1) = V1×V2), i.e. the network is oriented from V1 to V2 and V1 respectively V2 is
then understood as the input respectively output population. Let us, furthermore,
connect neurons in V2 by edges so that there is an edge from each neuron in V2 to
every other neuron in V2 (ε(E2) = V2 × V2 − {[j, j]|j ∈ V2}).

Let us choose the activation function of neurons of population V1 as an identity,
i.e. modified linearity and the activation function of neurons of population V2 as
non-linearity. Then, during the active dynamics for constantly applied stimulus
attached to population V1 we can express the active dynamics (3) for yk(0) = 0 as
follows:

yj(t+ 1) = fj

(

∑

k

yk(t)wkj − ϑj

)

− ϑj =
∑

i

xi(0)wij (5)
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i ∈ V1, j, k ∈ V2 and let us call the parameter −ϑj the gain potential of the j-th
neuron.

Let us choose the following initial conditions for the network configuration
wkj(0) = −2, wij(0) = rij , and let us add templates from the training set speci-
fied in the form {a⃗(T )|T ∈ ∆T} for the population V1, where ∆T is the network
adaptation period. If we only let the mutual links between neurons in V1 and V2

adapt, and if we select the adaptation function for the neurons in V2 to match the
activation functions, then, assuming elasticity is equal to plasticity (α = β), we
can express the adaptive dynamics (4) as follows:

wkj(T ) = wkj(T − 1)

wij(T ) = wij(T − 1) + αyj(T )(ai(T )− wij(T − 1)) (6)

i ∈ V1, j, k ∈ V2, T ∈ ∆T = {1,−, N}, where N respectively rij is the number
of patterns of training set respectively the value specified of the random number
generator.

In each step of the adaptive dynamics (6) it is required to designate the states
of neurons in V2, i.e. the steps of the adaptive dynamics are conditioned by the
active dynamics, which, from the perspective of adaptive dynamics, runs infinitely
fast. Thus, the state of V2 is determined synchronously with the state of V1.

Let us assign to each neuron in V2 a weight vector w⃗j = [wij |i ∈ V1]. Then
the neurons in V2 together with the edges E2 and the active dynamics (5) form a
Hopfield optimization network [4] with the following energy function:

E(y⃗) =
∑

j

∑

k

ykyj +
∑

j

yjϑj − ϑj =
∑

i

ai(T )wij = a⃗(T ) · w⃗j (7)

i ∈ V1, j ∈ V2, k ∈ V2 − {j}.
If the vectors of the training set respectively the weight vectors are normal, then

the received potential of each neuron will comply with −ϑ = cosφ and the distance
between the specified vectors can be defined as the angle φ ∈ ⟨0, π⟩ between them.
The energy function specified above will then reach its minimum if and only if only
one neuron in V2 is excited, specifically the neuron with the maximum potential
gain (7) – the so-called gain neuron.

The process of energy minimization of the state of V2 realized by the active
dynamics (5), when the excited neuron with the maximum potential gain inhibits
(by negative links) other neurons, is called lateral inhibition. Lateral inhibition,
which designates a corresponding state of the population of V2 based on the pre-
sented training template, replaces the missing template association in the training
set – in other words, it replaces the statement of a teacher, and we thus speak of
teacher-less learning.

Lateral inhibition in each adaptation step will ensure the adaptation of only the
weight vector corresponding to the k-th gain neuron, i.e. of the weight vector as
per the above-specified non-Euclidean metric of the closest presented training set
template, to which it will advance on the surface of an n-dimensional ball of unit
radius by an adaptation step proportional to the plasticity of the synapse (Fig. 1):
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w⃗k(T ) = w⃗k(T − 1) + α(⃗a(T )− w⃗k(T − 1)) (8)

and the gain neuron thus won the competition for the presented template of the
training set. The normality of the adapted weight vector will be ensured by its
subsequent normalization.

Fig. 1 Adaptation step.

The objective function (9) will reach its minimum if and only if the weight
vector is on the position with a minimal sum of distances from all vectors of the
training set which excite the appropriate neuron, i.e. in the center of the cluster of
the specified vectors:

G(w⃗j) =
1

2

∑

T

yj(T )
∑

i

(ai(T )−wij)
2 −

∂G(w⃗j)

∂wij

=
∑

T

yj(T )(ai(T )−wij) (9)

i ∈ V1, j ∈ V2, T ∈ ∆T.

Adaptive dynamics (6) is a gradient descent on a lower-bounded objective func-
tion (9), and so, assuming that the vectors of the training set form clusters in the
n-dimensional space whose size corresponds to the cardinality of V2, the (initially
randomly located) weight vectors will converge towards the centers of these clusters
during adaptive dynamics.

Let us define the following categories of normal vectors:

Ck = {x⃗ ∈ Ω|φ(x⃗, w⃗k) < φ(x⃗, w⃗j)} Ω = {x⃗ ∈ R
n∥x⃗| = 1} (10)

k ∈ V2, j ∈ V2 − {k} and φ is a non-Euclidean metric, i.e. the angle between the
vectors.

The function of the network will thus assign, during lateral inhibition, a vector
of the canonical basis of an m-dimensional space with a one on the k-th position
to an arbitrary normal network input, if and only if the network input lies in the
k-th category (10). The function of the network of the competitive model can thus
be understood as a classification with respect to the categories specified above.
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If we set |V2| = m2, then we can interpret the neurons in V2 as elements of a
square m × m grid. Let us define the square neighborhood of the r-th order of
the k-th element of the grid as the set containing all grid elements which lie at
a distance of less than or equal to order r, i.e. σ(k, r) = {j ∈ V2|ρ(k, j) ≤ r},
where ρ is the metric defined on the grid as the neighborhood of elements of the
appropriate order, and let us adjust the adaptive dynamics (8) for the k-th gain
neuron:

w⃗j(T ) = w⃗j(T − 1) + αj(T ) (⃗a(T )− w⃗j(T − 1)) (11)

j ∈ σ(k, r) and the plasticity drops globally with the time of the adaptive dynamics
and locally with the order of the distance of the appropriate neuron from the gain
neuron in the population grid of V2.

The adjustment of the adaptive dynamics specified above generalize lateral in-
hibition by the extension of the excitation of the gain neuron to its neighborhood,
which links the above-specified metric φ with the above-specified metric ρ. If the
vectors of the training set are randomly distributed in the n-dimensional space in
accordance with some distribution function, then after the adaptation of the net-
work the weight vectors will be randomly distributed in the same area in accordance
with the same distribution function.

If we present a training set on an adapted network in active mode, then the
map of the frequency of excitations of neurons in V2, the so-called Kohonen map
[2] will provide a mapping of the clusters of vectors of the training set in an n-
dimensional space. Such a generalized competitive model, under assumption of a
sufficiently large cardinality of V2, performs the cluster analysis of the training set,
i.e. determines the number of clusters and their distribution in the n-dimensional
space.

Let us adjust the topology of the already adapted competitive model by adding
a population set V3, connected by edges to the population V2 so that there is an
edge from each neuron in V2 to each neuron in V3 (ε(E3) = V2 × V3). Let the new
output population V3 have the same cardinality as the input population V1, and
thus the population V2 becomes a hidden population.

Let us set the weights of edges E3 as follows: wjq(i) = wij , i ∈ V1, j ∈ V2, q(i) ∈
V3, where q(i) is the image of the i-th neuron of population V1 in population V3.
The output population V3 together with the weighted edges E3 thus forms an image
of the output population V1 together with the weighted edges E1 mirrored over the
hidden population V2, a phenomenon which we call counter propagation [3] of the
synaptic weights of edges E1 to edges E3 in the direction of the orientation of edges.
Let us select the activation functions of neurons in V3 identically to the activation
functions of neurons in V1. Then, during active dynamics after the stabilization of
the state of the population of V2, the excitation of the k-th gain neuron will lead
to the following values of potentials of neurons in V3:

xq(i) =
∑

j

yjwjq(i) = wkq(i) = wik
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i ∈ V1, j ∈ V2, then stimulus x⃗ ∈ Ck implies the following network function:
F⃗ (x⃗) = w⃗k.

The function of the network in the competitive model with forward propagation
of weights will thus assign a prototype (the closest weight vector) to each normal
network input. Prototypes lie in the centers of the appropriate clusters and thus
represent these clusters – they are their typical representatives.

The competitive model with forward propagation of weights and the Kohonen
map may be used to reduce the cardinality of multidimensional data, which may
be replaced by a set of prototypes of their elements with cardinality of m2.

3. Experiment

The goal of this experiment is the identification of type daily diagrams of hourly
consumption of electric energy by a complex of intelligent buildings within an
electric micro-grid on a workday in the middle of the workweek, i.e. Wednesday,
and on a non-work day, specifically using a non-work day before a non-work day
and also a non-work day before a work day, i.e. on Saturday and Sunday, based on
the recorded annual history of hour consumption of electric energy by the complex.

To allow the measuring of the efficiency of the utilized cluster analysis method,
the annual history of hourly consumption of electric energy has been artificially
modeled so that a typical daily diagram may be compared to a certain standard.
The default standards of daily diagrams of hourly consumptions were the char-
acteristic hourly developments of the consumption of the above-listed three days,
where each hourly consumption of each of these was randomly modified by a ran-
dom number generator with a normal probability distribution, as many times as
was necessary to fill the annual history of hourly consumption, i.e. two hundred
sixty times for Wednesday and fifty two times for Saturday and Sunday each, i.e.
three hundred sixty four daily diagrams in total. A demonstration of the source
code, in Fortran, of the used computer program is shown below:

.

.

.
DO J=1,NH !NH - NUMBER OF HOURS (24)
X=HL(J) !HL - HOURLY LOAD
DO I=1,ND !ND - NUMBER OF DAYS (260/52)
DD(I,J)=RANDOM(SEED,X) !DD - YEAR HISTORY OF DAILY DIAGRAMS
ENDDO

ENDDO

.

.

.
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FUNCTION RANDOM(IX,X)
AM=X !AM - MEAN VALUE
SD=0.01*AM !SD - STANDARD DEVIATION
A=0.0
DO I=1,12
IY=IX*65539
IF(IY)1,2,2
1 IY=IY+2147483647+1
2 Y=IY
Y=Y*0.4656613E-9
IX=IY
A=A+Y
ENDDO

RANDOM=(A-6.0)*SD+AM
RETURN

END

The attached images each contain four examples of randomly modeled daily
diagrams of Saturday (Fig. 2), Sunday (Fig. 3) and Wednesday (Fig. 4).

This model of the annual history of hourly consumption of energy, i.e. a rectan-
gular matrix with 364 rows and 24 columns, which represents our multidimensional
data, then forms the training set during adaptive dynamics presented to the com-
petitive model of the artificial neural network on a day-by-day basis, i.e. the input
always being one day containing 24 attributes. The topology of the network used
is then formed by two layers of neurons: the input layer with 24 neurons and
the output layer with 225 neurons, which is organized in a square 15 by 15 grid.
The plasticity dropped exponentially during network adaptation, from the default
value of 1 to its final value of 0.005, and the order of the neighborhood of the gain
neuron during network adaptation dropped exponentially from its default value of
7 to the final value of 0, i.e. the neighborhood of the gain neuron of the default
order covered the whole output layer of the network and by the end of the network
adaptation it degenerated to only contain the gain neuron.

After network adaptation, the active dynamics process was initiated by re-
presenting the training samples. This has led to the appearance of a Kohonen
Map (Fig. 5), which depicts three well-separated clusters, two of which are smaller
and likely correspond to Saturday and Sunday, and one of which is larger and
likely corresponds to Wednesday. The map may be interpreted as a map of the
landscape with a marked elevation (above sea-level) for each spot, where each island
represents a cluster of daily diagrams and the highest point, marked by a white
circle on the figure, represents the prototype representing the given cluster, i.e. the
type daily diagram of the appropriate period. The map should then be understood
as the surface of a globe, i.e. the top respectively left rim is identified with the
bottom respectively top rim. Neurons with a zero number of excitations correspond
to weight vectors which were never the closest to any of the presented templates
in the training set, i.e. during adaptive dynamics these did not come sufficiently
close to the clusters of training templates. Forward propagation may be used to
extract the necessary weight vectors from the configuration of the learned network
during active dynamics. These results in the sought daily diagrams are provided
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Fig. 2 Examples of randomly modeled diagrams of Saturday.

in Figs. 6-8 together with a comparison to the appropriate standard.

Although individual daily diagrams of the annual history (Figs. 2-4) are mu-
tually relatively different, and for instance the fourth example of a Saturday daily
diagram (Fig. 2) is more similar to a characteristic Sunday daily diagram, the result-
ing type daily diagrams are very similar to the appropriate standards (Figs. 6-8).
This documents the high efficiency of the utilized cluster analysis method. Tab. I
contains a numerical comparison of the type daily diagrams with the appropriate
standards, and their average respectively maximum deviation is 0.2% respectively
0.5%.

4. Conclusion

The mathematical description provided above and the experiment which was car-
ried out implies that the cluster analysis method used in the article clearly fulfills
the five generally formulated attributes of an ideal method:

• The method does not require any a priori information from the user
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Fig. 3 Examples of randomly modeled diagrams of Sunday.

• The method identifies clusters of arbitrary shape and density of contained
objects

• The method is not sensitive to the order of the presented observations of
objects

• The method is robust towards remote observations of objects

• The method is capable of analyzing a set of a large number of observations
with a large number of variables during a single presentation

and, as may be seen from the Kohonen map, it is also hierarchical, since each
cluster in the map also contains sub-clusters.

The most frequently used methods of cluster analysis include the non-hierarchi-
cal k-means method, which is included in basically all statistical programs. Its
algorithm is based on an a priori selection of the number of clusters, including
random generation of their centroids and subsequent inclusion of individual objects
into clusters based on their distance (Euclidean metric) from the centroids, which
are continuously updated based on the average values of coordinates of all objects
in the given cluster. This method does not comply with even one of the properties
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Fig. 4 Examples of randomly modeled diagrams of Wednesday.

Fig. 5 Kohonen map.
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Fig. 6 Type daily diagram and standard of Saturday.

Fig. 7 Type daily diagram and standard of Sunday.

Fig. 8 Type daily diagram and standard of Wednesday.
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Tab. I Type daily diagram and standard.

of an ideal method, and is only suitable for the analysis of sufficiently distant
homogenous clusters of approximately spherical shape, which reduces its utility
value.

The cluster analysis of neural networks is thus, in comparison e.g. with the k-
means method, completely universal in accordance with the nature of the location of
objects in the examined file (it may also identify a completely uniform distribution
of objects in an n-dimensional space), however the interpretation of its results
partially depends on a subjective reading of the Kohonen map.
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