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In this paper an alternative approach to the classical de-

convolution idea is used to obtain a new and practical

method for real-time identification of unknown, time-varying

forces/moments in a general class of linear (linearized) dy-

namics and vibration problems with multiple-inputs and

multiple-measurements. This new method for force/moment

identification is unique in the respect that the uncertainty

in the force/moment time-variations is not characterized by

random-process methods, but rather by a generalized spline-

model with totally unknown weighting coefficients and com-

pletely known basis-functions. The basis-functions are cus-

tom chosen in each application to reflect, qualitatively, the

known characteristics of the force/moment time-variations

to be identified. The method does not involve explicit iden-

tification of the unknown weighting coefficients. General-

purpose identification algorithms for both continuous-time

and discrete-time measurements are developed, and a worked

example including computer simulation results is presented.

1. Introduction

The problem of identifying or estimating the forces/

moments that acted on a dynamic system to pro-

duce an observed system response is of interest in

many areas of dynamics and vibrations and has be-

come an active research topic in recent years [5,27,

29]. Conceptually, this problem can be neatly formu-

lated as a classical deconvolution problem but the solu-

tion, using conventional deconvolution ideas, is fraught

with numerous computational difficulties [2,25,28]. In

this paper, a recently published [18] alternative ap-

proach to the formulation and solution of deconvo-

lution problems is used to obtain a practical, general

method (general-purpose algorithm) for processing dy-

namic system response measurements to obtain real-

time identification (estimation) of the unknown, time-

varying forces/moments that produced the response.

Our results are applicable to a broad class of practical

dynamics and vibration problems involving multiple-

(unknown) inputs, multiple-measurements and linear

(linearized) equations of motion. Identification al-

gorithms for both continuous-time and discrete-time

measurements are presented, and a numerical example

is worked.

2. The idea of “waveform-structured” variations

in uncertain, time-varying forces/moments

There is a strong tendency in science and engineer-

ing to label as “random” any variations that are not

accurately known a priori, and to model those varia-

tions in terms of probabilistic characterizations [30].

However, the unknown force/moment variations of in-

terest in “input-identification” problems in dynamics

and vibrations are typically not totally random or “ar-

bitrary” functions of time but rather, in each applica-

tion, belong to some restricted class of time-functions

that are related to an underlying physical process and

have distinguishable patterns of characteristic wave-

form behavior, at least over short intervals of time.

For instance, the unknown force (pressure) variations

f (t) on missile launchers, due to launch “back-blasts”,

or on submerged structures due to underwater explo-

sion “shocks”, are not random variations but, in fact,
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are known to have a characteristic “pulse” pattern of

time behavior that can be represented qualitatively by

a mathematical expression of the form [6]

f (t) =
(
C1 + C2t + C3t

2
+ · · · + Ckt

k−1
)
e−αt, (1)

where the value of the positive integer k is determined

by the application specifics, the set of weighting-

coefficients {C1, . . . ,Ck} are totally unknown “con-

stants”, that can abruptly jump in value from time-to-

time, and the characteristic decay parameter α > 0

is essentially a known constant whose value is ap-

plication specific. Unknown “recoil-forces” f (t) asso-

ciated with weapon firings are also closely modeled

by Eq. (1). Likewise, unknown force variations whose

characteristic time-behavior is known to consist of un-

certain, weighted combinations of step, ramp (linear-

in-time), and acceleration (∼ t2) “modes” of behavior

can be qualitatively represented by an expression of the

form

f (t) = C1 + C2t + C3t
2, (2)

where values of the “constant” weighting coefficients

{C1,C2,C3} are totally unknown and may occasion-

ally jump in value in an uncertain manner. Expres-

sions of the type Eqs (1), (2) serve to character-

ize, qualitatively, distinctive features of the waveform

shape of the otherwise uncertain time-variations in

f (t) and are examples of what we will call variations

with “waveform-structure”. Some additional examples

of waveform-structured uncertain variations f (t) are:

steady-state, damped or growing sinusoidal variations

with known frequency and unknown amplitude and

phase, growing or decaying exponentials, and arbitrary

linear combinations of all the above.

A-priori knowledge of the type Eqs (1), (2), re-

garding the class of unknown functions f (t) one is

dealing with, can lead to important simplifications in

force/moment identification procedures using decon-

volution ideas. To demonstrate, generally, how this

simplification occurs we will consider a broad class

of unknown, waveform-structured force/moment time-

variations f (t) that can be represented by an expression

of the form

f (t) = C1φ1(t) + C2φ2(t) + · · · + CMφM (t), (3)

where the functions {φ1(t),φ2(t), . . . ,φM (t)}, are cho-

sen by the user to reflect, qualitatively, the known

waveform-characteristics of the f (t) associated with

each application and are therefore completely known.

The “constant” weighting coefficients {C1, . . . ,CM}

in Eq. (3) are totally unknown and may occasionally

jump in value; the latter sparse-in-time jump-behavior

of the Ci is hereafter referred to as “stepwise-constant”

and will be discussed in more detail in the Remarks

below Eq. (12). Thus the set of functions {φi}
M
1 in

Eq. (3) constitutes a known (finite) basis set for the un-

known force/moment time-variations f (t) and the val-

ues of the set {Ci}
M
1 of unknown weighting coeffi-

cients determines just how the individual basis func-

tions φi(t) are weighted and linearly combined, at each

moment of time, to produce the actual unknown func-

tion f (t).
Mathematical expressions of the form Eq. (3) are

generalized “spline-models” for unknown functions

f (t) and have a 30-year record of successful applica-

tions in the design of control systems which automat-

ically reject or “accommodate” unknown, unmeasur-

able disturbance inputs [7,19]. Hereafter Eq. (3) will

be called a waveform model for unknown, waveform-

structured input-variations f (t). Clearly, the φi(t) in

Eq. (3) must be linearly independent to form a basis

for the variations f (t); however, in the novel deconvo-

lution procedure we will present here, it is not neces-

sary to explicitly identify the Ci in Eq. (3) and con-

sequently there is no particular advantage to choosing

the φi(t) as orthogonal functions.

In each practical application the particular basis

functions one should use in Eq. (3) can usually be de-

termined by consideration of the qualitative, character-

istic features of experimental data, and/or the dynamic

nature of the underlying physical process that pro-

duces f (t). Alternatively, if f (t) is unfamiliar, or has

no distinctive characteristic time-behavior, or has basis

functions φi(t) with parametric uncertainties (i.e., un-

certain frequencies, time-constants, etc.), one can pro-

ceed as in Johnson [7] and choose the set {φi}
M
1 as the

polynomial basis set

{
φ1(t) = 1, φ2(t) = t,

φ3(t) = t2, . . . ,φM (t) = t(M−1)
}

(4)

in which case Eq. (3) then becomes the (M − 1)-th

degree polynomial spline model

f (t) = C1 + C2t + C3t
2
+ · · · + CM t(M−1). (5)

It is well-known [1] that polynomial spline-models

of the type Eq. (5) can accurately represent a broad
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class of unknown, meandering functions f (t), even for

relatively small values of M in the range 3 6 M 6 5.
The numerical example presented later in this paper il-
lustrates the effectiveness of the caseM = 3 of Eq. (5);
see Eq. (29) and Fig. 1. In fact, the use of polynomial
basis-functions Eq. (4), with M = 3, 4 to augment an

existing basis set {φi} that involves parametric uncer-
tainties is an effective way to model (account-for) the
effects of those parameter uncertainties on the time-
behavior of f (t), and in the new input-identification al-
gorithms presented in this paper.

Although the basis functions {φi(t)} in Eq. (3)
can be chosen as rather complicated time-functions,
it turns-out that, from the deconvolution-realization
point-of-view, it is advantageous to choose the φi(t)
from among the class of functions that (individu-

ally) satisfy homogeneous, constant coefficient, linear
differential equations. In that case, over each time-
interval where the Ci in Eq. (3) are all constant, the
unknown force/moment variations f (t) modeled by
Eq. (3) also satisfy some known (knowable) ρ-th order,

homogeneous, constant coefficient, linear differential
equation which can be written as

dρf

dtρ
+ βρ

dρ−1f

dtρ−1
+ · · · + β2

df

dt
+ β1f = 0, (6)

where the constant coefficients (β1, . . . , βρ) in Eq. (6)
are independent of the (constant) values of the Ci in
Eq. (3) and are completely determined by the chosen
basis set {φi}

M
1 . Expression (3) will be referred to as

a linear dynamic waveform model in the case Eq. (6).
The unknown force/moment variations f (t) that typi-
cally arise in practical applications can usually be rep-
resented by a linear dynamic waveform model Eqs (3),
(6). For instance, Eqs (1), (2), (5) are examples of such

models. Moreover, in that case the coefficients βi in
Eq. (6) can be easily computed by Laplace transform
techniques applied to the set {φi(t)} [13].

In summary, the class of unknown force/moment
variations f (t) we will consider in this paper consists

of the set of functions f (t) which have waveform-
structure and can be effectively represented (mod-
eled) by a spline-type, linear dynamic waveform model
of the form Eqs (3), (6) where the {φi(t)} are cus-

tom chosen in each application to reflect qualitatively
the characteristic modes of waveform behavior that
the unknown time-variations f (t) can exhibit, and the
stepwise-constant weighting coefficients Ci are totally

unknown. For simplicity we will refer to this class of

unknown force/moment variations f (t) as “linear dy-
namic variations”. The novel way, Eqs (3), (6), of mod-

eling the uncertainty in unknown force/moment time-

variations f (t) neatly avoids the subtle pitfalls of con-

ventional probabilistic characterizations of uncertainty,

as discussed by Kalman [24]. In particular, we will

show that, by virtue of Eq. (6), explicit identification of

the unknown weighting coefficients Ci in Eq. (3) is not

required to effectively identify f (t). This feature of our

deconvolution method results in a significant reduction

in computational complexity.

In the case where two or more unknown inputs f (t)
act on a dynamic system simultaneously, it will be as-

sumed that each independent fi(t) has a known, lin-

ear dynamic waveform model Eqs (3), (6). Also, in

all cases it will be necessary to assume that certain

“information-theoretic” technical conditions are satis-

fied, to guarantee that the fi(t) are indeed “identifi-

able” from the information in the y(t) measurements;

see Eqs (13), (19) in the sequel.

3. The force/moment identification problem for

linear dynamic systems with linear dynamic

input variations

The physical systems of interest here are multiple-

input/multiple-measurement (MIMM) dynamic sys-

tems assumed to be modeled by a given, finite-dimen-

sional, linear (linearized) vector-matrix, “equation of

motion” in the standard state-variable format

ẋ = Ax + Ff (t), (7a)

y = Cx + Gf (t), (7b)

where {A,F ,C,G} are known, constant matrices, x =

(x1, . . . ,xn) is the “state” of the dynamical system

(typically, x = an ordered n-tuple of generalized co-

ordinates and associated momenta), f (t) = (f1(t),
f2(t), . . . , fr(t)) is the vector of unknown, unmeasur-

able variations of the forces/moments that act on the

system, and y = (y1, . . . , ym) is the vector of system

response measurements. The class of force/moment

identification problems considered here, can now be

precisely stated as follows.

Problem statement. Given: (i) the dynamic system’s

equation of motion Eq. (7), (ii) a linear dynamic wave-

form model Eqs (3), (6), for each independent element

fi(t) of the unknown, unmeasurable force/moment in-

put vector f (t), and (iii) a record of the system re-

sponse vector y(t) = (y1(t), . . . , ym(t)), measured over

a positive interval of time t0 6 t 6 Tf , determine the
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corresponding time-variation of the input vector f (t),
t0 6 t 6 Tf , assuming the initial value x(t0) in Eq. (7)
is unknown and x(t) is not measurable.

It will be initially assumed that any noise effects
associated with the measurements {(y1(t), y2(t), . . . ,
ym(t)} are sufficiently low-level to be negligible. The
accommodation of non-negligible measurement noise
is discussed later in the paper.

It is remarked that (linearized) equations of mo-
tion for dynamic systems, involving “input-derivative”
terms, df (t)/dt, d2f (t)/dt2, etc., can always be put
into the standard format Eq. (7) by introducing special
definitions for the state-variables xi(t), as explained in
Zadeh and Desoer [32, pp. 231–232].

4. A state model for unknown, linear dynamic

force/moment variations

When the uncertain force/moment time-variations
fi(t) in Eq. (7) each have waveform structure and can
be described qualitatively by a linear dynamic wave-
form model Eq. (3), the associated set of linear differ-
ential equations Eq. (6) can be used to associate a state-

vector z(i) = (zi1, zi2, . . . , ziρi
) with each unknown in-

put fi(t). In particular, one can choose the individual
state-variables zij as

zi1 = fi(t), zi2 = dfi(t)/dt, . . . ,

ziρi
= dρi−1fi(t)/dtρi−1 (8)

for each independent fi(t), i = 1, 2, . . . , r. Thus, over
those intervals of time in which all the associated un-
known Cij in Eq. (3) are indeed constant in value,
the equations of motion for the state-variables zij(t) in
Eq. (8) are

żi1 = zi2, żi2 = zi3, . . . ,

żiρi
= −βi1zi1 − βi2zi2 − · · · − βiρi

ziρi
. (9a)

To mathematically account for the uncertain, once-in-
a-while jumps that can occur in the Cij in Eq. (3), a
symbolic representation σij (t) for a totally unknown,
time-sparse sequence of random-like Dirac impulses
(having totally unknown (sparse) arrival times and in-
tensities) can be added to each żij expression in the
state equations (9a) to obtain

żi1 = zi2 + σi1(t), żi2 = zi3 + σi2(t), . . . ,

żiρi
= − βi1zi1 − βi2zi2 − · · · − βiρi

ziρi
+ σiρi

(t).

(9b)

It is remarked that our deconvolution method does not

involve “identification” of the σij (t).
If the set of state vectors {z(1), z(2), . . . , z(r)} associ-

ated with the vector f = (f1, f2, . . . , fr) of unknown

inputs in Eq. (7) are “stacked” to form one large com-

bined state-vector z = (z(1)|z(2)| · · · |z(r)) the associ-
ated state equations Eq. (9b) can be combined in a sim-

ilar manner to obtain one vector-matrix “equation of

motion” for the combined input state z(t) in the form

ż = Dz + σ(t), f (t) = Hz(t),

σ = (σ1, . . . ,σR), z = (z1, . . . , zR), (10a)

where R = ρ1 + · · · + ρr, and (D,H) have the block

structure

D = diag.(D1,D2, . . . ,Dr),

H = diag.(H1,H2, . . . ,Hr) (10b)

and where each blockDi is a known (knowable) ρi×ρi
companion matrix, and each Hi a known ρi-dim. row

vector, given by

Di =




0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...

...

0 0 · · · 1

−βi1 −βi2 · · · −βiρi




,

Hi = (1, 0, 0, . . . , 0), i = 1, 2, . . . , r. (10c)

In summary, the vector f (t) of unknown waveform-

structured inputs fi(t) in Eq. (7), with a known linear
dynamic waveform model Eqs (3), (6) for each inde-

pendent component fi(t) can be represented equiva-

lently in the state-model format Eq. (10) where (D,H)

are known, the vector z(t) is the “state” of f (t) and

each component σi(t) of σ(t) is a symbolic represen-

tation for a totally unknown, time-sparse sequence of
random-like Dirac impulses which “cause” the sparse-

in-time jumps that naturally occur in the “constants”

Cij in Eq. (3), associated with each fi(t).

Representation of coupling-effects in the fi(t). It is

remarked that in some practical applications involv-
ing multiple-input forces/moments (fi(t), . . . , fr(t))
one or more of the inputs fi(t) may be dynamically-

coupled with other of the inputs fk(t). In such cases the

general representation Eq. (10a) still applies [assuming

the “coupling” is linear (linearizable)], but the matrices
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(D,H) then do not necessarily have the block-diagonal

structure indicated in Eqs (10b), (10c). Moreover in

some applications, particularly those involving bodies

moving in fluids, gases, etc., the unknown dynamic

variations in the fi(t) may be coupled-with (influenced

by) the kinetic or kinematic state-variables xj(t) of the

dynamic system Eq. (7). If this latter coupling is lin-

ear (linearizable), a representation of the type Eq. (10a)

can still be used to model the uncertain behavior of f (t)
by generalizing Eq. (10a) to read: ż = Dz+Mx+σ(t),
f (t) = Hz(t) + Lx(t), where the coupling-matrices

(L,M) presumably can be determined by appropriate

modeling procedures. At the expense of some addi-

tional algebraic complexity, this latter generalization

of Eq. (10a) can be easily incorporated into the force-

identification algorithms presented here by following

the procedures outlined in Johnson [13, pp. 424, 432,

481]. For simplicity in the present paper, it is hereafter

assumed that f (t) is modeled by Eq. (10a).

5. Endogenization of the unknown input f (t)

The introduction of a state-vector z(t) and asso-

ciated state-model Eq. (10) for the unknown, linear-

dynamic waveform-structured input f (t) in Eq. (7) is

the first of two key ideas that make the identification

of f (t) by our deconvolution technique physically re-

alizable. The second idea is that f (t) in Eq. (10) can

be incorporated into the model Eq. (7) in such a way

that f (t) is made to “appear” as an internal-variable

of the system Eq. (7) (called “endogenizing” the input

f (t)). This conversion is achieved by first substituting

Eq. (10a) into Eq. (7) to obtain the coupled-models

ẋ = Ax + FHz, (11a)

ż = Dz + σ, (11b)

y = Cx + GHz (11c)

and then introducing the new (n + R)-dimensional

“composite state” x̃ = (x|z) so that Eq. (11) can

be re-written as the single, enlarged, “sparse-impulse

forced” linear dynamic system model

˙̃x = Āx̃ + σ̄(t), y = C̄x̃, (12a)

Ā =

[A
0

∣∣∣FH

D

]
, σ̄ =

( 0

σ(t)

)
,

C̄ = [C|GH], (12b)

where Ā, C̄ are completely known and σ̄(t) is totally

unknown.

Thus, the general class of force/moment identifica-

tion problems we are considering here can now be re-

stated in terms of Eq. (12) as follows.

Problem restatement. Given the enlarged dynamic

system model Eq. (12) where Ā, C̄ are known and

σ(t) is a vector of totally unknown, time-sparse se-

quences of Dirac impulses, and given a record of the

(vector) response measurement y(t) = Cx(t) + Gf (t)
over a positive time-interval t0 6 t 6 Tf , determine

(identify, deconvolve) the corresponding input vector

f (t) = Hz(t), t0 6 t 6 Tf , where x(t0), x(t), and z(t)
are unknown and not directly measurable.

Remarks. It is important to note that, even though

f (t) is unknown, the modeling procedure of Eqs (3),

(6), (10) leads to a completely known composite model

Eq. (12), where the only “unknown” is the impulse se-

quence σ(t) which models the occasional jumps in the

Ci and is immaterial to the estimation of f (t) – as long

as the σ(t) impulses are sparse in time. A more pre-

cise technical explanation of the term “sparse”, as used

here, is given below.

It is clear from the totally unknown nature of the pre-

sumed sparse, random-like jumps in the Ci in Eq. (3)

that it is physically impossible for any deconvolution

algorithm to generate accurate estimates f̂(t) of f (t)
at the (sparse, isolated) moments of time tk when

the Ci in Eq. (3) abruptly jump in value. Moreover,

the speed at which f̂ (t) → f (t) after each such jump

will be determined by the algorithm’s convergence rate

which, for the new algorithms we will propose here,

can be controlled by algorithm parameter-values cho-

sen by the user, subject to implicit constraints related to

measurement “noises” as discussed later in this paper.

However, in practice that convergence rate will always

be finite and therefore to achieve f̂(t) ≈ f (t) “most”

of the time it is essential to invoke the tacit assump-

tion that the physical process which produces f (t) is

such that the associated, unknown Ci in Eq. (3) do not

jump in value too frequently (i.e., those jumps turn-out

to be sufficiently sparse-in-time, relative to the algo-

rithm’s designed settling-time for f̂(t) → f (t)). Other-

wise, the convergence f̂ (t) → f (t) will be thwarted by

the relentless jumping of the Ci and, apparently, no de-

convolution procedure can accurately identify f (t) in

such cases; however, see Johnson [13, pp. 419, 420]

for some ways to mitigate the relentless jumping of the
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Ci, when it occurs, by using alternative basis-functions

φi(t) in Eq. (4).

It is remarked that the inability to find a waveform-

model Eq. (3) that can adequately represent the be-

havior of an uncertain function f (t) – with Ci that

do not rapidly jump in value – is a practical way

to conclude that f (t) should be modeled instead as

a conventional random process. It is recalled that in

random-process methodologies the individual time-

behavior of any one random function f (t) (i.e., any

one “sample-function”) cannot be effectively charac-

terized; rather, it is only possible to characterize certain

long-term, time-averaged features of a family (ensem-

ble) of “similar” f (t), such as mean-value, variance,

power-spectral density, etc., [30]. The latter method-

ologies are often based on the tacit presumption that

the ensemble of sample-functions {f (t)} obeys the er-

godic hypothesis – an elusive assumption that can be

difficult to verify in practical applications. In contrast,

when the waveform-model Eq. (3) and associated iden-

tification methodology as used in this paper is applica-

ble, it applies equally well to families of unknown f (t)
that are non-ergodic and allows qualitative character-

ization of the time-behavior of each sample-function

f (t) in a family.

We will now present two physically realizable al-

gorithms that can accomplish the deconvolution pro-

cess required to identify unknown, linear-dynamic in-

put variations f (t) in real time, from real-time mea-

surements of the response vector y(t), t0 6 t 6 Tf ,

in (7).

6. Algorithms for identification of f (t) by an

asymptotic deconvolution process

In a little-known, limited circulation, but highly sig-

nificant 1963 document [4], the mathematician/phys-

icist R.W. Bass developed a novel algorithm (filter)

for generating approximations of higher-order time-

derivatives of measured time-varying signals s(t).
Bass called his algorithm “an asymptotic polynomial

differentiator” [4, p. 19] and envisioned it would

be useful in aerospace applications. According to

Kalman [23], that algorithm was later rediscovered, re-

fined, and generalized (by Luenberger [26] and other

researchers) and has come to be called a state-observer,

or state-estimator, in today’s terminology. The de-

convolution algorithms we are about to describe, for

solving the force/moment identification problem, are

based on those state-observer ideas as they have been

adapted to solve the “disturbance–observer” problem

in Disturbance–Accommodating Control Theory [7,9,

13,14], and to solve a broad class of “inverse-system”

realization problems [18].

An (n + R)-th order deconvolution algorithm for

force/moment identification. The deconvolution al-

gorithm presented in this section is analog (i.e., continu-

ous-time) in nature and is intended for processing real-

time analog measurement signals {y1(t), y2(t), . . . ,
ym(t)} in Eq. (7) to generate real-time analog estimates

{f̂1(t), f̂2(t), . . . , f̂r(t)} of the unknown, unmeasur-

able force/moment time-variations {f1(t), . . . , fr(t)}
in Eq. (7). The algorithm is entirely linear in structure

and is composed of combinations of (analog) integra-

tion with respect to time, multiplication by constants,

and summations, and is compactly defined in the form

of a set of linear differential and algebraic equations

of the type Eq. (12). The elegance of this algorithm

makes it fitting to present it as a theorem. An all-digital

(digital-signal-processing) version of this algorithm is

presented later in this paper; see Theorem 3 below.

Theorem 1. The vector of unknown force/moment vari-

ations f (t) in Eq. (7) is identifiable (i.e., f (t) can

be identified or estimated), between successive, sparse

jumps of the associated Cij in Eq. (3), from the vector

of response measurements y(t) if, in Eq. (12),

rank
[
C̄T

∣∣ĀTC̄T
∣∣ĀT2

C̄T
∣∣ · · ·

∣∣ĀT(n+R−1)

C̄T
]

= (n + R), (13)

where (·)T denotes transpose. Moreover, in that case

the estimate f̂ (t) of f (t) can be generated in real-

time by processing the vector y(t) of response measure-

ments in the (analog) deconvolution algorithm defined

by the set of linear algebraic and differential equations

[compare to Eq. (12)]

f̂(t) = [O|H]ˆ̃x = Hẑ, ˆ̃x = (x̂|ẑ), (14a)

˙̂
x̃ = Āˆ̃x−K

[
y(t) − C̄ ˆ̃x

]
, (14b)

where x̃(0) is to be chosen, see remarks below Eq. (17),

and K in Eq. (14b) denotes a constant (n + R) × m
“gain” matrix to be chosen (designed) to make the

real-part of each eigenvalue λi of (Ā + KC̄) have a

sufficiently “large” negative value, in accordance with

the required rate of convergence of f̂ (t) → f (t) as de-

termined by the application requirements.
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Proof. The real-time identification error εf (t) associ-

ated with the estimate f̂ (t) can be expressed as.

εf (t) = f (t) − f̂ (t) = H(z(t) − ẑ(t)) = [O|H]ε̃(t),

ε̃ = x̃− ˆ̃x. (15)

Applying Eqs (12), (14), between successive arrivals

of the (time-sparse) impulses in σ̄(t), it follows that the

error variable ε̃(t) is governed by the linear homoge-

neous differential equation

˙̃ε = ˙̃x−
˙̂
x̃ =

[
Ā + KC̄

]
ε̃. (16)

It is clear from Eq. (16) that ε̃(t) → 0 [and hence

εf (t) → 0, also] arbitrarily fast, between successive

impulses in σ̄(t), only if the matrix K can be cho-

sen such that the real-part of each eigenvalue λi of

[Ā + KC̄] can be made an arbitrarily “large” negative

value. It is well-known [31] that, for a given (Ā, C̄),

Eq. (13) is the necessary and sufficient condition for

the existence of such a K.

Remarks. As indicated, Eq. (13) is a simple, practical

sufficient condition for existence of an algorithm which

can identify f (t) from the y(t) data. The more pre-

cise necessary and sufficient conditions for the “iden-

tifiability” of f (t) are somewhat more complicated

than Eq. (13) and are derived in Johnson [20]. Note

that our deconvolution algorithm Eq. (14) generates

the estimate f̂ (t) = Hẑ(t) without explicitly identi-

fying the unknown, stepwise-constant weighting coef-

ficients Cij in Eq. (3). The problem of designing the

(n+R)×mmatrix K in Eq. (16) to “place” the eigen-

values λi of [Ā+KC̄] at locations sufficiently “deep”

in the left-half of the complex plane can be approached

by either of two ways. If (n+R) is relatively small, say

(n+R) 6 7, it may be easier to employ the brute-force

method of first picking the desired numerical values for

the λi, then setting

det[λI − (Ā + KC̄)]

= (λ− λ1)(λ− λ2)(λ− λ3) · · · (λ− λn+R) (17)

and then solving Eq. (17) for the elements kij of K.

Unless m = 1, the matrix K that satisfies Eq. (17)

is highly non-unique, in general. On the other hand,

if (n + R) is relatively large it may be easier to first

transpose [Ā+KC̄], then transform (ĀT, C̄T) to a gen-

eralized block companion canonical form, such as de-

scribed in Johnson [10], and then employ Eq. (17) with

[Ā+KC̄] in Eq. (17) replaced by its transformed trans-

pose [ĀT + C̄TKT]; see Johnson ([10], Section 5) and

recall that a matrix and its transpose share the same
eigenvalues. With the numerical choice of K so deter-

mined (and transformed back), the deconvolution al-

gorithm Eq. (14) can be physically implemented us-
ing computer-based numerical-integration programs or

by op-amp type, linear analog circuitry. This latter cir-

cuit will employ (n + R) op-amps configured as “in-

tegrators”. Assuming K is properly designed, the es-

timate f̂(t) produced by the algorithm Eq. (14) will

converge f̂(t) → f (t), for any initial-condition value

of ˆ̃x(0) = (x̂(0)|ẑ(0)) in Eq. (14b). Thus, it is attractive

and convenient to simply set ˆ̃x(0) = (0|0). However,

given a non-zero value of the response initial-condition

y(0), the physically-knowable “best” choice for ˆ̃x(0) in

Eq. (14b) is a certain non-zero value that depends lin-
early on y(0), as shown in Johnson [17]. The matrix

C̄ in Eq. (12) reflects the physical positioning (place-

ment) of the response-measurement sensors that pro-

duce the data y(t), and that sensor placement clearly
can affect the critical rank condition, Eq. (13). A math-

ematical theory for optimal sensor placement (opti-

mal choice of C̄) to “maximize” both the rank condi-
tion, Eq. (13), and the robustness of that rank against

parameter-variations, is developed in Johnson [8].

An alternative form of (analog) algorithm Eq. (14),

that requires only (n+R−m̄) integrators, m̄ = rank C̄,
will now be described.

An (n + R − m)-th order deconvolution algo-

rithm for force/moment identification. The algo-

rithm Eq. (14) requires (n + R) integration opera-
tions because it necessarily estimates each component

xi(t) of the n-dimensional state x(t) of the dynamic

system Eq. (7) and each component zi(t) of the R-
dimensional state z(t) of the unknown input f (t). Since

the m-vector of response measurements y(t) repre-

sents a directly measurable “part” of the composite

system state-vector x̃(t) in Eq. (12), it is redundant to
“estimate” that measurable part of x̃(t) in the decon-

volution process. Moreover, if rank C̄ = m̄ < m,

(m−m̄) of the measurements {y1(t), y2(t), . . . , ym(t)}
in Eq. (12) can be expressed as weighted linear com-

binations of the remaining m̄ measurements. Con-

sequently it is always possible to express the orig-

inal measurement set (y1, . . . , ym) in terms of an
m̄-dimensional linearly-independent subset of mea-

surements (y1, . . . , ym̄) which can in-turn be written in

the form Eq. (12a) where then dim. C̄ = m̄× (n+ R)
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and rank C̄ = m̄. For this reason, no generality is lost

by assuming at the outset that rank C̄ = maximum =

m in the representation Eqs (11), (12). In that case the
measurement vector y(t) constitutes an m-dimensional

subset (sub-state) of the (n + R)-dimensional com-
posite system state x̃(t) in Eq. (12). Then, as a con-
sequence of Luenberger’s reduced-order observer the-

ory [26] applied to Eq. (12), there exists, in princi-
ple, an alternative deconvolution algorithm of the type
Eq. (14) that requires only (n + R − m) integration

operations, and therefore has less “computational iner-
tia”, enabling faster convergence. The general mathe-
matical description of that reduced-order algorithm in-

volves somewhat more matrix-algebra than Eq. (14),
but is equally elegant and worthy of being stated as
a theorem, as we shall now do. An all-digital version
of this reduced-order deconvolution algorithm is pre-

sented later in Theorem 4 of this paper.

Theorem 2. Suppose rank C̄ = m = dim. y in Eq.

(12a). Then, between successive jumps of the associ-

atedCij in Eq. (3), the vector of unknown force/moment

variations f (t) in Eq. (7) is identifiable, from the vector

of response measurements y(t), by the (n+R−m)-th

order deconvolution algorithm

f̂(t) = H
[
(T21 − T22Σ)y(t) + T22ξ̂(t)

]
, (18a)

˙̂
ξ = [D + ΣH]ξ̂ + Ψy(t),

ξ̂ =
(
ξ̂1, . . . , ξ̂n+R−m

)
, (18b)

D =
[
T̄12|T̄22

]
Ā

[
T12

T22

]
, H = C̄Ā

[
T12

T22

]
, (18c)

Ψ =

([
T̄12|T̄22

]
+ ΣC̄

)
Ā

[
T11

T21

]
− (D + ΣH)Σ,

(18d)

where

T11 = CT(C̄ C̄T)−1,

T21 = HTGT(C̄ C̄T)−1, (18e)

T̄12 =
(
T T

12T12 + T T
22T22

)
−1

T T
12,

T̄22 =
(
T T

12T12 + T T
22T22

)
−1

T T
22, (18f)

and where T12,T22 are, respectively, any n× (n+R−
m) and R × (n + R−m) matrices satisfying

C̄

[
T12

T22

]
= 0, rank

[
T12

T22

]
= (n + R−m), (18g)

provided the (n+R−m) ×m matrix Σ in Eqs (18a),

(18b), (18d) can be designed to make all eigenvalues

λi of (D+ΣH) have sufficiently “large” negative real-

parts. The latter is possible if

rank
⌊
HT|DTHT| · · · |DT(n+R−m−1)HT

⌋

= (n + R−m). (19)

Proof. As a consequence of Eqs (18e), (18g) the linear

transformation

x̃ =

(x
z

)
=

[
T12

T22

∣∣∣∣
T11 − T12Σ

T21 − T22Σ

]( ξ
y

)
(20)

associated with Eqs (11), (12) is non-singular for all

choices of Σ. In fact, the analytical inverse of Eq. (20)

is given explicitly by

( ξ
y

)
=

[
ΣC + T̄12

C

∣∣∣∣
ΣGH + T̄22

GH

](x
z

)
. (21)

Let ξ̂(t) be any solution of Eq. (18b) and, using

Eq. (20), define the associated estimates x̂(t), ẑ(t), f̂(t)
of x(t), z(t), f (t) = Hz(t) in Eq. (11) as

x̂(t) = T12ξ̂(t) + (T11 − T12Σ)y(t),

ẑ(t) = T22ξ̂(t) + (T21 − T22Σ)y(t),

f̂(t) = Hẑ(t). (22)

It follows that

x(t) − x̂(t) = T12ε(t), z(t) − ẑ(t) = T22ε(t),

f (t) − f̂(t) = HT22ε(t), (23a)

where

ε(t) = ξ(t) − ξ̂(t). (23b)

The equation of motion governing ε(t) is obtained by

computing ε̇ in Eq. (23b), using Eqs (21), (11), (18b)–

(18g), to obtain the linear differential equation

ε̇ = (D + ΣH)ε + T̄22σ(t),

ε = (ε1, . . . , εn+R−m). (24)

Thus, between successive jumps of the Cij in Eq. (3)

[i.e., on the time-intervals where σ(t) ≡ 0 in Eq. (24)],

the estimate f̂ (t) given by Eq. (18a) approaches the



C.D. Johnson / Identification of unknown, time-varying forces/moments 189

true value f (t) = Hz(t) in accordance with the expres-

sion f (t) − f̂ (t) = HT22ε̄(t) where, by Eq. (24),

˙̄ε = (D + ΣH)ε̄. (25)

According to Eq. (19), the matrix Σ can be chosen

by the user to make all eigenvalues of [D + ΣH]

have “large” negative real-parts. In that case, it follows

from Eq. (25) that ε̄(t) → 0 promptly, thus assuring

that f̂ (t) → f (t).

Remarks. As in the case of Theorem 1 and Eq. (13),

the condition Eq. (19) is a simple, practical sufficient

condition for identifiability of f (t) by the reduced-

order algorithm Eq. (18). The more complicated nec-

essary and sufficient condition for identifiability of

f (t) is developed in Johnson [20]. The design of Σ in

Eq. (25) and the implementation of Eq. (18) is accom-

plished by using the same techniques described below

the proof of Theorem 1. In the absence of any reli-

able information about the true value of f (0) in Eq. (7),

the “best” choice for the initial-condition value ξ̂(0) in

Eq. (18b) is zero [17, p. 864].

7. Solution and simulation of a numerical example

To illustrate the effectiveness of the unknown force/

moment identification (deconvolution) technique pre-

sented in this paper, consider the generic one degree

of freedom, damped spring–mass system (rectilinear or

rotational) modeled by

Mẍ1 + cẋ1 + kx1 = f (t),

x1 = displacement, (26)

where (k, c,M ) are known parameters, f (t) denotes

unknown, unmeasurable force/moment variations and

y = x1 denotes the single, continuous-time response

measurement. An n = 2, R = 1, m = 1 state-model

Eq. (7) for this dynamic system can be obtained by

defining the additional state-variable x2 = ẋ1 so that

ẋ1 = x2,

ẋ2 = −(c/M )x2 − (k/M )x1 + (1/M )f (t),

y = x1. (27)

Thus, in Eq. (7)

A =

[
0 1

−(k/M ) −(c/M )

]
, F =

(
0

(1/M )

)
,

C = (1, 0), G = 0. (28)

It is assumed that the qualitative characteristics of

the unknown time-variations of f (t) in Eq. (26) are
known to consist of (or to be closely approximated

by) weighted linear combinations (superpositions) of

“constant”, “ramp” and “acceleration” modes of time-

behavior. In other words, the characteristic waveform

behavior of f (t) can be modeled by the quadratic

polynomial-spline expression

f (t) = C1 + C2t + C3t
2, (29)

where {C1,C2,C3} are totally unknown “constants”

that may abruptly jump in value in a time-sparse, once-

in-a-while (stepwise-constant) manner. It is clear from

Eq. (29) that, between successive jumps in the Ci,

the unknown input f (t) satisfies the linear differential
equation (compare to Eq. (6))

d3f (t)/dt3
= 0. (30)

Thus R = ρ = 3 in Eq. (6) and f (t) can be modeled by

a state-type equation of motion Eq. (10) where z1 = f ,

z2 = ḟ , z3 = f̈ and D, H are the known matrices

D =




0 1 0

0 0 1

0 0 0


,

H = (1, 0, 0), z = (z1, z2, z3). (31)

For this example, an (n + R−m) = (2 + 3 − 1) =

4-th order continuous-time deconvolution algorithm of

the reduced-order type Eq. (18) can be designed as fol-

lows. Using Eqs (12b), (28), (31), the matrices T11,T21

defined by Eq. (18e) are computed to be

T11 =

(
1

0

)
, T21 =




0

0

0


 (32)

and the (non-unique) matrices T12,T22 defined by

Eq. (18g) can be chosen as

T12 =

[
0 0 0 0

1 0 0 0

]
, T22 =




0 1 0 0

0 0 1 0

0 0 0 1


. (33)

Consequently, Eq. (18f) yields
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T̄12 = T T
12, T̄22 = T T

22. (34)

The matrices (D,H) can now be computed from

Eq. (18c), using Eqs (12b), (33), (34), to obtain

D =




−(c/M ) (1/M ) 0 0

0 0 1 0

0 0 0 1

0 0 0 0


,

H = (1, 0, 0, 0). (35)

It is easily checked that Eq. (19) is satisfied for the

(D,H) in Eq. (35) and thus f (t) can indeed be identi-

fied by the deconvolution algorithm Eq. (18), from the

“information” encoded in the response y(t).
For this example, the gain-matrix Σ in Eq. (18)

turns-out to be a column 4-vector

Σ = col.(Σ1,Σ2,Σ3,Σ4)

so that the error dynamics Eq. (25) associated with es-

timation of f (t) is governed by the matrix

[D + ΣH] =




(Σ1 − (c/M )) (1/M ) 0 0

Σ2 0 1 0

Σ3 0 0 1

Σ4 0 0 0


. (36)

The characteristic polynomial P(λ) of Eq. (36) is cal-

culated to be

P(λ) = det[λI − (D + ΣH)]

= λ4 −
(
Σ1 − (c/M )

)
λ3 −Σ2(1/M )λ2

−Σ3(1/M )λ−Σ4(1/M ). (37)

Although not required by Theorem 2, it is performance-

effective, and computationally convenient, to design

the elements of Σ to “place” (locate) all 4 eigenvalues

{λi}
4
1 of Eq. (37) at a common location on the negative

real-axis, i.e.,

λ1 = λ2 = λ3 = λ4 = −h,

where h = real-value > 0 is chosen sufficiently

large. For that particular choice, the associated “de-

sired” characteristic polynomial Pd(λ) is given by

Pd(λ) = (λ + h)4
= λ4

+ (4h)λ3

+ (6h2)λ2
+ (4h3)λ + h4. (38)

The required values of the elements Σi in Eqs (36),

(37) are then determined by equating Eq. (38) to

Eq. (37) to obtain the gain-design equations

Σ1 = (c/M ) − 4h, Σ2 = −6Mh2,

Σ3 = −4Mh3, Σ4 = −Mh4, (39)

where one should choose the numerical value of h > 0

sufficiently large to achieve a satisfactory rate of con-

vergence f̂(t) → f (t), as determined by Eqs (23)–(25)

and the application requirements.

Finally, computing Ψ by Eq. (18d), the main algo-

rithm equations Eqs (18a), (18b) for this example are

calculated to be

f̂(t) = −Σ2y(t) + ξ̂2(t), (40a)

˙̂
ξ1 = (Σ1 − (c/M ))ξ̂1 + (1/M )ξ̂2

−
[
(k/M ) + Σ1(Σ1 − (c/M )) + Σ2(1/M )

]
y,

˙̂
ξ2 = Σ2ξ̂1 + ξ̂3 − [Σ1Σ2 + Σ3]y,

˙̂
ξ3 = Σ3ξ̂1 + ξ̂4 − [Σ1Σ3 + Σ4]y,

˙̂
ξ4 = Σ4ξ̂1 − [Σ1Σ4]y, (40b)

where, in the absence of any reliable knowledge of

the value f (0) in Eq. (26), the initial-condition values

ξ̂i(0) in Eq. (40b) should all be set to zero. This com-

pletes the design of the force/moment identification al-

gorithm for this example.

Some representative results of a simulation exercise

of the system Eq. (26) with a simulated unknown in-

put f (t), and using a simulation of the deconvolution

algorithm Eq. (40), with non-dimensional parameter

values M = 1, c = 0.2, k = 100, and Σ cho-

sen to “place” all four eigenvalues of (D + ΣH) at

λ1 = λ2 = λ3 = λ4 = −5, are shown in Fig. 1. It is

clear from Fig. 1 that, even though the actual function

f (t) is not a quadratic polynomial in time, the estimate

f̂(t) based on the quadratic-spline model Eq. (29) and

the associated deconvolution algorithm Eq. (40) is an

accurate, real-time identification of the unknown input

f (t), except in a small right-neighborhood of t = 0 and

at the other sparse, isolated times tk where the “con-

stants” Ci in Eq. (29) jump in value, thereby introduc-

ing a sequence of real-time “initial-conditions” on ε(t)
in Eq. (24) which thereafter rapidly decay toward zero.

Those brief, transient errors in f̂(t), occurring in the

right neighborhoods of the tk, can be further reduced,
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Fig. 1. Simulation results for the example [x1(0) = x2(0) = 0].

in principle, by re-locating the λi of (D + ΣH) to po-
sitions “deeper” into the left-half of the complex-plane
(i.e., Re (λi) < −5). This latter step will generally re-
sult in an increase in ‖Σ‖. Owing to the way Σ mul-

tiplies y(t) in Eqs (18a), (18b), such progressive in-
creases in ‖Σ‖ can eventually become intolerable if the
response measurement y(t) in Eq. (27) is “noisy”, thus
leading to “optimal” compromises and trade-offs in the
practical design of Σ (i.e., choice of the λi ofD+ΣH);
see Section 9 entitled “Other generalizations”.

The simulation results shown in Fig. 1 clearly
demonstrate that the new force-identification algo-
rithms proposed in this paper can accurately iden-
tify unknown-inputs f (t) even when f (t) is loosely
modeled by a quadratic polynomial spline Eq. (29)
and when the system’s response measurement-data

y(t) = x1(t) in Eq. (26) contains a strong component of

structural-oscillations. Similar accurate estimates f̂ (t)
of unknown input-variations can be obtained in more
complex examples/applications where the system’s re-
sponse measurement-data y(t) may contain many dif-
ferent transient and/or steady-state modes of structural-

oscillations (or other response modes) – provided the
essential characteristics (frequencies, time-constants,
etc.) of each such response mode are properly repre-
sented in the state-vector x and A matrix of the dy-
namic system model, Eq. (7). For instance, complex,
unknown periodic inputs f (t), that produce resonant

structural-oscillations in the response measurement
y(t), can be effectively identified by the algorithms de-

veloped in this paper, provided all relevant modal fre-

quencies are represented in the system model Eq. (7).

8. Discrete-time (digital) versions of the

deconvolution algorithms (14), (18)

The deconvolution algorithms Eqs (14), (18) are

intended for cases where the measurements y(t) =

(y1(t), y2(t), . . . , ym(y)) are in continuous-time and

where conventional analog signal processing is con-

venient. However, the increasing reliance on sampled-

measurements and digital signal processing in dynamic

testing makes it attractive to consider digital-versions

(i.e., difference-equation versions) of Eqs (14), (18).

Approximate digital-versions of Eqs (14), (18) can

be developed by replacing the derivatives
˙̂
x̃ and

˙̂
ξ by

suitable finite-difference approximations to obtain a

difference-equation algorithm that operates on a se-

quence of periodically sampled-values y(kT ), k = 0,

1, 2, 3, . . . ; T = sample-period > 0, of the system re-

sponse measurement y(t) in Eq. (7) to generate a corre-

sponding sequence of discrete-time estimates f̂ (kT ) of

the unknown input f (t). Due to the derivative approx-

imations involved, the accuracy of such algorithms

tends to suffer unless the value of T > 0 is chosen

sufficiently small.

On the other hand, “exact” digital-versions of

Eqs (14), (18), which can produce theoretically exact
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estimates f̂(kT ) for all values of the sample-period

T > 0, can be derived by starting with exact discrete-

time versions of the system dynamics model Eq. (7)

and unknown-input model Eq. (10). The final result is

that one then obtains exact difference equation coun-

terparts of Eq. (14) and of Eq. (18). Procedures for de-

riving such digital-versions of the algorithms Eqs (14),

(18) are discussed in Johnson [14, pp. 242, 245], and

the essential results are summarized in the following

subsections.

8.1. The exact digital version of algorithm (14)

The exact digital-version of the force-identification

algorithm Eq. (14) is based on the exact difference

equation counterparts of: (i) the underlying physical

system equation of motion Eq. (7) and (ii) the state

model Eq. (10) of the unknown input f (t), assum-

ing the vector y(t) of system response measurements

is periodically sampled every T units of time to ob-

tain the sequence of “sampled-data” measurement vec-

tors {y(0), y(T ), y(2T ), y(3T ), . . . , y(kT ), . . .}, T =

constant > 0, hereafter denoted by y(kT ), k = 0,

1, 2, . . . . Those exact difference equation counterparts

of Eqs (7), (10), which model the “discrete-time” evo-

lution of x(t), z(t), for t = kT , k = 0, 1, 2, . . . , are

derived in Johnson [14, p. 237] and turn-out to be

x((k + 1)T ) = Ãx(kT ) + F̃Hz(kT ) + γ̃, (41a)

y(kT ) = Cx(kT ) + GHz(kT ), (41b)

z((k + 1)T ) = D̃z(kT ) + σ̃,

k = 0, 1, 2, 3, . . . , (41c)

where

Ã = eAT , D̃ = eDT ,

F̃H =

∫ T

0

eA(T−τ )FH eDτ dτ (41d)

and

γ̃ =

∫ T

0

eA(T−τ )FH

×

[∫ T

0

eD(τ−η)σ(η + kT ) dη

]
dτ , (41e)

σ̃ =

∫ T

0

eD(T−τ )σ(τ + kT ) dτ. (41f)

The difference equation models Eqs (41a), (41c)

describe how the exact “next” values x((k + 1)T ),

z((k + 1)T ) are related to the current (real-time) val-
ues of x(kT ) and z(kT ) and to the values of the terms

γ̃, σ̃. However, at the current time t = kT , the val-
ues of γ̃, σ̃ cannot be determined because, according

to Eq. (41e), (41f), those values depend on the (un-
known, unpredictable) “future behavior” of the sparse

sequence of Dirac impulses σ(t), over the interval
kT 6 t 6 (k + 1)T . Thus, since γ̃, σ̃ in Eq. (41) are

never “knowable” at t = kT , the only useable part of

Eqs (41a)–(41c) is

x((k + 1)T ) = Ãx(kT ) + F̃Hz(kT ), (42a)

y(kT ) = Cx(kT ) + GHz(kT ), (42b)

z((k + 1)T ) = D̃z(kT ). (42c)

Note that Eq. (42) becomes “exact” at each t = kT
where (γ̃, σ̃) vanish; i.e., where the sparse impulse se-
quence σ(t) turns-out to be zero over the correspond-

ing sample-interval kT 6 t 6 (k + 1)T . This latter
fact is an important consideration in the users choice of

numerical value for the data sample-period T > 0, rel-
ative to the sparseness of the σ(t) impulses. That is, to

obtain reliable estimates f̂(t) of f (t) using Eq. (42), the
value of T should be chosen sufficiently smaller than

the average time-spacing between the σ(t) impulses so
that Eq. (42) becomes exact for “most” of the k val-

ues, k = 0, 1, 2, . . . , associated with the total interval-
of-time during which measurements are taken in each

particular application.

The exact digital-version of the force-identification
algorithm Eq. (14) is based on Eq. (42) and can be con-

cisely described as follows.

Theorem 3. Assuming the y(t) data sample-period T
is significantly smaller than the average time-spacing

between arrivals of the sparse impulses of σ(t) in

Eq. (10), the vector f (t) of unknown force/moment

variations in Eq. (7) is identifiable in discrete-time

t = kT , k = 0, 1, 2, . . . , from the vector of sampled-

data response measurements y(kT ) if

rank
[
C̄T

∣∣ĀT
dC̄

T
∣∣ĀT2

d C̄T
∣∣ · · ·

∣∣ĀT(n+R−1)

d C̄T
]

= (n + R), (43a)

where

Ād =

[
Ã

0

∣∣∣∣
F̃H

D̃

]
, C̄ = [C|GH]. (43b)



C.D. Johnson / Identification of unknown, time-varying forces/moments 193

Moreover, in that case the discrete-time estimate f̂ (kT )

of f (kT ) can be generated in real-time by processing

the sampled-measurements y(kT ) in the digital decon-

volution algorithm defined by the set of linear alge-

braic and difference equations

f̂(kT ) = [O|H]ˆ̃x(kT ) = Hẑ(kT ),

ˆ̃x = col.(x̂|ẑ), (44a)

ˆ̃x((k + 1)T ) = Ād
ˆ̃x(kT ) −Kd

[
y(kT ) − C̄ ˆ̃x(kT )

]
,

(44b)

where Kd in Eq. (44b) denotes an (n+R)×m constant

“gain” matrix to be chosen (designed) to make each

eigenvalue λ̃i of (Ād +KdC̄) lie inside the unit-radius

circle in the complex-plane, and sufficiently close to the

origin, in accordance with the required rate of conver-

gence f̂ (kT ) → f (kT ).

Proof. As in Eq. (12) we set x̃ = (x|z) so that Eq. (42)

can be consolidated and written as x̃((k + 1)T ) =

Ādx̃, y = C̄x̃, where Ād, C̄ are given in Eq. (43b).

Then, the (discrete-time) real-time identification er-

ror εf (kT ) = f (kT ) − f̂ (kT ) can be expressed as

εf (kT ) = [O|H]ε̃(kT ) where ε̃ = x̃ − ˆ̃x, just as in

Eq. (15). Using Eqs (42), (44), the difference equation

governing ε̃(kT ) is determined to be

ε̃((k + 1)T ) =
[
Ād + KdC̄

]
ε̃(kT ). (45)

It follows from the stability theory for linear homoge-

neous, constant-coefficient difference equations of the

form Eq. (45) that ε̃(kT ) → 0 [and hence εf (kT ) → 0,

also] arbitrarily fast (in discrete-time) only if the ma-

trix Kd can be chosen such that the modulus |λ̃i| of

each eigenvalue λ̃i of (Ād + KdC̄) can be made arbi-

trarily small. It is well-known [31] that, for arbitrarily

given (Ād, C̄), Eq. (43a) is the necessary and sufficient

condition for the existence of such a Kd.

Like Eq. (13), the condition in Eq. (43a) is a sim-

ple, practical sufficient condition for identifiability of

f (t) by the algorithm Eq. (44); see Johnson [22] for the

more complicated necessary and sufficient conditions.

It is important to note that the matrix Ād in Eq. (43)

is an explicit function of the users chosen value for

the sample-period T ; see Eq. (41d). Thus satisfaction

of the sufficient condition Eq. (43a) will depend, in

part, on the chosen value of T . The same is true for

the more-complicated necessary and sufficient condi-

tions developed in Johnson [22], and is a natural con-

sequence of information-losses that can occur due to

“sampling” of dynamic data at certain inappropriate

frequencies (1/T ).

Remarks. The design of the (n + R) × m matrix

Kd to place all eigenvalues λ̃i of (Ād + KdC̄) suf-

ficiently close to zero, and the design of the “best”

choice for the initial-condition of Eq. (44b), can be

accomplished by the same methods previously de-

scribed in the remarks below the proof of Theorem 1.

The design of Kd to place all the λ̃i at λ̃i = 0 is

a particularly attractive option because then, for any

initial-condition ε̃(0), the solution ε̃(kT ) of Eq. (45)

[and hence ε̃f (kT ) also] reaches zero, and stays there,

in a finite number N of sample-periods T ; i.e., then

ε̃(NT ) = 0 for any ε̃(0). This desirably rapid conver-

gence of f̂(kT ) → f (kT ) in the finite time-interval

[0,NT ] is called “deadbeat response” of the identifi-

cation algorithm Eq. (44). Linear (vector) difference-

equation algorithms of the type Eq. (44) can be easily

programmed into a general-purpose digital computer

or special-purpose digital signal processing (DSP) cir-

cuit/chip to achieve essentially real-time generation of

the discrete-time force/moment estimate f̂(kT ), k =

0, 1, 2, . . . .
In practice, the sequence of discrete-time estimates

f̂(kT ) generated by Eq. (44) produces a “stairstep”-

type time plot which may not be smooth enough for

some application requirements. For such cases, the al-

gorithm equations Eq. (44) can be augmented by an ad-

ditional equation which eliminates that stairstep char-

acteristic by producing a smooth, natural-waveform

estimation interpolation f̂ (τ ), kT 6 τ < (k+1)T , be-

tween each successive pair of sample-times. As shown

in Johnson [18, pp. 516–517], that interpolation equa-

tion, based on the homogeneous part of the model

Eq. (10), is

f̂(τ ) = HeD(τ−kT )[O|I]ˆ̃x(kT ) = HeD(τ−kT )ẑ(kT ),

kT 6 τ < (k + 1)T , (46)

where the symbol I in Eq. (46) denotes the R×R iden-

tity matrix. As mentioned below Eq. (42), impulses

of σ(t) in Eq. (10) that happen to arrive between a

particular pair of (successive) sample-times will intro-

duce unavoidable errors in the corresponding “next”

estimate f̂(kT ) generated by Eq. (44), and the same

comment applies also to Eq. (46). However, such er-

rors do not propagate beyond the next sample-interval

over which σ(t) remains “quiet”. Thus, if σ(t) is sparse
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and T is chosen sufficiently small, such quiet-intervals
will occur frequently and consequently Eq. (46) will
then produce reliably accurate interpolation estimates

f̂(τ ) “most” of the time. The exact digital version of
Eq. (18) will now be presented.

8.2. The exact digital version of algorithm (18)

The exact digital-version of the (n + R − m)-th
order continuous-time force-identification algorithm
Eq. (18) is based on the “exact” system (and unknown-
input) difference-equation models Eq. (42), with Ã,

F̃H , D̃ defined as in Eq. (41d). Under the assumptions
stated above Eq. (41) and below Eq. (42) that digital-
version of Eq. (18) can be concisely stated as follows;
see Johnson [14, pp. 244–245] for details.

Theorem 4. Under the same hypothesis associated

with Theorem 3, and satisfaction of the (sufficient) con-

dition

rank
[
H̃T

∣∣D̃TH̃T
∣∣ · · ·

∣∣D̃T(n+R−m−1)H̃T
]

= (n + R−m), (47)

the discrete-time estimate f̂ (kT ) of f (kT ) can be

generated in real-time by processing the sampled-

measurements y(kT ) in the (n+R−m)-th order digi-

tal deconvolution algorithm defined by the set of linear

algebraic and difference equations

f̂(kT ) = H
[
(T21 − T22Σ̃)y(kT ) + T22ξ̂(kT )

]
, (48a)

ξ̂((k + 1)T ) = [D̃ + Σ̃H̃]ξ̂(kT ) + Ψ̃y(kT ),

ξ̂ =
(
ξ̂1, . . . , ξ̂n+R−m

)
, (48b)

where

D̃ = T̄12

(
ÃT12 + F̃HT22

)
+ T̄22D̃T22, (48c)

H̃ = C
(
ÃT12 + F̃HT22

)
+ GHD̃T22, (48d)

Ψ̃ =
([
T̄12

∣∣T̄22

]
+ Σ̃C̄

)
Ād

[
T11

T21

]
−
(
D̃ + Σ̃H̃

)
Σ̃,

(48e)

where the matrices Ād, {T11,T12,T21,T22, T̄12, T̄22}
are defined as in Eqs (43b), (18e)–(18g) and the ma-

trix Σ̃ in Eq. (48) is designed to make each eigen-

value λ̃i of (D̃ + Σ̃H̃) lie inside the unit-radius cir-

cle in the complex-plane, and sufficiently close to the

origin, in accordance with the required rate of conver-

gence f̂ (kT ) → f (kT ).

Proof. As in the proof of Theorem 2, introduce the

non-singular linear transformation Eq. (20) with the

explicit inverse Eq. (21). Let ξ̂(kT ) be any solution

of Eq. (48b) and, using Eq. (20), define the associ-

ated discrete-time estimates {x̂(kT ), ẑ(kT ), f̂(kT )} of

{x(kT ), z(kT ), f (kT ) = Hz(kT )} in Eq. (42) as

x̂(kT ) = T12ξ̂(kT ) + (T11 − T12Σ̃)y(kT ),

ẑ(kT ) = T22ξ̂(kT ) + (T21 − T22Σ̃)y(kT ),

f̂(kT ) = Hẑ(kT ). (49)

It follows that

x(kT ) − x̂(kT ) = T12ε(kT ),

z(kT )− ẑ(kT ) = T22ε(kT ),

f (kT ) − f̂(kT ) = HT22ε(kT ), (50)

where

ε(kT ) = ξ(kT ) − ξ̂(kT ), (51)

where ξ is defined in Eq. (21). The difference equa-

tion governing the motion of ε(kT ) in Eq. (51) is

found by forward-shifting Eqs (21) and (51) once, us-

ing Eqs (42), (48), to obtain

ε((k + 1)T ) =
(
D̃ + Σ̃H̃

)
ε(kT ). (52)

Therefore ε(kT ) → 0, and thus f̂(kT ) → f (kT ) also,

if, and only if, the (n + R−m) ×m design matrix Σ̃

is chosen to place all eigenvalues of λ̃i of (D̃ + Σ̃H̃)

inside the unit-circle of the complex plane. The con-

dition Eq. (47) is necessary and sufficient for the exis-

tence of a Σ̃ that will place all those λ̃i precisely at the

origin, thus assuring ε(kT ) → 0 as fast as possible, in

the discrete-time sense.

Remarks. As in the case of Eq. (43a), satisfaction of

condition Eq. (47) will depend, in part, on the chosen

value of sample-period T ; see Eqs (48c), (48d). The

design of Σ̃ in Eqs (48), (52) can be accomplished

by the same techniques described below the proof of

Theorem 1. As in the case of Theorem 2, the “best”

choice for the initial-condition value ξ̂(0) in Eq. (48b)

is zero [17, p. 864]. The counterpart of the inter-sample

interpolation rule Eq. (46), for the reduced-order algo-

rithm Eq. (48), is
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f̂(τ ) = HeD(τ−kT )ẑ(kT ),

kT 6 τ < (k + 1)T , (53)

where now ẑ(kT ) in Eq. (53) is computed by the re-

lation indicated in Eq. (49). Compared to Eq. (41) the

reduced-order digital algorithm Eq. (48) involves “m”

fewer delayors (=T -unit delay operations) and thus

has less “computational-inertia” enabling faster con-

vergence of f̂ (kT ) → f (kT ), in principle.

9. Other generalizations

In some applications, the system dynamics model

Eq. (7) includes a controllable input u(t), as well as

the unknown, uncontrollable input f (t). Moreover, one

or more of the matrices {A,F ,C,G} may contain el-

ements that can vary with time in some known man-

ner. In addition, the time-behavior of f (t) as mod-

eled by Eq. (10) may involve known time-varying ma-

trices (D,H). Procedures for generalizing Eqs (14),

(18) to accommodate such cases are presented in John-

son [12,13].

If noise-levels in the vector y(t) = y1(t), . . . , ym(t)
of system response measurements in Eq. (7b) are not

negligible, the algorithm “gain-matrices” (K,Kd) in

Eqs (14), (44) and (Σ, Σ̃) in Eqs (18), (48) can be

“tuned” to the noise environment to minimize the

noise-corruption effects that appear in the estimates

f̂(t) [or in the discrete-time estimates f̂ (kT ) produced

by Eqs (44), (48)]. These noisy-measurement situa-

tions lead to Kalman filter considerations and are ad-

dressed in Johnson [15,16].

In this paper the unknown forces/moments f (t) have

been presumed to vary with respect to the temporal in-

dependent variable (time) t. However, the methods and

identification procedures used here are equally appli-

cable to problems of identification of unknown spatial-

variations in static load-distributions from measured

static deflections of beams, plates, shells, structures,

etc., where in the latter class of problems the coun-

terpart of the system equations of motion Eq. (7) are

the well-known “static deflection” differential equa-

tions, for beams, plates, shells, etc., and the unknown

force/moment static load-distributions to be identi-

fied vary with respect to some spatial independent

variable. Application of the methodologies described

in this paper to the identification of unknown, un-

measurable static load-distributions on beams, from

measurements of beam static deflections, is treated

in Johnson [21]. Generalizations of the identification

methods presented here, to accommodate more gen-

eral distributed-parameter (continua) problems involv-

ing unknown force/moment variations and distribu-

tions that depend on both temporal and spatial inde-

pendent variables, i.e., f = f (t,x), are presented in

Balas and Johnson [3].

10. Summary and conclusions

In this paper it has been shown that a broad class of

multi-input/multi-measurement, force/moment identi-

fication (deconvolution) problems in (linear) dynam-

ics and vibration can be effectively solved by use of a

new form of physically-realizable, real-time deconvo-

lution algorithm, based on linear dynamic waveform-

models Eqs (3), (6) for time-variations of the vector of

unknown inputs f (t) = (f1(t), . . . , fr(t)). A worked

example, with simulation results, has been presented

to illustrate the effectiveness of the proposed method

of force-identification. Various generalizations of the

class of problems, and deconvolution algorithms, con-

sidered here have also been presented, including “ex-

act” digital-based (DSP) versions of the algorithms.

The force/moment identification problem addressed

in this paper arises in a variety of practical ap-

plications where the unknown, unmeasurable input-

variations f (t) that “caused” an observed system re-

sponse y(t) must be determined. The capability of

the force/moment identification algorithms presented

here to generate accurate estimates f̂(t) in real-time

should be useful in contemporary dynamics and vi-

bration applications where reliable estimates f̂(t) are

needed to make real-time control decisions in “load-

adaptive”, “smart” and “reconfigurable” structures, ac-

tive vibration-control systems, active isolators, motion-

absorbers, etc., as explained and illustrated in the 1973

paper [11].
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