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Antigen identification is an important step in the vaccine development process. Computational 
approaches including deep learning systems can play an important role in the identification of vaccine 
targets using genomic and proteomic information. Here, we present a new computational system to 
discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine 
candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen 
genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium 

falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study, 
we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and 
Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as 
secretory/surface-exposed nature, low transmembrane helix (< 2), essentiality, virulence, antigenic, 
and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic 
MHC class I, MHC class II and B cell epitopes were extracted from top-ranking vaccine targets. The 
designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for 
its physicochemical properties using different tools, including docking analysis. Immunological 
simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited 
upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is 
predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related 
Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity 
of the vaccine.

New data-driven approaches, such as reverse  vaccinology1,2, systems  vaccinology3, and machine  learning4, have 
started to capitalize on the vast amount of omics data available for vaccine design. Several computational studies 
have analysed genomes or proteomes of individual pathogenic strains or species to predict vaccine  candidates5–10. 
In one of these studies, researchers have used the protein–protein interaction dataset and a network biology 
approach to prioritize vaccine targets for Borrelia burgdorferi11. Moreover, Goodswen et al.12 used a machine 
learning approach to distinguish between true and false vaccine candidates for eukaryotes including Caenorhab-
ditis elegans, Toxoplasma gondii and Plasmodium sp.12.

�ere are several tools, resources, and databases available in the immuno-informatics domain that have con-
tributed to the development of vaccines in the recent  past13–15. In 2019, Dalsass et al. compared six open-source 
standalone Reverse Vaccinology (RV) programs designed for bacterial pathogens: NERVE, VaxiJen, Vaxign, 
Bowman-Heinson, Jenner-predict, and VacSol and tested them on eleven di�erent bacterial  proteomes16. Several 
advantages, as well as limitations, have been reported in the existing pipelines or tools. For instance, most of the 
programs and algorithms have been built around bacterial and prokaryotic systems with only a little work with 
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eukaryotic pathogens, including Trypanosoma cruzi. Furthermore, the issue of false-positive predictions remains 
a challenge. (See “Supplementary Website”).

Despite signi�cant advancements in vaccinology, computational proteomics, machine learning, and reverse 
vaccinology, �nding vaccine candidates, producing them in the laboratory, and con�rming their e�cacy in 
animal models remains a complicated undertaking. �us, there is an urgent need for building pipelines or com-
putational frameworks, to integrate diverse algorithms and databases using a single input and provide meaningful 
results for researchers working on vaccine development.

In this work, we are introducing an integrated framework that combines immuno-informatics approaches, 
bioinformatics tools, and supervised machine learning-based tools for vaccine discovery. Here, we rank or clas-
sify pathogen proteins based on their propensity to be good vaccine candidates and to design safe and e�ective 
multiple epitope vaccine candidates using a set of tools such as PsortB, WoLF PSORT, BLAST, HMMTop, Prot-
Param, FungalRV, NetCTL, VaxiJen 2.0, or IEDB tools. As a proof of concept, we applied our system to di�erent 
pathogens including Mycobacterium tuberculosis, Plasmodium vivax, Candida albicans, and In�uenza A virus 
and identi�ed several key vaccine candidates.

Since we have a long-term interest in the development of vaccines against neglected tropical diseases, we 
performed a detailed analysis of genomic and proteomic datasets of T. cruzi, the causative agent of Chagas disease 
(CD). CD a�ects an estimated 6.5 million people (healthdata.org), particularly those living in extreme poverty 
in Latin-America and certain areas of the USA, such as South Texas. An estimated 10,000–20,000 patients 
succumb to CD  annually17 and previous studies have reported several issues in the development of a vaccine 
against  CD18. Since monovalent vaccines had only partial success, the idea of combining vaccine candidates was 
 proposed19,20. Recently, Sanchez Alberti et al. designed Traspain, a chimeric antigen including the N-terminal 
domain of Cruzipain (Cz), the central region of the Amastigote surface protein 2 and a subdominant region of 
an inactive trans-sialidase21 as a potential vaccine candidate.

Clinical studies, like the BENEFIT trial, have shown limited bene�ts of therapeutic drugs (i.e., benznidazole) 
in halting the progression of CD-associated cardiovascular  disease22,23. Even with available antiparasitic drugs, 
patients with chronic Chagasic cardiomyopathy (CCC) experience cardiac in�ammation and �brosis leading 
to heart failure, conduction abnormalities, or sudden death. Several studies have demonstrated that CCC from 
chronic T. cruzi infection in the heart can be controlled by therapeutic vaccines in animal models, but so far, 
no vaccine has entered human clinical  trials24,25. Using computational techniques, we not only identi�ed vac-
cine targets against T. cruzi but also designed a putative multi-epitope vaccine along with an in-silico model of 
immune stimulation that predicts responses associated with protective immunity.

Methodology
�e Vax-ELAN pipeline (https:// vac. kamal rawal. in/ vaxel an/) was developed using computational tools to screen 
the pathogen proteomes. Vax-ELAN evaluates and shortlists proteins that show the relevant characteristics 
(features) to qualify them as potential vaccine candidates (Supplementary Fig. 1, Fig. 1).

Features and thresholds. �e features used in Vax-ELAN include subcellular  localization26, secretory/
non-secretory  protein27,  stability28, cleavage  sites29, adhesion  property30, CTL epitope prediction, MHC class-I 
 binding31, transmembrane helix  prediction32,  essentiality33,  virulence34, molecular  weight28, non-homology with 
host proteins, etc.

In Supplementary Table 1, we summarize various research studies to provide the rationale for the selection 
of particular features and thresholds. For example, Pizza et al. reported that the main cause of failed cloning and 
expression of 250 out of 600 vaccine candidates from Neisseria meningitidis B was due to the presence of more 
than one transmembrane spanning region (TM)6. �us, we decided to have no more than two predicted TMs 
as an a priori requirement. Further, to avoid autoimmunity, the vaccine targets should not be similar to human 
proteins, therefore BLASTp was utilized to �lter those proteins having > 30% identity with human proteins 
[E-value < 0.005]35.

Because the immune system readily recognizes surface-exposed proteins on the pathogen, predicting the 
subcellular localization of the proteins serves as one of the major criteria for designing a vaccine candidate. 
�erefore, we used tools such as PSORTb2.0, WoLF PSORT, TargetP and  CELLO36,37 to identify the localization 
of proteins as extracellular, outer membrane, cytoplasmic, periplasmic, and inner membrane.

Tools. To compute these features, we used di�erent bioinformatics and immunoinformatics tools/data-
bases such as  TargetP26,  SignalP27,  ProtParam28,  PSORTb38, WoLF  PSORT39,  TMPred40,  NetMHC41,  NetChop29, 
 BLAST42, Virulence Factor Database  [VFdb]34 and microbial virulence database  [MvirDB]43 (Table 1).

Strategies. Vax-ELAN has the provision to scan protein sequences (or proteomes) using multiple strategies 
(See Supplementary Fig. 1). For instance, in strategy 1, we used subcellular localization prediction programs to 
identify outer membrane and periplasmic proteins. Since, there are no speci�c algorithms available for protozoa 
or parasites, we used tools such as PSORTB (Strategy 1A) as well as WoLF PSORTB (Strategy 1B) for the predic-
tion of subcellular localization (See Supplementary Fig. 1).

Subsequently, we employed various �lters to prioritize proteins based on features that are associated with 
antigenicity, including adhesion, allergenicity, and non-homology with the host proteome. �e �ltering strategy 
has been reported to �nd vaccine targets in Shigella sonnei52, Brucella sp.53 and Helicobacter pylori54.

Pearce et al.55 had reported the induction of protective immunity against Schistosoma mansoni by vaccination 
with schistosome paramyosin (Sm97), a nonsurface parasite antigen in a mouse  model55. �erefore, we designed 
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strategy 2 (without sub-cellular localisation �lter) in Vax-ELAN, so that there is minimal risk of �ltering impor-
tant (non-surface) antigens.

In another alternative approach based upon inclusion (strategy 4), we use all possible tools (without elimina-
tion/�ltering) to perform a comprehensive evaluation of a given protein sequence.

In this approach, we also convert the outputs from di�erent tools (N) into binaries (1/0) using threshold values 
(Supplementary Tables 2, 3). Second, a row-wise sum corresponding to all the properties [i.e.,  Si] was computed. 
�is is followed by the computation of probability value  (Pi =  Si/N). Higher  Pi indicates the propensity of a given 
protein molecule to possess desirable properties in order to be a good vaccine candidate (Supplementary Table 4).

For instance, trans-sialidases (TS) were found to be among the top-ranking hits (with a comparatively higher 
 Pi value of 0.75). TS have been reported to be important vaccine candidates in numerous preclinical immunologi-
cal studies in TC-CLB (Supplementary Table 5). Likewise, important vaccine targets were reported as top-scoring 

Figure 1.  Methodology for developing a multi-epitope subunit vaccine construct (Draw.io—https:// www. diagr 
ams. net/- 14.6. 10).

https://www.diagrams.net/-14.6.10
https://www.diagrams.net/-14.6.10
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hits from other pathogens as well. For example, ferric enterobactin receptor protein  (Si = 9;  Pi 0.75) [present in 
N. gonorrhoeae] was shortlisted as a vaccine  target56 (Supplementary File 1).

In the next section, we describe the approach for building a machine learning-based tool using components 
of the Vax-ELAN framework.

Optimisation of thresholds. �ough threshold values (listed in Table 1) are supported by literature evi-
dence there is no guarantee of optimality when they are used in machine learning systems. �erefore, we decided 
to optimise these cut-o�s using a quantitative approach. For this reason, we collected protein sequences (anti-
genic) with experimental evidence from di�erent organisms and labelled them as examples of a positive data-
set (see, VaxiDL supplementary). Similarly, another dataset consisting of non-immunogenic proteins (negative 
dataset) was also compiled. Next, we compared the distributions of each property in the positive and negative 
datasets. Subsequently, we harnessed Receiver Operating Curves (ROC) to �nd thresholds at which positive 
and negative examples could be discriminated against (See Supplementary Fig. 2). With the help of optimized 
thresholds generated for each property (Supplementary Table 6), we converted the numerical/categorical values 
of each property into a binary score (0 or 1).

Machine learning approach. A dataset containing positive and negative protein sequences (PVCs) was 
compiled using text data mining and manual curation. A total of 11 biological and 1436 physicochemical fea-
tures were computed for the dataset using several bioinformatics tools. Further, this dataset was subdivided 
into training, testing, and validation datasets, followed by scaling and normalization of data. Next, a DL model 
with Fully Connected Layers (FCLs) was constructed, hyper-tuned and trained. �e Vaxi-DL model was bench-
marked against known PVC prediction tools such as VaxiJen and Vaxign-ML. �e preliminary results have 
shown that the Vaxi-DL model surpassed other PVC-prediction servers in terms of accuracy and e�ciency 
(See, https:// vac. kamal rawal. in/ vaxidl/). Areas under the receiver operating characteristics curves (AUC) were 
primarily used to assess the algorithm. On an independent dataset, the algorithm achieved an AUC of 0.90 (95% 
CI 0.91–0.93) for detecting potential vaccine candidates (Manuscript in Preparation).

Screening of proteomes of pathogens to shortlist vaccine candidates. Using Vax-ELAN (strat-
egy 4), we screened proteomes of 21 pathogens [seven bacterial, four fungal, �ve protozoan, and �ve viral pro-

Table 1.  Tools used for extraction of features along with their cut-o� values.

S. no. Features Tool Cut-o� References

1 Proteins with less number of trans-membrane 
helices

TmPred
TMHMM
HMMtop

≤ 1
Monterrubio-López et al. (2015)5

Naz et al. (2019)44

Solanki et al. (2018)45

2 Non-homology with human BLAST with human proteome e-value:10e − 5, identity > 30%, query coverage 
≥ 70% Pearson et al. (2013)35

3 Stability (instability index value) ProtParam < 40 Solanki et al. (2018)45

4 Non-allergen Blastp with AllerBase e-value:10e − 5, identity > 30% Pearson et al. (2013)35

5 Adhesion prediction FungalRv ≥ − 1.2 Monterrubio-López et al. (2015)5

6 Essential genes prediction DEG Database e-value:10e − 5, identity > 30%, query coverage 
≥ 70% Solanki et al. (2018)45

7 Virulence factor Blastp with VFDB e-value:10e − 5, identity > 30% Solanki et al. (2018)45

8 Molecular weight ProtParam < 110 kDa Naz et al. (2019)44

9 Secretory/non-secretory protein Signalp (dvalue) ≥ 0.5 Liebenberg et al. (2012)46

10 Non-bacterial pathogen/BLAST with gut �ora Blastp with Gut�oraDB e-value:10e − 5, identity > 30%, query coverage 
≥ 70% Naz et al. (2019)44

11 Sub-cellular localization Targetp ≥ 0.8 Goodswen et al. (2014)47

12 MHC Class-1 binding (number of high binders) NetMHC ≥ 4.9 Schroeder and Aebischer (2011)48

13 MHC Class-1 binding (number of weak binders) NetMHC ≥ 5.05 Schroeder and Aebischer (2011)48

14 Number of cleavage sites NetChop ≥ 110 Dhanda et al. (2017)49

15 Number of peptides NetMHC < 500 Schroeder and Aebischer (2011)48

16 Number of amino acids NetChop < 500 Dhanda et al. (2017)49

17 Cytotoxic T lymphocytes (CTL epitope predic-
tion) (number of MHC ligands) NetCTL < 7.5 Solanki et al. (2018)45

18 Antigenicity Vaxijen > 0.4 Monterrubio-López et al. (2015)5

19 Subcellular localization Psortb > 9.5 Muruato et al. (2017)50

20 MHC Class-1 binding prediction IEDB (HLA02*01) > 50 nM Schroeder and Aebischer (2011)48

21 Subcellular localization Psortb Cell wall
Extracellular

Naz et al. (2019)44

Muruato et al. (2017)50

Solanki et al. (2018)45

22 Subcellular localization Psortb Outer membrane, extracellular and periplasmic Naz et al. (2019)44

23 Subcellular localization Wolf Psort Extracellular or plasma membrane Watanabe et al. (2021)51

https://vac.kamalrawal.in/vaxidl/
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teomes] to shortlist and rank proteins as potential vaccine targets (Supplementary Table 7). We found that the 
highest scoring results were enriched in vaccine targets (with experimental evidence reported in the literature) 
(Supplementary File 1). To illustrate, GPI anchored protein was predicted as one of the top vaccine targets  (Pi 
score 0.75) while screening the Aspergillus fumigatus  proteome57. VAX-Elan also predicted Glycerol-3-phos-
phate acyltransferase (GPAT3) (having  Pi score 0.71) in M. pneumoniae58. In addition, Histone  2B59 was short-
listed as one of the vaccine targets  (Pi = 0.67) in Plasmodium vivax, and  CyRPA60  (Pi = 0.67) was shortlisted as one 
of the candidates in Plasmodium falciparum. Cysteine  protease61  (Pi = 0.67), 24-c-methyltransferase62  (Pi = 0.58) 
and iron superoxide  dismutase63  (Pi = 0.58) in Leishmania donovani were found as potential vaccine targets.

Evaluation of experimentally known antigenic and non-antigenic proteins. Protective antigens 
are proteins that can evoke an adaptive immune response against infectious and non-infectious  diseases64. To 
begin with, we collected four datasets of protective antigens belonging to bacteria, protozoa, fungi, and viruses. 
Each set is composed of antigenic and non-antigenic sequences collected from previously reported resources 
such as  Protegen65. For example, we collected 1237 bacterial antigen sequences as a positive dataset (Supplemen-
tary File 2). To create a negative/control dataset, we randomly selected those proteins (from the same species) 
which had less than 10% sequence similarity with sequences belonging to the positive dataset. We also removed 
redundancies in each dataset by �ltering protein sequences that had sequence similarities of more than 30%36. 
�us, the �ltered positive dataset had 670 unique bacterial antigens whereas 677 sequences were obtained for 
the negative  dataset66. Similarly, we created independent datasets for protozoan, fungal, and viral pathogens 
(Supplementary Table 8). Subsequently, we applied the Vax-ELAN tool on sequences of positive and negative 
datasets (Supplementary Fig. 3a–d, Fig. 2). We found that known antigens had comparatively higher  Pi values 
when compared to non-antigens (Mann–Whitney U test, p-value < 0.005).

Application of Vax-ELAN on T. cruzi. Retrieval of genome and proteome sequences for vaccine design-
ing. We applied Vax-ELAN on two di�erent strains of T. cruzi, CL Brenner and Y. �e whole-genome se-
quences of T. cruzi (strains CL Brenner and Y) were obtained from NCBI (Accession ID: NZ_AAHK00000000 
and Accession ID: NMZO00000000) along with protein sequences in FASTA format. �e results of TC-CLB 
are shown in the subsequent sections of the manuscript whereas the results of Y strain are shown in the Sup-
plementary File 5.

Vax-ELAN pipeline for prediction of vaccine candidates. T. cruzi protein sequences were screened based on sev-
eral parameters such as cellular  localization26, transmembrane  helices27, instability index  value28,  allergenicity67, 
 antigenicity66, the probability of having adhesion-like  characteristics30, and non-homology with human proteins. 
Additionally, the T. cruzi proteins were also screened against the Database of Essential Genes  [DEG]33, using the 
BLAST tool [bit score of 100, cut-o� (E-value) of 1E − 5, and BLOSUM 62 matrix]. Further, virulent proteins 
were extracted using the Virulence Factor Database  [VFdb]34 and microbial virulence database  [MvirDB]43. 
Ideally, the vaccine targets should not be similar to the human proteins, therefore BLASTp was utilized to �lter 
those T. cruzi proteins having > 35% identity with human proteins [E-value < 0.005] (See Supplementary Table 9, 
Supplementary Fig. 4).

Alternate strategies adopted for protein �ltering. Apart from the methods mentioned in the previous section, we 
also used alternate strategies to identify potential vaccine targets from T. cruzi CL Brenner (TC-CLB). For exam-
ple, in one of the experiments on proteome screening, we �ltered TC-CLB proteins using a set of bioinformatics 
tools. First, we used the PSORTb tool, to check subcellular localization, followed by the BLASTp tool to evaluate 

Figure 2.  Frequency distribution of  Pi values based on the results from positive and negative datasets of 
bacteria, protozoa, fungi, and viruses. �e Y-axis represents sequence count. �e X-axis represents the *Pi score 
values for each sequence. Blue depicts non-antigen and red antigen sequences. *Pi stands for probability value 
where  Pi =  Si/N (where,  Si refers to the row-wise sum values and N refers to the total number of the tools).
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non-homology with human proteins. Subsequently, we used ProtParam to compute the stability of proteins, 
succeeded by a BLASTp search against the allergen database to �lter non-allergen proteins. Furthermore, we 
used the VaxiJen2.0  server66 to check the antigenicity of the �ltered set of proteins and then used  FungalRV30 to 
predict adhesion molecule-like properties. �is strategy generated a set of potential vaccine candidates. As an 
alternative strategy (1B), we used the WoLF PSORT tool for screening in the �rst step instead of PSORTb. Addi-
tionally, we repeated this analysis a�er the randomizing order of the application of �lters (See Supplementary 
File-A).

Conversion of proteins’ feature/property values into binary values. A row-wise sum corresponding to all the 
properties [i.e., total score] was computed for TC-CLB. �erea�er, all the proteins of TC-CLB were ranked 
according to the total score  (Si or  Pi). Finally, the top 100 unique proteins were selected for further analysis [See, 
Supplementary File-A (Strategy-4)].

Strategy—ORF-based screening of TC-CLB. To perform comprehensive screening for all possible vaccine can-
didates, we downloaded the T. cruzi CL Brenner and TC-Y genomes from NCBI to �nd out all possible ORFs. 
We used  Prodigal68 to predict 121,349 in the genome. Next, the predicted ORFs were subjected to evaluation 
with tools such as WoLF PSORT/PSORTB, BLAST, ProtParam, Vaxijen, and Fungal RV to �lter proteins.

Comparison of di�erent strategies to �nd top ranking proteins. We collected the top-ranking hits from di�erent 
strategies and used python-based programs to �nd common and unique proteins (See, Supplementary File-B). 
Shortlisted proteins reported from multiple strategies were used in subsequent steps such as epitope prediction 
and vaccine construction.

Interspecies and inter-strain comparison of trypanosoma. We retrieved proteomes from thirteen strains of 
T. cruzi (See Table 2) and four related species of Trypanosoma (See Supplementary File 3). Subsequently, we 
applied the Vax-ELAN server to obtain top-ranking hits using strategy 4.

Design of multi-antigenic and multi-epitope vaccines against TC-CLB. Identi�cation of 
epitopes. Numerous studies have suggested that epitope-based antigens can induce protective immunity 
against di�erent infectious  agents69–71. Various methods have been described in the literature to determine the 
B and T-cell epitopes which include; functional assays wherein the antigen is sometimes mutated and antibody-
antigen interaction is evaluated, 3D structure analysis of antigen–antibody complexes or screening the peptide 
library of antibody binding, utilization of MHC multimers, and lymphoproliferation by ELISPOT  assays72. Apart 
from these time-consuming and expensive experimental techniques, scores of computational methods have also 
been developed in the past few years. In the subsequent section, we shall describe di�erent approaches for the 
prediction of B-cell, MHC-I, and MHC-II epitopes in potential vaccine candidates.

Selection of linear B-cell epitopes. Linear B-cell epitopes are e�ective antigenic peptide sequences for stimulat-
ing B-cell immune responses. �ere are di�erent methods for B-cell epitope predictions which can be classi-
�ed into sequence-based and machine learning-based methods. We used multiple tools for predictions which 
include  BCEPRED73,  ABCPred74, and  BepiPred75 servers (See, Supplementary File-C). We selected the top-scor-
ing epitopes simultaneously predicted by di�erent servers for the �nal vaccine peptide. Besides, we also used 
VaxiJen 2.0 along with the IEDB server conservancy analysis to rank and shortlist epitopes. To illustrate, only 
those epitopes which had shown 100% conservation were selected (Fig. 3).

Table 2.  Di�erent strains and species of Trypanosoma used for the identi�cation of key vaccine candidates.

Trypanosoma cruzi (di�erent strains) Trypanosoma species with its strain

Trypanosoma cruzi Berenice Trypanosoma brucei brucei (927/4 GUTat10.1)

Trypanosoma cruzi BrazilcloneA4 Trypanosoma brucei equiperdum(IVM-t1)

Trypanosoma cruzi Dm28c Dm28c Trypanosoma brucei gambiense (MHOM/CI/86/DAL972)

Trypanosoma cruzi G Trypanosoma congolense (strain IL3000)

Trypanosoma cruzi Sylvio_X10_1

Trypanosoma cruzi Marinkellei B7

Trypanosoma cruzi YcloneC6

Trypanosoma cruzi CL

Trypanosoma cruzi CL Brenner

Trypanosoma cruzi CruziDm28c

Trypanosoma cruzi Dm28c

Trypanosoma cruzi TCC 

Trypanosoma cruzi Y
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T-cell epitope prediction. �e objective of T-cell epitope prediction is to identify short peptide sequence within 
an antigen that can act as a stimulant of  CD4+ or  CD8+ T-cells. �ere are several methods available to pre-
dict MHC binding peptides which can be divided into data-driven approaches or structure-based methods. 
Structure-based methods are not used commonly because of their poor accuracy and requirement of intensive 
computational infrastructure. Data-driven methods are based on peptides [i.e., anchor residues, PSSM] known 
to bind with MHC molecules which are stored in databases such as IEDB,  EPIMHC76, and  AntiJen77. Further, 
there are machine learning-based methods that have been trained on data sets consisting of peptides that either 
bind or do not bind to MHC molecules. �e presence of hundreds of allelic variants of human leukocyte antigens 
[HLAs] encoding MHCs presents another set of challenges for epitope  prediction78. We used di�erent methods 
such as  NetCTL79,  Propred80,  EpiJen78 and  NetMHC81 tools. Di�erent tools for predictions were used during the 
study but for brevity, we shall describe results from one of the best-known tools (i.e., NetCTL) in subsequent 
sections.

Selection of cytotoxic T lymphocytes [CTL] epitopes. NetCTL1.2 server has demonstrated comparatively high-
level accuracy for CTL epitope predictions therefore a docker image of this tool was created for its execution on 
local systems (See, Supplementary File-D). It predicts the MHC-class I binding peptide sequences, with protea-
some C-terminal cleavage and transporter associated with TAP e�ciency (Transporter associated with Antigen 
Processing). Using this server, the CTL epitopes were predicted based on default parameters and cut-o�s [MHC 
supertype A1, the threshold as 0.75, and weight on C-terminal cleavage as 0.15, and weight on TAP transport 
e�ciency as 0.05]. Further, these epitopes were subjected to antigenic propensity analysis using the VaxiJen 2.0 
and immunogenicity analysis (by IEDB class-1 Immunogenicity servers). �e epitopes showing poor scores, or 
overlaps were discarded (Fig. 4).

Selection of helper T cells [HTL] epitopes. Prediction of HTL epitopes was performed using the IEDB-MHC-II 
binding tool (http:// tools. iedb. org/ mhcii/). �is tool utilizes di�erent methods to predict the epitopes, includ-
ing a consensus method combining NN-align, SMM-align, and other combinatorial approaches. Epitopes 
obtained through the MHC-II Binding server were subjected to allergenicity prediction using the  AlgPred82 and 
 AllerTop83 servers. Next, using the VaxiJen 2.0 server, non-allergenic epitopes were tested for their antigenic pro-
pensity. To predict the toxicity status of epitopes, the antigenic epitopes were subjected to the ToxinPred  server84. 
Finally, by employing the IFNepitope  server15, IFN gamma induction analysis was performed on the non-toxic 
epitopes. Epitopes that possess the potential to induce the release of IFN gamma were selected as potential 
epitope candidates for vaccine construction (Fig. 5) (See, Supplementary File-E).

�e assemblage of multi-epitope vaccine candidate sequence. �ree potential vaccine candidates were con-
structed from top-ranking B-Cell, CTL, and HTL epitopes predicted using various bioinformatics tools. Immu-
nogenicity of the constructs was enhanced by adding adjuvants such as β-defensin [Accession ID: AGV15514.1], 
L7/L12 50s ribosomal protein [Accession ID: WP_088359560.1, Flavobacteria JJC], and HABA protein [Acces-
sion ID: AGV15514.1; Mycobacterium. tuberculosis]. �e adjuvant was attached to the �rst top CTL epitope 
[Protein ID: XP_804513.1] using an EAAAK linker. �e other top CTL epitopes, belonging to the eight proteins 

Figure 3.  Work�ow for the selection of B-cell epitope sequences (Draw.io—https:// www. diagr ams. net/- 14.6. 
10).

http://tools.iedb.org/mhcii/
https://www.diagrams.net/-14.6.10
https://www.diagrams.net/-14.6.10
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�ltered using the RV pipeline, were joined with each other through the GGGS linker. Next, the AAY linker was 
used to connect the CTL epitope to the HTL epitope sequence as well as all the HTL epitopes with each other. 
�e KK linker was used to bridge the HTL epitope to the BCL epitopes as well as the BCL epitopes with each 
other. Finally, an EAAAK linker was added at the end to improve the stability of the constructs.

Evaluation of antigenicity and allergenicity of vaccine construct. �e antigenic propensity prediction for the vac-
cine construct was performed through VaxiJen 2.0 and ANTIGENpro (http:// scrat ch. prote omics. ics. uci. edu/) 
servers. �e VaxiJen tool is based on the principle of auto cross-covariance [ACC] transformation of protein 
sequences into vectors using the physicochemical properties of amino acids.

�e AlgPred and AllerTOP (http:// www. ddg- pharm fac. net/ Aller TOP) servers were used to predict the 
allergenicity of vaccine constructs. AlgPred is a web-based tool for predictions of allergens that combines 

Figure 4.  Work�ow for selecting cytotoxic-T-lymphocyte epitope sequences (Draw.io—https:// www. diagr ams. 
net/- 14.6. 10).

Figure 5.  Work�ow for selecting Helper-T-lymphocyte epitope sequences (Draw.io—https:// www. diagr ams. 
net/- 14.6. 10).

http://scratch.proteomics.ics.uci.edu/
http://www.ddg-pharmfac.net/AllerTOP
https://www.diagrams.net/-14.6.10
https://www.diagrams.net/-14.6.10
https://www.diagrams.net/-14.6.10
https://www.diagrams.net/-14.6.10
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bioinformatics and machine learning approaches such as IgE epitope scanning, MEME/ MAST motif-based 
search, amino acid composition, or dipeptide composition-based SVM methods, hybrid method, and BLAST 
on ARPs. �e authors have reported an accuracy of 93.5% for their tool. On the other hand, AllerTOP v2.0 is 
based on auto and cross-variance transformation, amino acid E-descriptors, and machine learning methods 
such as k-nearest neighbours [KNN], algorithm. AllerTOP v2.0 was reported with 85.3% accuracy at �vefold 
cross-validation.

Analysis of solubility and physicochemical properties. To evaluate the solubility of the designed vaccine sequence, 
Protein-Sol85 [https:// prote in- sol. manch ester. ac. uk/] server was used. Furthermore, it was assessed for several 
physicochemical parameters by using the ProtParam server. �e properties evaluated include molecular weight, 
theoretical isoelectric point [pI], half-life, instability index [II], aliphatic index, and hydropathicity or GRAVY 
value.

Prediction of the secondary structure of the construct. PSIPRED86 and  CFSSP87 tools were employed for second-
ary structure analysis. �e consensus of both tools was taken into consideration. PSIPRED 3.2 is a freely acces-
sible online server that utilizes a position-speci�c iterated BLAST for the identi�cation and selection of speci�c 
sequences that show signi�cant similarity with the designed vaccine construct. Further, it is reported to show a 
Q3 score of 81.6% and is available at http:// bioinf. cs. ucl. ac. uk/ psipr ed/.

CFSSP (Chou and Fasman Secondary Structure Prediction Server) is an online protein secondary structure 
prediction server. �is server predicts regions of the secondary structure of the protein sequence such as alpha-
helix, beta-sheet, and turns from the amino acid sequence in a linear sequential graphical view. CFSSP imple-
ments the Chou-Fasman algorithm, which is based on an analysis of the relative frequencies of each amino acid 
in alpha helices, beta sheets, and turns based on the known protein structures solved by X-ray crystallography.

Tertiary structure assessment of the vaccine construct. For homology modelling, the �nal multi-epitope vaccine 
construct was subjected to the Iterative �reading ASSEmbly Re�nement (I-TASSER)88 server (https:// zhang lab. 
ccmb. med. umich. edu/I- TASSER/). It is used for generating automated protein structures and performing pre-
dictions. It is reported to design a 3D atomic model by utilizing the multiple threading alignments and iterative 
structural assembly simulations of the submitted amino acid sequence.

Re�nement of the tertiary structure. Using the I-TASSER server, a three-dimensional model of the chimeric 
protein was obtained. Next, we re�ned the 3D model using two-step re�nement process consisting of  3Dre�ne89 
(http:// sysbio. rnet. misso uri. edu/ 3Dre� ne/) and  GalaxyRe�ne90 (http:// galaxy. seokl ab. org/ cgi- bin/ submit. cgi? 
type= REFINE) online protein structure re�nement servers. �e 3Dre�ne re�nement protocol utilizes iterative 
optimization of hydrogen bonding network combined with atomic-level energy minimization on the optimized 
model using a composite physics and knowledge-based force �eld for e�cient protein structure re�nement. 
Whereas GalaxyRe�ne rebuilds side chains and performs side-chain repacking and subsequent overall structure 
relaxation by molecular dynamics simulation.

Validation of the model stability. Validation is essential for the evaluation of stability and to �nd inherent errors 
that might be present in the predicted 3D protein models. For validation of the 3D model, the ProSA-web server 
(https:// prosa. servi ces. came. sbg. ac. at/ prosa. php) was used to calculate the overall quality score in context with 
all the known protein structures. For generating the Ramachandran plot, MolProbity and RAMPAGE servers 
were used. MolProbity (http:// molpr obity. bioch em. duke. edu/) is an all-atom structure validation online server 
that o�ers Ramachandran analysis. Ramachandran plots are used to visualize the energetically allowed and dis-
allowed dihedral angles, psi [ψ], and phi [ϕ], of amino acids. RAMPAGE (http:// mordr ed. bioc. cam. ac. uk/ ~rap-
per/ rampa ge. php) is another freely accessible server that integrates the  PROCHECK91 principle for validation 
of the protein model by applying a Ramachandran plot and segregating the Glycine and Proline residues plot.

Prediction of discontinuous B-cell epitopes for the vaccine construct. Antibodies must interact with antigen 
epitopes to remove the infectious agent. �erefore, the prediction of conformational epitopes such as discontinu-
ous B-cell epitopes is important. It has been found that discontinuous B-cell epitopes comprise residues remotely 
located in the primary structure that are brought into proximity due to the folding of the protein and 90% of 
B-cell epitopes are  discontinuous92. �ere are several tools for discontinuous B-cell epitopes prediction such as 
 BEPro93,  Ellipro94, and  Epitopia95. Ellipro is based on the notion that residues that protrude from the protein 
surface are more accessible for antibody binding and that these protruding residues can be identi�ed by treating 
the protein as an ellipsoid. �erefore, we employed ElliPro (http:// tools. iedb. org/ ellip ro/) for discontinuous B 
cell epitope predictions.

Molecular docking of the vaccine construct with TLR-4 and several HLA alleles. Molecular docking is an impor-
tant tool for studying interactions amongst biological molecules. We employed molecular docking tools to 
�nd out the e�ect of vaccine construct with TLR-4 and HLA alleles. Since the majority of adjuvants originate 
from microbial components known as PAMPs [pathogen-associated molecular patterns], the immune system 
responds to these PAMPs by using Toll-like receptors  [TLRs]96.

For docking assessment, the 3D structures of di�erent MHC molecules and human TLR-4 [PDB ID: 4G8A] 
were retrieved from RCSB PDB. It is observed that speci�c varieties of Human Leukocyte Antigen [HLA] alleles 
are predominant in the South and Central American region. �erefore, we focused on these speci�c classes of 

https://protein-sol.manchester.ac.uk/
http://bioinf.cs.ucl.ac.uk/psipred/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://sysbio.rnet.missouri.edu/3Drefine/
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
https://prosa.services.came.sbg.ac.at/prosa.php
http://molprobity.biochem.duke.edu/
http://mordred.bioc.cam.ac.uk/~rapper/rampage.php
http://mordred.bioc.cam.ac.uk/~rapper/rampage.php
http://tools.iedb.org/ellipro/
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HLA in interaction studies. Molecular interactions between various HLA molecules namely HLA-A, HLA-B7 
[3VCL], HLA-DRB1*01:01 [2fse], HLA-DRB1*03:01 [1a6a], HLA-DRB5*01:01 [1h15] and the designed vac-
cine construct was performed. Various online tools for protein–protein docking were employed to calculate the 
binding a�nity of designing a vaccine construct with di�erent HLA alleles and TLR-4 immune receptors. �e 
tools include ClusPro 2.097,  HDOCK98, and  PatchDock99. PatchDock generated numerous possible solutions 
that were further subjected to the re�nement of the complexes using  FireDock100.

Codon optimization of the chimeric protein. Java Codon Adaptation Tool or JCat  server101 [http:// www. jcat. 
de] was employed for codon optimization of the predicted vaccine construct. It involves the reverse transcrip-
tion of the chimeric protein sequence to the nearest obtainable DNA sequence, which should contain speci�c 
genes responsible for encoding the target vaccine construct. �is reverse-transcribed DNA sequence [RT-DNA] 
obtained is incorporated into the multiple cloning site of the pET-28a [+] vector using the SnapGene  tool102 fol-
lowing our previous strategy. �is was done to adapt the DNA sequence in the model organism [E. coli strain 
K12] so that this RT-DNA undergoes cellular adaptations within the model organism and the codons of RT-
DNA are utilized by the model organism to produce the desired vaccine construct. �is is a crucial step in vac-
cine construction, due to the e�ect of the degeneracy of codons, which can vary from one organism to another, 
including the cellular mechanisms that exist. To circumvent issues of glycosylation in the bacterial system, we 
also performed codon optimization using the yeast model (Supplementary File Y_F in Supplementary File 5).

Characterization of the immune pro�le of the vaccine construct. �e simulation of the actual response of an 
immune system to our �nal vaccine construct was obtained using the C-ImmSim immune simulator [http:// 
150. 146.2. 1/C- IMMSIM/ index. php]. �e tool was run with default parameters with three-time steps [1, 42, and 
84] and without Lipopolysaccharide [LPS]. It works on Position-Speci�c Scoring Framework [PSSM] to simulate 
and predict immune interactions along with immunogenic epitopes.

Evaluation of genetic diversity. In order to develop a broad-spectrum T. cruzi vaccine, the prioritized proteins 
were scrutinized for their genetic diversity among fully annotated proteomes of 13 T. cruzi strains and di�erent 
species (Supplementary Table 10). Protein sequences from these strains which are positive for that particular 
protein, were downloaded from NCBI  RefSeq103 and aligned to predict conserved regions using CLC Main 
Workbench 21.0.2 (QIAGEN). Evolutionary distances (p-distances) among variant sites were also calculated for 
prioritized proteins using Mega 6.0104. �e predicted epitopes were also checked for their sequence divergence 
among di�erent strains and species of Trypanosoma. Each predicted epitope was further checked for antigenic-
ity using VaxiJen (threshold value = 0.4)54. In addition, we also mapped epitopes to genomic sequences. For this 
purpose, we �rst reverse translated the epitope sequences and therea�er used pairwise alignment tools for map-
ping. We also checked the conservancy of epitopes through IEDB conservancy analysis  tool105.

Results
Defining a potential vaccine candidate (PVC). A Potential Vaccine Candidate (PVC) could be de�ned 
as the protein or corresponding DNA/RNA sequence that possesses properties of an “ideal vaccine” such as non-
homology with the host (i.e., human) proteins to avoid the generation of a potential autoimmune  response106, 
the lack of transmembrane regions to facilitate expression, antigenicity, adhesion-like properties, immunogenic-
ity, a molecular weight of < 110 kDa, non-homology with the gut �ora proteome, surface-exposure/secretion, 
and the presence of anchoring and/or secretion signals. Based on sequence similarity, proteins relevant to micro-
bial pathogenesis would also be highly ranked. For our model, we label these desirable properties  Pi [i = 1, 2, 
3….n] (Supplementary Table 9).

Selection, ranking, and filtering of PVCs. To understand the distribution of properties in the T. cruzi 
CL-Brenner (TC-CLB) proteome, we used python-based scripts to characterize the whole proteome using vari-
ous bioinformatics tools. During the analysis, we found that 91.46% of all proteins [i.e., 19,602] have a molecular 
weight < 110 kDa, 13.20% of proteins are secretory and 7.12% are extracellular. Also, 84.80% of the proteome 
is dissimilar to human proteins. Likewise, we observed similar trends in proteomes of four related species and 
thirteen di�erent strains of Trypanosoma (Table 2). In addition, we computed distributions of properties in other 
pathogens for comparative purposes (Supplementary Tables 11a–11c).

Identification of subcellular location of the proteins. Using the PSORTb tool (Strategy 1A), we 
screened 19,602 proteins of the reference proteome of TC-CLB [Accession ID: NZ_AAHK00000000] and found 
that 1846 proteins were predicted to be localized in the periplasm, extracellular matrix, and outer membrane 
of the cell. Next, we used the PSORTb score (threshold set to 9.5) as an additional �lter to shortlist 653 pro-
teins. Alternatively, WoLF-PSORT (Strategy 1B) predicted 7274 proteins, localized in the plasma membrane 
and extracellular matrix. Despite using two di�erent approaches (1A and 1B), we observed that most of the 
proteins (i.e., mucin TcMUCII, Mucin Associated Surface Protein (MASP), trans-sialidase, hypothetical protein, 
dispersed gene family (DGF-1) and subtilisin-like peptidase) were present in the top-ranking �ltered list of both 
the approaches.

Identification of TC-CLB proteins that are non-homologous to human proteins. To prevent 
undesired cross-reactivity of vaccines with the human host, the proposed vaccine candidate must be di�erent 

http://www.jcat.de
http://www.jcat.de
http://150.146.2.1/C-IMMSIM/index.php
http://150.146.2.1/C-IMMSIM/index.php
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from human proteins. �erefore, we used BLASTp to identify the 572 such non-homologous proteins out of the 
653 proteins identi�ed through PSORTb.

Instability analysis. Protein stability is of crucial importance for the e�cient presentation of antigenic pep-
tides on MHC, which plays a decisive role in triggering strong immune reactions. Using ProtParam, the protein 
instability index was determined and proteins having an Instability Index (II) less than 40 were selected. �is led 
to shortlisting of 138 proteins (out of 572) that were predicted to be stable.

Non-allergenicity analysis. To �nd out non-allergenic proteins in our list, we performed a BLASTp 
search against the Allergen Online database and found 137 proteins to be non-allergenic.

Evaluation of antigenicity. To determine the antigenicity of the shortlisted proteins for vaccine construc-
tion, VaxiJen 2.0 was employed. Proteins having antigenicity greater than 0.5 were selected for subsequent analy-
sis. We identi�ed 122 antigenic proteins out of 137 proteins using this tool.

Adhesion prediction. Next, we performed adhesion prediction using FungalRV with a threshold value 
of greater or equal to − 1.2. Several studies have shown that adhesins are vital in initiating pathogen-based 
 infections107. �erefore, it seemed practical to target these proteins for vaccine development. A total of 100 pro-
teins (out of 122) were predicted to possess desired properties similar to adhesin proteins. We used these top 100 
proteins for subsequent analysis as a �ltered list. It was also found that several hits belonging to the same gene/
protein family such as trans-sialidases, and mucin-associated surface protein were present in the top 100 list. 
In VAX-Elan, we have also included an option to �lter (or include) multi-copy genes/proteins for subsequent 
 analysis108.

Shortlisted potential vaccine candidates (PVCs). �e top 100 shortlisted proteins were analysed fur-
ther to evaluate the presence of additional criteria (TM α-helices, signal peptides, essentiality, and virulence) to 
narrow down the best eight proteins as PVCs. �ese include Dispersed gene family [XP_813527.1], subtilisin-
like serine peptidase [XP_809835.1], DNAJ Chaperone protein [XP_806816.1], Mucin-associated Surface Pro-
tein [MASP] [XP_809166.1], Mucin TcMUCII [XP_816522.1], Trans-sialidase [XP_818708.1], 90 kDa surface 
protein [XP_815016.1] and a hypothetical protein [XP_821916.1], each belonging to di�erent protein families 
(Table  3). We also used alternative strategies (see “Methods”) which also reported these PVCs in their top-
ranking lists. Next, we independently checked these proteins as PVCs from scienti�c literature using text mining 
and manual curation approaches (Supplementary Table 12).

Epitope predictions. Linear B-cell epitopes identi�cation. We identi�ed a total of 1173 linear B cell 
epitopes in 8 PVCs using di�erent prediction servers (ABCPred, BCEPRED & Bepipred). �e maximum num-
ber of epitopes [510 epitopes] were found in Dispersed Gene Family protein [XP_813527.1] whereas the mini-
mum number of epitopes [34 epitopes] were identi�ed for Hypothetical Protein [XP_821916.1]. We ranked the 
epitopes based upon antigenicity value generated by the VaxiJen 2.0 tool (threshold: 0.5; target organism used as 
‘Parasite’). Further, we found that approximately 295 epitopes were predicted by multiple servers. In Table 4, we 
show the highest-ranked epitope found in each protein, shortlisted for further analysis.

T-cell epitopes [CTL] prediction. First, we identi�ed 16,385 CTL epitopes in the eight shortlisted proteins. 
Second, we found 221 epitopes (out of 16,385) that were predicted by four di�erent prediction tools namely 
NETMHC, EpiJen, Propred1, and NetCTL. �ird, we selected eight high-scoring epitopes for subsequent work 
(Table 5).

Helper T lymphocytes [HTL] prediction. With the IEDB MHC-II prediction tool, HTL cell epitopes were pre-
dicted with the highest binding corresponding to the alleles from the human 7-allele reference set i.e., HLA-DRB 

Table 3.  Ranking of unique proteins with the highest antigenic score. Here the hypothetical protein has 
displayed similarity with regulator sigma E protease during the Blast search.

Top proteins (unique) a�er �ltration VaxiJen score

XP_813527.1 (DGF-1) 0.61

XP_809835.1 (substilin-like serine peptidase) 0.65

XP_806816.1 (DNAJ Chaperone protein) 0.51

XP_809166.1 (MASP) 1.41

XP_816522.1 (Mucin TcMUCII) 1.16

XP_818708.1(Trans-sialidase) 0.80

XP_815016.1 (Surface Protein) 0.85

XP_821916.1 (hypothetical protein) 0.76
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alleles. Based on the percentile rank as well as IC50 value [< 50 nM], 41 epitopes were selected for further analy-
sis. Out of those, a total of 8 HTL epitopes were chosen for the vaccine construct (Table 6).

�e assemblage of multi-epitope subunit vaccine construct. �e vaccine (V1) was constructed from high-scoring 
CTLs, B-cell epitopes, and HTL epitopes. To enhance its immunogenicity, a Beta-defensin adjuvant [Accession 
ID: AGV15514.1] was obtained from NCBI and incorporated into V1 (Fig. 6).

Evaluation of antigenicity and allergenicity of the vaccine constructs. �e predicted vaccine constructs were 
labelled as non-allergenic as predicted by AlgPred and AllerTop tools. �e antigenicity value of the vaccine con-
structs was observed highest for V1 (1.06) as evaluated by Vaxijen 2.0 (Table 7).

Analysis of solubility and physicochemical properties. Using ProtParam, the theoretical molecular weight of the 
vaccine construct V1 was found to be 42.3 kDa constructed with Beta-defensin as an adjuvant (406 amino acids) 
whereas the theoretical isoelectric point [pI] of the protein was found to be 9.70 which suggest that the vaccine 
construct is highly charged. �e instability index [II] was estimated to be 30.95, indicating that the vaccine 
construct is stable (II < 40 indicates stability). V1 was predicted to be thermostable (Aliphatic index—78.37). V1 
was also found to be hydrophilic (the predicted hydropathicity or GRAVY came out to be − 0.062). �e presence 
of negative value scores suggests hydrophilic epitopes that are likely to be present in the outer surface and have 

Table 4.  Predicted linear B-cell epitopes in the selected proteins for designing vaccine constructs.

S. no. Protein ID Top BCL epitopes VaxiJen score

1 XP_813527.1 GSCGCRC 3.51

2 XP_809835.1 PLLLFVFF 3.06

3 XP_806816.1 VHINLKQ 1.49

4 XP_809166.1 TSPLFPLLLVVAC 1.23

5 XP_816522.1 MTCRLLCALLVLALCCCPSVCVT 0.77

6 XP_818708.1 SLWSVRL 1.61

7 XP_815016.1 DVPPSSLP 0.89

8 XP_821916.1 EKPQCLLLSSGILVDVLMR 1.15

Table 5.  Predicted linear cytotoxic T-lymphocyte epitopes in the selected proteins for designing vaccine 
constructs.

S. no. Protein ID Top CTL epitopes VaxiJen score

1 XP_813527.1 (DGF-1) DAALLGGDY 2.09

2 XP_809835.1 (subtilisin-like serine peptidase) GVDFDSCFF 1.84

3 XP_806816.1 (DNAJ Chaperone protein) KTGRNGDMY 1.81

4 XP_809166.1 (MASP) STDDHATGS 1.75

5 XP_816522.1 (Mucin TcMUCII) GTDGVTGTT 1.48

6 XP_818708.1 (Trans-sialidase) SSDADPTVV 1.03

7 XP_815016.1 (Surface Protein) LLVLAALTY 0.94

8 XP_821916.1 (hypothetical protein) YTCGTSCAV 0.75

Table 6.  Predicted helper T-lymphocyte epitopes in the selected proteins for designing vaccine constructs.

S. no. Protein ID Top HTL epitopes VaxiJen score

1 XP_813527.1 (DGF-1) GSFVMDGTVALGGAG 1.75

2 XP_809835.1 (subtilisin-like serine peptidase) KAPRGRIIRLQYLRF 1.68

3 XP_806816.1 (DNAJ Chaperone protein) TGVSKNGRQLRVSGK 1.79

4 XP_809166.1 (MASP) ASGVLGENGSHMPDG 1.45

5 XP_816522.1 (Mucin TcMUCII) STSGSAEPTKKVQEQ 1.23

6 XP_818708.1 (Trans-sialidase) MLVGKYSRNAAA GAR 1.1

7 XP_815016.1 (Surface Protein) LKSWWQRNVETKAVT 1.32

8 XP_821916.1 (hypothetical protein) SGILVDVLMRTSAHR 1.01
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more chance to elicit the high immunogenicity in the host cell. Furthermore, the solubility value of the vaccine 
construct is 0.651 as predicted by the Protein-Sol tool which has a threshold value of 0.45 indicating that the 
vaccine construct has a higher solubility than the average soluble E. coli protein from the experimental dataset 
utilized by this tool (Table 8). �e half-life was estimated to be 30 h in mammalian reticulocytes in vitro, and 
> 20 h in yeast in vivo, and > 10 h in E. coli in vivo. 

Figure 6.  Multi-epitope vaccine constructs for Chagas disease. �e vaccine construct consists of 24 epitope 
sequences, belonging to CTL, HTL and BCL epitopes of 8 T. cruzi proteins. Beta-defensin (Light purple) was 
used as the adjuvant and is linked to the top CTL epitope (light pink) using an EAAAK (maroon) linker. �e 
other CTL epitopes were linked to each other using GGGS (violet) linkers. �e last CTL epitope and the �rst 
HTL epitope (blue), as well as the other HTL epitopes were connected through an AAY (sky blue) linker. �e 
last HTL epitope and the �rst BCL epitope (yellow) as well as the other BCL epitopes were connected through 
a KK (purple) linker. An EAAAK (maroon) linker was added at the end of the sequence for increasing stability 
(Draw.io—https:// www. diagr ams. net/- 14.6. 10).

Table 7.  �e top three vaccine constructs V1, V2, and V3 made using Beta-defensin, L7/L12 Ribosomal 
protein, and Gaba protein adjuvants along with the top BCL, HTL, and CTL epitope sequences.

Vaccine Sequence Antigenic propensity

V1

GIINTLQKYYCRVRGG RCA VLSCLPKEEQIGKCSTRGRKCCRRKKEAAAKDAALLGG-
DYGGGSGVDFDSCFFGGGSKTGRNGDMYGGGSSTDDHATGSGGGSGTDGVTGT TGG 
GSSSDADPTVVGGGSLLVLAALTYGGGSYTCGTSCAVAAYGSFVMDGTVALGGA GAA 
YKAPRGRIIRLQYLRFAAYTGVSKNGRQLRVSGKAAYASGVLGENGSHMPDGAAYSTSGSAEPT-
KKVQEQAAYMLVGKYSRNAAA GAR AAYLKSWWQRNVETKAVTAAYSGILVDVLMRTSAHRK-
KGSCGCRCKKPLLLFVFFKKVHINLKQKKTSPLFPLLLVVAKKMTCRLLCALLVLALCCCPSVCVT-
KKSLWSVRLKKDVPPSSLPKK EKPQCLLLSSGILVDVLMREAAAK

1.06

V2

MSDINKLAETLVNLKIVEVNDLAKILKEKYGLDPSANLAIPSLPKAEILDKSKEKTSFDLILKGAG-
SAKLTVVKRIKDLIGLGLKESKDLVDNVPKHLKKGLSKEEAESLKKQLEEVGAEVELKEAAAK-
DAALLGGDYGGGSGVDFDSCFFGGGSKTGRNGDMYGGGSSTDDHATGSGGGSGTDGVTGT 
TGG GSSSDADPTVVGGGSLLVLAALTYGGGSYTCGTSCAVAAYGSFVMDGTVALGGA GAA 
YKAPRGRIIRLQYLRFAAYTGVSKNGRQLRVSGKAAYASGVLGENGSHMPDGAAYSTSGSAEPTK-
KVQEQAAYMLVGKYSRNAAA GAR AAYLKSWWQRNVETKAVTAAYSGILVDVLMRTSAHRKKG-
SCGCRCKKPLLLFVFFKKVHINLKQKKTSPLFPLLLVVAKKMTCRLLCALLVLALCCCPSVCVTKK-
SLWSVRLKKDVPPSSLPKKEKPQCLLLSSGILVDVLMREAAAK

0.83

V3

MAENPNIDDLPAPLLAALGAADLALATVNDLIANLRERAEETRAETRTRVEERRARLTK-
FQEDLPEQFIELRDKFTTEELRKAAEGYLEAATNRYNELVERGEAALQRLRSQTAFE-
DASARAEGYVDQAVELTQEALGTVASQTRAVGERAAKLVGIELEAAAKDAALLGG-
DYGGGSGVDFDSCFFGGGSKTGRNGDMYGGGSSTDDHATGSGGGSGTDGVTGT TGG 
GSSSDADPTVVGGGSLLVLAALTYGGGSYTCGTSCAVAAYGSFVMDGTVALGGA GAA 
YKAPRGRIIRLQYLRFAAYTGVSKNGRQLRVSGKAAYASGVLGENGSHMPDGAAYSTSGSAEPTK-
KVQEQAAYMLVGKYSRNAAA GAR AAYLKSWWQRNVETKAVTAAYSGILVDVLMRTSAHRKKG-
SCGCRCKKPLLLFVFFKKVHINLKQKKTSPLFPLLLVVAKKMTCRLLCALLVLALCCCPSVCVTKK-
SLWSVRLKKDVPPSSLPKKEKPQCLLLSSGILVDVLMREAAAK

0.99

https://www.diagrams.net/-14.6.10
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Secondary structure analysis. Using the CFSSP tool and PSIPRED, we found that V1 consists of 55.2% helix, 
14.0% turns and 40.9% of sheets (Fig. 7a–d). �e presence of random coils in the vaccine construct suggests the 
existence of natively unfolded protein regions that can be identi�ed by antibodies that are produced in response 
to  infection109.

Tertiary structure assessment of the vaccine construct. �e tertiary structure models of the chimeric construct 
were predicted by the I-TASSER server by employing several threading templates [1kj6, 5nf2A, 1kj6A, 5ke1, 
4om9A, 5ke1A, 4kh3A]. Out of 5 predicted results, model 1 was found to be the best one based upon the scores. 
In this study, the highest C-score model, derived from the homology modelling was selected for subsequent 
re�nement protocol (Fig. 8a). �e TM-score is de�ned to assess the topological similarity of the two protein 
structures. �e TM-Score for our vaccine construct was found to be 0.56 ± 0.15 and the RMSD value was 
9.6 ± 4.6 Å. It has been reported that a model with a TM score greater than 0.5, shows accurate topology, whereas 
a model with a TM score less than 0.17 indicates nonspeci�c similarity.

Re�nement of the tertiary structure. �e putative chimeric vaccine model was re�ned by the 3Dre�ne server 
(http:// sysbio. rnet. misso uri. edu/ 3Dre� ne/) and subsequently by GalaxyRe�ne (http:// galaxy. seokl ab. org/ cgi- 
bin/ submit. cgi? type= REFINE). �e 3D-re�ne server-generated �ve models, out of which top-ranking model 
having favourable parameters such as lowest 3Dre�ne score (29,567.2), GDT-HA (0.96), RMSD (0.37 Å), lowest 
RWPlus score (− 63,611.70), and MolProbity (3.55). We also shortlisted Model 1 (from GalaxyRe�ne server) 
using a clash score (20.8), a score of poor rotamers (0.3), and the Ramachandran plot with a statistical score 
(89.4%) for downstream validation studies (Fig. 8b,c).

Validation of model stability. Ramachandran plot analysis of the protein model by ProCHECK-web predicted 
that 82.4% of amino acids were present in favoured regions. Moreover, 13.7% of the residues were present in 
the allowed regions, and only 1.5% of proteins were present in the disallowed or outlier boundary (Fig. 8d) 
indicating the quality of the model. �e ProSA-web server authenticated the overall quality and errors that may 
potentially arise in the re�ned model. �e re�ned model (obtained in this study) was considered to be appropri-
ate with a Z-score of − 2.9 (Fig. 8e).

Prediction of discontinuous B-cell epitopes. Ellipro estimated the �ve discontinuous B-cell epitopes and revealed 
the presence of 221 total residues among them (with score variation from 0.61 to 0.75) (Table 9, Fig. 9).

Molecular docking of the chimeric protein with TLR-4. �e  CastP110 server was employed for determining pro-
tein binding and hydrophobic contact sites on the protein surface. One of the potential binding pockets (A) was 
identi�ed for the interaction with a TLR-4 receptor. It was found that the molecular surface area of the pocket ‘A’ 
was 6008.1 Å2 with a molecular surface volume of 39,003.9 Å3, the mouth molecular area was about 1088.07 Å2, 
and the molecular surface sum was calculated to be 1888.9 Å. CPORT predicted G1, A19, L21, C33 as active 
amino acid residues in the adjuvant sequences; A52, L54, L55, G56, G57, D58, T59, G60, D68, S69, C70, F72, 
M84, G87, T137, G138, G140, S141, Y142, T143, C144, G145, T146, C148, P174, G176, I178, I179, R180, L181, 
Y183, L184, R185, F186, A187, Y189, N215, A255, G300, C301, P306, L307, L308, L309, F310, V311, F312, F313, 
K314, K315, V316, H317, I318, N319, L320, K321, S326, L328, F329, P330, L333, C345, L348, V349, L350, A351, 
L352, C353, C354, C355, P356, S357, D373, L388, L389, L390, S391, S392, G393, I394, L395, V396, V398, L399 
from the chimeric protein joined with linker  sequences111.

For the highest-ranking docked complex, the ClusPro tool revealed the lowest total intermolecular energy 
(− 973.2 kcal/mol), indicating a good interaction between V1 and TLR-4. �e HDOCK server predicted the 
binding energy for the protein–protein complex as − 314.02 kcal/mol (Fig. 10). �e re�nement of PatchDock 
docking results, as obtained by the Firedock result also showed the lowest global energy values (Table 10).

Codon optimization of the chimeric protein. JCAT results revealed that the optimized codon sequence has a 
length of 1308 nucleotides and its CAI (Codon Adaptation Index) was predicted to be 0.98, with an average of 

Table 8.  Comparison of physicochemical and solubility properties of di�erent vaccine constructs.

Physicochemical properties Vaccine 1 Vaccine 2 Vaccine 3

Antigenic propensity 1.062 0.83 0.992

Solubility 0.651 0.601 0.472

Molecular weight 42.3 kDa 50.70 kDa 54.7 kDa

Allergenicity Non-allergenic Non-allergenic Non allergenic

Hydropathicity − 0.062 − 0.056 − 0.14

Amino acids 406 485 520

�eoretical isoelectric point (pI) 9.7 9.45 9.05

Aliphatic index 78.37 89.94 83.23

Instability index (II) 30.95 27.71 32.94

http://sysbio.rnet.missouri.edu/3Drefine/
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
http://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE
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Figure 7.  Secondary structure prediction of the �nal vaccine sequence using (a) CFSSP, (b) and (c) PSIPRED. 
(d) Graph of normalized B-factor predicted by I-TASSER.
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Figure 8.  Modeling, re�nement and validation of tertiary structures. (a) Multi-epitope vaccine chimeric 
protein 3D model generated using homology modelling (Chimera 1.15—https:// www. cgl. ucsf. edu/ chime ra/ 
downl oad. html). (b) Re�ned model using 3Dre�ne (Chimera 1.15—https:// www. cgl. ucsf. edu/ chime ra/ downl 
oad. html). (c) GalaxyRe�ne generated re�ned 3D structure (Chimera 1.15—https:// www. cgl. ucsf. edu/ chime ra/ 
downl oad. html). (d) Ramachandran plot of vaccine construct V1. (e) Prosa-Web giving a Z- score of -2.9.

Table 9.  Discontinuous B-cell epitopes predicted by the ElliPro. Two hundred and twenty-one residues were 
found to be located in �ve discontinuous B-cell epitopes of the re�ned vaccine model.

S. no. Residues Number of residues Score

1 A: N269, A: V270, A: E271, A: T272, A: K273 5 0.75

2

A:R14, A:G15, A:G16, A:R17, A:V20, A:S22, A:C23, A:L24, A:P25, A:K26, A:E27, A:E28, A:Q29, A:I30, A:G31, A:K32, A:C33, A:S34, 
A:T35, A:R36, A:G37, A:R38, A:K39, A:C40, A:C41, A:R42, A:R43, A:K45, A:E46, A:A47, A:A48, A:A49, A:K50, A:D51, A:A52, A:A53, 
A:L54, A:L55, A:G56, A:G57, A:D58, A:Y59, A:G60, A:G61, A:G62, A:S63, A:G64, A:V65, A:D66, A:F67, A:D68, A:S69, A:N81, A:G82, 
A:D83, A:M84, A:G86, A:G87, A:G88, A:S89, A:D92, A:D93, A:L135, A:G138, A:G139, A:G140, A:S141, A:Y142, A:T143, A:C144, A:G145, 
A:T146, A:S147, A:C148, A:A149, A:A151, A:A152, A:Y153

78 0.70

3
A:S226, A:T227, A:S228, A:G229, A:S230, A:A231, A:E232, A:P233, A:T234, A:K235, A:K236, A:V237, A:E239, A:Q240, A:R302, A:C354, 
A:P356, A:C359, A:V360, A:T361, A:K362, A:K363, A:S364, A:L365, A:W366, A:S367, A:V368, A:R369, A:L370, A:K371, A:D373, A:V374, 
A:P375, A:P376, A:S377, A:S378, A:L379, A:P380, A:K381, A:E383, A:K384, A:P385, A:Q386, A:C387

44 0.65

4

A:I3, A:N4, A:T5, A:L6, A:Q7, A:K8, A:Y10, A:G166, A:A167, A:G168, A:A169, A:A170, A:Y171, A:K172, A:A173, A:P174, A:R175, 
A:G176, A:R177, A:I178, A:I179, A:R180, A:L181, A:Q182, A:Y183, A:L184, A:R185, A:F186, A:A187, A:A188, A:Y189, A:T190, A:V192, 
A:S193, A:K194, A:A260, A:Y261, A:L262, A:K263, A:S264, A:W265, A:W266, A:Q267, A:R268, A:R294, A:V311, A:F312, A:F313, A:K314, 
A:K315, A:V316, A:H317, A:I318, A:N319, A:L320, A:K321, A:Q322, A:K324, A:T325, A:S326, A:P327, A:L328, A:F329, A:P330, A:L347, 
A:L348, A:L389, A:L390, A:S391, A:S392, A:G393, A:I394, A:D397, A:V398

74 0.65

5 A:V211, A:L212, A:G213, A:E214, A:N215, A:G216, A:S217, A:P220, A:R289, A:T290, A:S291, A:A292, A:H293, A:K295, A:K296, A:G297, 
A:S298, A:C299, A:L331, A:L332 20 0.61

https://www.cgl.ucsf.edu/chimera/download.html
https://www.cgl.ucsf.edu/chimera/download.html
https://www.cgl.ucsf.edu/chimera/download.html
https://www.cgl.ucsf.edu/chimera/download.html
https://www.cgl.ucsf.edu/chimera/download.html
https://www.cgl.ucsf.edu/chimera/download.html
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Figure 9.  Discontinuous B-cell epitopes predicted by ElliPro. (A–E): 3D representation of conformational or 
discontinuous epitopes of the most antigenic chimeric protein from T. cruzi CL Brenner. Epitopes are shown as 
yellow surfaces, and the bulk of the protein is represented in grey sticks (JSmol 13.3.9—https:// sourc eforge. net/ 
proje cts/ jsmol/).

Figure 10.  Molecular docking of subunit vaccine with the immune receptor—TLR4. (a) Docked image of the 
chimeric protein generated by HDOCK server having a binding energy score of -314.02. �e rainbow-colored 
complex represents the TLR4 receptor molecule, while the golden-yellow colour denotes vaccine construct V1. 
(b) ClusPro generated model 5, which represents the protein–ligand complex (cyan–green). �e lowest binding 
energy of -973.2 kcal was achieved for this model (Chimera 1.15—https:// www. cgl. ucsf. edu/ chime ra/ downl oad. 
html).

Table 10.  Molecular docking results using the PatchDock server. �e model was re�ned further using 
Firedock server.

Vaccine construct
PDB ID of the HLA 
alleles Solution no. Global energy Hydrogen bond energy ACE Score Area

VACCINE 1

3vcl1 28 8.99 0.0 − 136.02 14,722 2001.1

1a6a 82 8.82 − 1.63 − 284.02 14,114 2888.6

1h15 48 4.17 − 2.06 − 264.30 15,388 3810.5

2fse 9 − 29.11 − 2.32 − 192.83 16,506 2909.7

TLR4 83 − 19.85 − 3.35 − 152.69 15,728 2531.6

https://sourceforge.net/projects/jsmol/
https://sourceforge.net/projects/jsmol/
https://www.cgl.ucsf.edu/chimera/download.html
https://www.cgl.ucsf.edu/chimera/download.html
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51.88% GC for the adapted sequence. �ese values indicate stable expression of the designed vaccine construct 
in the selected microbial host. For optimal gene expression, SnapGene so�ware was employed, the designed 
chimeric protein sequence was integrated into the E. coli pET-28a [+] vector by incorporating restriction sites 
which were followed by cloning into the vector using published methods (Figs. 11 and 12).

Characterization of the immune pro�le of the vaccine construct. With C-ImmSim, the immune response of 
the �nal vaccine construct was analysed. Results of the simulated immune responses indicated an increased 
surge in the induction of secondary and tertiary immune responses. At the �rst dose, a high surge of IgM and 
IgG1 antibodies was predicted. However, these titters increased exponentially with the second and third dose. 
Furthermore, an increase in active B-cell, CTL, and HTL cell populations was predicted for all doses (Fig. 13).

Evaluation of genetic diversity. Protein sequences of the prioritized proteins were extracted from 13 T. cruzi 
annotated proteomes which were aligned to predict conserved regions (Supplementary Table 13). Five proteins 
namely DNAJ chaperon protein, subtilisin-like serine peptidase, DGF-1, MASP, and trans-sialidase displayed 
strong homology (above 80%) across 13 di�erent strains of T. cruzi.

In the context of the DNAJ protein, the estimated evolutionary distance (p-distance) was found to be 0.005 
(across 13 strains) and 0.746 (across species). Whereas for TS, p-distance was found to be 0.234 (across strains) 
and 0.795 (across species). Next, we extracted all the copies of TS from TC-CLB proteome and computed evo-
lutionary divergence (0.616) as well (Supplementary Tables 14a–14c).

Estimates of evolutionary divergence between sequences and the number of amino acid di�erences per site 
among sequences are shown along with the standard error in Supplementary Tables 14a–14c. We found that 
most of the epitopes (belonging to the top eight proteins) were mapped/aligned to the conserved regions. For 
example, a 15-mer HTL epitope, "TGVSKNGRQLRVSGK" (from DNAJ protein), was found to be completely 
conserved (100%) across 13 di�erent strains and four species (see Fig. 14 and Supplementary Table 15). Next, a 
predicted CTL epitope (‘SSDADPTVV’) from trans-sialidase protein sequences was also found to be conserved 
(Fig. 14). Likewise, we performed epitope conservancy analysis using the IEDB tool and observed that all the 
predicted epitopes were conserved across di�erent strains of T. cruzi (Supplementary Table 16, Supplementary 
File 4). In addition, we also mapped epitopes (a�er reverse translation) on genomic sequences of Trypanosoma 
strains and species to check the conservation at the genomic level (See “Supplementary Website”). Further, we 
extracted 5750 copies of TS from di�erent proteomes of T cruzi. �erea�er, we searched for the presence of 
epitopes in variants of TS using the Smith Water-Mann algorithm as well as using the IEDB conservancy tool. 
We found that the epitopes were present in the proteins with varying levels of conservation (See Supplementary 
Files Y_G and H in Supplementary File 5).

Figure 11.  Codon optimization of the vaccine construct V1. Here, CAI of the optimized codon and average GC 
content were 0.98 and 51.8% respectively.
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Discussion
�e study reported here comprises a comprehensive approach to utilize informatics and computer algorithms 
towards the prediction of vaccine targets in pathogens. Our work combines immuno-informatics approaches 
and reverse vaccinology methods to design an in-silico multi-epitope subunit vaccine that can o�er protection 
against CD. �e datasets and frameworks are also used to develop a new machine learning and deep learning 
system for the prediction of vaccine candidates in general. We have created a resource base for the scienti�c com-
munity working in the area of CD vaccine design [https:// tinyu rl. com/ CDWor k800]. We used several strategies 
to shortlist potential vaccine candidates. �e goal was to obtain non-allergenic, antigenic, non-toxic, conserved 
B-cell, CD8+ and CD4+ epitopes that were assembled into three separate vaccine constructs, V1, V2, and V3. 
Our major �ndings include several unique vaccine antigens that are antigenic, immunogenic, and safe (showing 
no homology with human proteins and the proteome of the gut �ora). Further, the designed vaccine constructs 
are also found to be, theoretically, soluble, thermostable, amenable for expression in model systems, and likely 
to interact with other proteins. Structurally, the designed constructs show a likelihood of favourable interactions 
with the TLR-4 on professional antigen-presenting cells. Our vaccine construct consists of epitopes derived 
from multiple protein molecules (PVCs) which have exhibited the potential to be PVCs in various independent 
experimental studies. �e designed vaccine construct is likely to o�er cross-protection since the selected proteins 
and predicted epitopes used in generating the cocktail vaccine exhibited considerable conservation across the 
related Trypanosoma species/strains.

In the past decade, different research groups have used several strategies ranging from stages of 
 pathogenesis112; immunogenic  assays109, subtractive  proteomics9, and as well as properties/�lters (Supplementary 
Table 9) to determine candidates for their respective pathogens. Di�erent authors have used di�erent orders of 
these properties [P1, P2…. Pn] as a combined �lter to reach the �nal list of PVCs. Our study explains the impact 
of the order of applications of these properties on the outcome. Since no proteome-wide studies have been 

Figure 12.  In silico cloning of optimized codons encoding vaccine protein into pET28a (+) vector to ensure 
expression in microbial systems. �e DNA sequence was inserted into the multiple cloning-site of the cloning 
vector. Here, the red portion denotes the gene sequence of our designed vaccine construct while the black 
portion denotes the backbone of the vector. All colored arrows denote the location and direction of the 
expression of gene. �e blue portion shows vaccine codon sequence while green denotes kanamycin resistance 
gene, violet represents vector genes and yellow denotes origin of replication (SnapGene 5.2.5.1—https:// www. 
snapg ene. com/).

https://tinyurl.com/CDWork800
https://www.snapgene.com/
https://www.snapgene.com/
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conducted to �nd the distribution of properties, we decided to apply multiple strategies to rank or �lter TC-CLB 
proteins by randomizing the order, changing the number of �lters, etc. For instance, in one of the strategies, we 
randomized the order of applications for properties [Pn] on TC-CLB. In another strategy, we removed the  P1 
[extracellular/secretory] �lter which allowed an additional set of proteins [i.e., intracellular] to appear as PVCs. 
�e objective was to screen proteomes diversely to select all best-ranking protein molecules (i.e., PVCs) with 
desired properties. One of the unique highlights is that we have examined the distribution of di�erent properties 
across the pathogens’ proteome as well as on positive and control datasets. Further, we also applied Vax-ELAN 
on recently sequenced Y strain. We observed that top ranking candidates (in both CLB and Y strains) includes 
TS, Mucin, and Mucin associated surface proteins.

Researchers have initiated several e�orts to develop vaccines against CD but issues related to a variety of T. 
cruzi strains, the genetic variability of the host, complex genomic  structure24, signi�cant phenotypic variation, 
and variable behaviour of pathogen (in vitro and in vivo) in context of pathophysiology, virulence, tropism, and 
immunological responses, have created several  obstacles113. Further, T. cruzi is known to be a complex organism 
with multiple developmental forms with transient expression of di�erent antigens. �e problem is compounded 
by a wide variety of strains, antigenic shi�s during di�erent life stages, making proper immunization against the 

Figure 13.  Molecular simulations of the chimeric protein. (a) Successive antigen injections leading to 
immunoglobulins production (Colored peaks indicate black vertical lines, along with other sub-classes of 
immune cells). (b) Post-insertion development in B-cell population per state as per observation a�er inserting 
three injections. (c) Development of T-helper cells (d) T-cytotoxic cell population per state a�er injections. �e 
resting phase denotes those cells that are not presented with the antigens and energy state denotes cells that are 
tolerant to antigens due to repeated exposure, thereby indicating a lack of immune responsiveness.
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parasite an improbable task. �e ability of T. cruzi to modulate and evade host immune responses and in�uence 
host-parasite interactions allows the parasite to survive through novel  mechanisms114.

Several vaccine candidates have been reported for CD vaccine development programs across the world. �ese 
include Tc24 [and its modi�ed Tc24-C4 derivative], TSA-1, ASP-2, TS, TSSA CD8 epitope, Tc52, TcG1, TcG2, 
TcG4, TcVac2, TcVac4, and  MASP25. It is interesting to note that several of these candidates appeared in the �nal 
protein list used for our �nal vaccine construct. In one of the research studies, Michel-Todo et al. extracted T. 
cruzi epitopes from several antigens using publicly available  databases115. �ey prioritized a set of epitopes based 
on sequence conservation criteria, projected population coverage of Latin America population, and biological 
features using in-silico methods and selected CD8+ T cell, CD4+ T, and B-cell epitopes with < 70% identical to 
human or human microbiome protein sequences. As a benchmark, we also compared  epitopes115 with epitopes 
identi�ed in our study using the VaxiJen tool (Supplementary File-F).

�e in-silico approach to design a multi-epitope vaccine construct for Chagas disease presents challenges as 
a protein-based vaccine given the complexities of producing such candidates as experimental soluble  proteins109 
suitable for scale-up production and puri�cation. However, we have recently embarked upon an mRNA vac-
cination approach for Chagas disease that might obviate the need for expression and puri�cation  steps116. We 
are now working to incorporate the �ndings here into our mRNA vaccination program.

Conclusion
�erapeutic interventions for the prevention and elimination of Chagas disease require novel treatment and 
immunization methods that can protect people at risk and infected populations while providing them with a 
good quality of life. �is study is aimed at developing putative multi-epitope vaccines against CD, a protozoan 
infection caused by T. cruzi. �e disease is endemic in Latin America and has impacted other parts of the world. 
In this study, computational approaches and a reverse vaccinology pipeline were used to screen the complete 
genomic and proteomic sequences for predicting potential vaccine candidates and designing in-silico chimeric 
vaccine constructs against the T. cruzi CL Brenner. Multiple antigenic B-cell, CD8+, and CD4+ epitopes were 
assembled into three non-allergenic, antigenic, and non-toxic constructs that can act as a prophylactic potential 
multi-epitope vaccine construct. Appropriate linkers and adjuvant sequences were also used to enhance the 
stability, e�ectiveness, as well as immune response of the engineered vaccine constructs. �e designed vaccine 
construct has suitable structural, physicochemical, and immunological properties which can strongly stimulate 
both humoral and cellular immune responses in humans. However, experimental validation for e�cacy and safety 

Figure 14.  Aligned regions showing conserved epitopes among various strains of T. cruzi. Individual targeted 
proteins (DNAJ chaperon and trans-sialidase proteins) among the 12 strains are aligned using CLC Main 
workbench and the regions with conserved epitopes (sequences) have been shown in the red boxes. (a) DNAJ 
BCL epitope; (b) DNAJ CTL epitope; (c) DNAJ HTL epitope; (d) trans-sialidase BCL epitope; (e) trans-sialidase 
CTL epitope; and (f) trans-sialidase HTL epitope.
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is needed along with pre-clinical studies before human immunization. Planning for such studies in appropriate 
mouse models of T. cruzi and CCC is in progress.

Data availability
All raw data were obtained from open sources and have been cited and deposited in Datasets S1 and also avail-
able on our website. Supplementary Data: https:// tinyu rl. com/ 2b2s9 27h. So�ware Pipeline: Vax-ELAN: https:// 
vac. kamal rawal. in/ vaxel an/, Vax-ELAN Version 2: https:// vac. kamal rawal. in/ vaxel an/ v2, Vaxi-DL: https:// vac. 
kamal rawal. in/ vaxidl/.

Received: 30 September 2020; Accepted: 10 August 2021

References
 1. Bibi, S. et al. In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Sci. Rep. 11, 

1249 (2021).
 2. Ashfaq, U. A. et al. Rational design of multi epitope-based subunit vaccine by exploring MERS-COV proteome: Reverse vac-

cinology and molecular docking approach. PLoS ONE 16, e0245072 (2021).
 3. Raeven, R. H. M., van Riet, E., Meiring, H. D., Metz, B. & Kersten, G. F. A. Systems vaccinology and big data in the vaccine 

development chain. Immunology 156, 33–46 (2019).
 4. Ong, E., Wong, M. U., Hu�man, A. & He, Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine 

learning. bioRxiv https:// doi. org/ 10. 1101/ 2020. 03. 20. 000141 (2020).
 5. Monterrubio-López, G. P. & Ribas-Aparicio, R. M. Identi�cation of novel potential vaccine candidates against tuberculosis based 

on reverse vaccinology. Biomed Res. Int. 2015, 1–16 (2015).
 6. Pizza, M. et al. Identi�cation of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 

(80-). 287, 1816–1820 (2000).
 7. Sanchez Alberti, A. et al. Engineered trivalent immunogen adjuvanted with a sting agonist confers protection against Trypano-

soma cruzi infection. NPJ Vaccines 2, 1–12 (2017).
 8. Li, J. et al. Reverse vaccinology approach for the identi�cations of potential vaccine candidates against Salmonella. Int. J. Med. 

Microbiol. https:// doi. org/ 10. 1016/j. ijmm. 2021. 151508 (2021).
 9. Solanki, V., Tiwari, M. & Tiwari, V. Prioritization of potential vaccine targets using comparative proteomics and designing of 

the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Sci. Rep. 9, 1–19 (2019).
 10. Hajialibeigi, A., Amani, J. & Gargari, S. L. M. Identi�cation and evaluation of novel vaccine candidates against Shigella �exneri 

through reverse vaccinology approach. Appl. Microbiol. Biotechnol. 105, 1159–1173 (2021).
 11. Bencurova, E., Gupta, S. K., Oskoueian, E., Bhide, M. & Dandekar, T. Omics and bioinformatics applied to vaccine development 

against: Borrelia. Mol. Omi. 14, 330–340 (2018).
 12. Goodswen, S. J., Kennedy, P. J. & Ellis, J. T. A novel strategy for classifying the output from an in silico vaccine discovery pipeline 

for eukaryotic pathogens using machine learning algorithms. BMC Bioinform. 14, 315 (2013).
 13. Dhal, A. K., Pani, A., Mahapatra, R. K. & Yun, S. I. L. An immunoinformatics approach for design and validation of multi-subunit 

vaccine against Cryptosporidium parvum. Immunobiology 224, 747–757 (2019).
 14. Dhanda, S. K. et al. IEDB-AR: Immune epitope database—Analysis resource in 2019. Nucleic Acids Res. 47, W502–W506 (2019).
 15. Dhanda, S. K., Vir, P. & Raghava, G. P. S. Designing of interferon-gamma inducing MHC class-II binders. Biol. Direct 8, 30 

(2013).
 16. Dalsass, M., Brozzi, A., Medini, D. & Rappuoli, R. Comparison of open-source reverse vaccinology programs for bacterial vac-

cine antigen discovery. Front. Immunol. 10, 113 (2019).
 17. Kirchho�, L. V. Chagas disease: American Trypanosomiasis. Infect. Dis. Clin. N. Am. 7, 487–502 (1993).
 18. Bivona, A. E., Alberti, A. S., Cerny, N., Trinitario, S. N. & Malchiodi, E. L. Chagas disease vaccine design: the search for an e�-

cient Trypanosoma cruzi immune-mediated control. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1866(5), 
165658. https:// doi. org/ 10. 1016/j. bbadis. 2019. 165658 (2020).

 19. Cazorla, S. I., Frank, F. M. & Malchiodi, E. L. Vaccination approaches against Trypanosoma cruzi infection. Expert Rev. Vaccines 
8, 921–935 (2009).

 20. Limon-Flores, A. Y. et al. E�ect of a combination DNA vaccine for the prevention and therapy of Trypanosoma cruzi infection 
in mice: Role of CD4+ and CD8+ T cells. Vaccine 28, 7414–7419 (2010).

 21. Sanchez Alberti, A. et al. Mucosal heterologous prime/boost vaccination induces polyfunctional systemic immunity, improving 
protection against Trypanosoma cruzi. Front. Immunol. 11, 128 (2020).

 22. Antonio Marin-Neto, J., Rassi, A., Avezum, A., Mattos, A. C. & Rassi, A. �e Bene�t trial: Testing the hypothesis that trypanocidal 
therapy is bene�cial for patients with chronic Chagas heart disease. Mem. Inst. Oswaldo Cruz 104, 319–324 (2009).

 23. Marin-Neto, J. A. et al. Rationale and design of a randomized placebo-controlled trial assessing the e�ects of etiologic treatment 
in Chagas’ cardiomyopathy: �e BENznidazole Evaluation For Interrupting Trypanosomiasis (BENEFIT). Am. Heart J. 156, 
37–43 (2008).

 24. Arner, E. et al. Database of Trypanosoma cruzi repeated genes: 20,000 additional gene variants. BMC Genom. 8, 391 (2007).
 25. Beaumier, C. M. et al. Status of vaccine research and development of vaccines for Chagas disease. Vaccine 34, 2996–3000 (2016).
 26. Emanuelsson, O., Nielsen, H., Brunak, S. & Von Heijne, G. Predicting subcellular localization of proteins based on their N-ter-

minal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000).
 27. Petersen, T. N., Brunak, S., Von Heijne, G. & Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane 

regions. Nat. Methods 8, 785–786 (2011).
 28. Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. Protein Identi�cation and Analysis Tools 

on the ExPASy Server. �e Proteomics Protocols Handbook, 571–607. https:// doi. org/ 10. 1385/1- 59259- 890-0: 571 (2005) 
 29. Nielsen, M., Lundegaard, C., Lund, O. & Keşmir, C. �e role of the proteasome in generating cytotoxic T-cell epitopes: Insights 

obtained from improved predictions of proteasomal cleavage. Immunogenetics 57, 33–41 (2005).
 30. Chaudhuri, R., Ansari, F. A., Raghunandanan, M. V. & Ramachandran, S. FungalRV: Adhesin prediction and immunoinformatics 

portal for human fungal pathogens. BMC Genom. 12, 192 (2011).
 31. Andreatta, M. & Nielsen, M. Gapped sequence alignment using arti�cial neural networks: Application to the MHC class i system. 

Bioinformatics 32, 511–517 (2016).
 32. Hofmann, K. & Sto�el, W. TMbase: A database of membrane spanning protein segments. Biol. Chem. 374, 166 (1993).
 33. Zhang, R., Ou, H. Y. & Zhang, C. T. DEG: A database of essential genes. Nucleic Acids Res. 32, D271–D272 (2004).
 34. Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., & Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic 

Acids Res. 33(suppl_1), W325–W328 (2005).

https://tinyurl.com/2b2s927h
https://vac.kamalrawal.in/vaxelan/
https://vac.kamalrawal.in/vaxelan/
https://vac.kamalrawal.in/vaxelan/v2
https://vac.kamalrawal.in/vaxidl/
https://vac.kamalrawal.in/vaxidl/
https://doi.org/10.1101/2020.03.20.000141
https://doi.org/10.1016/j.ijmm.2021.151508
https://doi.org/10.1016/j.bbadis.2019.165658
https://doi.org/10.1385/1-59259-890-0:571


23

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17626  | https://doi.org/10.1038/s41598-021-96863-x

www.nature.com/scientificreports/

 35. Pearson, W. R. An introduction to sequence similarity (‘homology’) searching. Current Protocols in Bioinformatics, Chapter 3 
42(1), 1–3 (2013).

 36. Yu, C. S., Chen, Y. C., Lu, C. H. & Hwang, J. K. Prediction of protein subcellular localization. Proteins Struct. Funct. Genet. 64, 
643–651 (2006).

 37. Armenteros, J. J. A., Salvatore, M., Emanuelsson, O., Winther, O., Von Heijne, G., Elofsson, A., & Nielsen, H. Detecting Novel 
Sequence Signals in Targeting Peptides Using Deep Learning. Life science alliance 2(5), e201900429 (2019). 

 38. Yu, N. Y. et al. PSORTb 3.0: Improved protein subcellular localization prediction with re�ned localization subcategories and 
predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615 (2010).

 39. Horton, P. et al. WoLF PSORT: Protein localization predictor. Nucleic Acids Res. 35, W585–W587 (2007).
 40. Ikeda, M., Arai, M., Okuno, T. & Shimizu, T. TMPDB: A database of experimentally-characterized transmembrane topoligies. 

Nucleic Acids Res. 31, 406–409 (2003).
 41. Calis, J. J. A. et al. Properties of MHC Class I presented peptides that enhance immunogenicity. PLoS Comput. Biol. 9, e1003266 

(2013).
 42. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 

(1990).
 43. Zhou, C. E., Smith, J., Lam, M., Zemla, A., Dyer, M. D., & Slezak, T. MvirDB—A microbial database of protein toxins, virulence 

factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res. 35(suppl_1), W391–W394. https:// doi. 
org/ 10. 1093/ nar/ gkl791 (2007).

 44. Naz, K. et al. PanRV: Pangenome-reverse vaccinology approach for identi�cations of potential vaccine candidates in microbial 
pangenome. BMC Bioinform. 20(1), 1–10 (2019).

 45. Solanki, V. & Tiwari, V. Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of 
chimeric vaccine against Acinetobacter baumannii. Sci. Rep. 8(1), 1–19 (2018).

 46. Liebenberg, J. et al. Identi�cation of Ehrlichia ruminantium proteins that activate cellular immune responses using a reverse 
vaccinology strategy. Vet. Immunol. Immunopathol. 145(1–2), 340–349 (2012).

 47. Goodswen, S. J., Kennedy, P. J. & Ellis, J. T. Vacceed: a high-throughput in silico vaccine candidate discovery pipeline for eukary-
otic pathogens based on reverse vaccinology. Bioinformatics 30(16), 2381–2383 (2014).

 48. Schroeder, J. & Aebischer, T. Vaccines for leishmaniasis: From proteome to vaccine candidates. Hum. Vaccin. 7(sup1), 10–15 
(2011).

 49. Dhanda, S. K. et al. Novel in silico tools for designing peptide-based subunit vaccines and immunotherapeutics. Brief. Bioinform. 
18(3), 467–478 (2017).

 50. Muruato, L.A. et al. Use of Reverse Vaccinology in the Design and Construction of Nanoglycoconjugate Vaccines against Bur-
kholderia pseudomallei. Clin. Vaccine Immunol. 24(11), e00206-17. https:// doi. org/ 10. 1128/ CVI. 00206- 17 (2017).

 51. Watanabe, Y., Zenke, K., Itoh, N. & Yoshinaga, T. Functional analysis of the proteases overexpressed during the invasive and 
parasitic stages of Cryptocaryon irritans and their potential as vaccine antigens. Aquaculture. 540, 736657 (2021).

 52. Baseer, S., Ahmad, S., Ranaghan, K. E. & Azam, S. S. Towards a peptide-based vaccine against Shigella sonnei: A subtractive 
reverse vaccinology based approach. Biologicals 50, 87–99 (2017).

 53. Hisham, Y. & Ashhab, Y. Identi�cation of Cross-Protective Potential Antigens against Pathogenic Brucella spp. through Combin-
ing Pan-Genome Analysis with Reverse Vaccinology. J. Immunol. Res. 2018, 1–15 (2018).

 54. Naz, A. et al. Identi�cation of putative vaccine candidates against Helicobacter pylori exploiting exoproteome and secretome: 
A reverse vaccinology based approach. Infect. Genet. Evol. 32, 280–291 (2015).

 55. Pearce, E. J., James, S. L., Hieny, S., Lanar, D. E. & Sher, A. Induction of protective immunity against Schistosoma mansoni by 
vaccination with schistosome paramyosin (Sm97), a nonsurface parasite antigen. Proc. Natl. Acad. Sci. USA 85, 5678–5682 
(1988).

 56. Biegel Carson, S. D. B., Klebba, P. E., Newton, S. M. C. & Sparling, P. F. Ferric enterobactin binding and utilization by Neisseria 
gonorrhoeae. J. Bacteriol. 181, 2895–2901 (1999).

 57. Nathaly Wieser, S., Schnittger, L., Florin-Christensen, M., Delbecq, S. & Schetters, T. Vaccination against babesiosis using 
recombinant GPI-anchored proteins. Int. J. Parasitol. 49, 175–181 (2019).

 58. Cao, J., Li, J. A., Li, D., Tobin, J. F. & Gimeno, R. E. Molecular identi�cation of microsomal acyl-CoA:glycerol-3-phosphate 
acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Proc. Natl. Acad. Sci. USA 103, 19695–19700 (2006).

 59. Rawat, D. S. et al. Identi�cation, expression, modeled structure and serological characterization of Plasmodium vivax histone 
2B. Gene 337, 25–35 (2004).

 60. Favuzza, P., Dreyer, A. M., Wittlin, S., Matile, H. & Pluschke, G. Cysteine-Rich Protective Antigen (CyRPA) as promising blood-
stage candidate protein for inclusion in a malaria subunit vaccine. Malar. J. 11, P30 (2012).

 61. Gerbaba, T. K. & Gedamu, L. Cathepsin B gene disruption induced leishmania donovani proteome remodeling implies cathepsin 
B role in secretome regulation. PLoS ONE 8, 79951 (2013).

 62. Goto, Y. et al. Leishmania infantum sterol 24-c-methyltransferase formulated with MPL-SE induces cross-protection against L. 
major infection. Vaccine 27, 2884–2890 (2009).

 63. Daifalla, N. S., Bayih, A. G. & Gedamu, L. Immunogenicity of Leishmania donovani iron superoxide dismutase B1 and peroxi-
doxin 4 in BALB/c mice: �e contribution of Toll-like receptor agonists as adjuvant. Exp. Parasitol. 129, 292–298 (2011).

 64. Rahman, M. S., Rahman, M. K., Saha, S., Kaykobad, M. & Rahman, M. S. Antigenic: An improved prediction model of protective 
antigens. Artif. Intell. Med. 94, 28–41 (2019).

 65. Yang, B., Sayers, S., Xiang, Z. & He, Y. Protegen: a Web-Based Protective Antigen Database and Analysis System. Nucleic Acids 
Res. 39(suppl_1), W1073–W1078. https:// doi. org/ 10. 1093/ nar/ gkq944 (2011).

 66. Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. 
BMC Bioinform. 8, 4 (2007).

 67. Kadam, K., Karbhal, R., Jayaraman, V. K., Sawant, S. & Kulkarni-Kale, U. AllerBase: A comprehensive allergen knowledgebase. 
Database (Oxford). 2017, 1–12 (2017).

 68. Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identi�cation. BMC Bioinform. 11, 119 
(2010).

 69. Magnan, C. N. et al. High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics 26, 
2936–2943 (2010).

 70. De Groot, A. S., Moise, L., McMurry, J. A. & Martin, W. Epitope-based immunome-derived vaccines: A strategy for improved 
design and safety. Clinical Applications of Immunomics. 2, 39–69. https:// doi. org/ 10. 1007/ 978-0- 387- 79208-8_3 (2009).

 71. Hajissa, K., Zakaria, R., Suppian, R. & Mohamed, Z. Epitope-based vaccine as a universal vaccination strategy against Toxoplasma 
gondii infection: A mini-review. J. Adv. Veterinary Animal Res. 6, 174–182 (2019).

 72. Anthony, D. D. & Lehmann, P. V. T-cell epitope mapping using the ELISPOT approach. Methods 29, 260–269 (2003).
 73. Saha, S. & Raghava, G. P. S. BcePred: Prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical 

properties. Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 3239, 197–204 (2004).
 74. Saha, S. & Raghava, G. P. S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 

Struct. Funct. Genet. 65, 40–48 (2006).

https://doi.org/10.1093/nar/gkl791
https://doi.org/10.1093/nar/gkl791
https://doi.org/10.1128/CVI.00206-17
https://doi.org/10.1093/nar/gkq944
https://doi.org/10.1007/978-0-387-79208-8_3


24

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17626  | https://doi.org/10.1038/s41598-021-96863-x

www.nature.com/scientificreports/

 75. Jespersen, M. C., Peters, B., Nielsen, M. & Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using 
conformational epitopes. Nucleic Acids Res. 45, W24–W29 (2017).

 76. Reche, P. A., Zhang, H., Glutting, J. P. & Reinherz, E. L. EPIMHC: A curated database of MHC-binding peptides for customized 
computational vaccinology. Bioinformatics 21, 2140–2141 (2005).

 77. Toseland, C. P. et al. AntiJen: A quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, 
and cellular data. Immunome Res. 1, 4 (2005).

 78. Doytchinova, I. A., Guan, P. & Flower, D. R. EpiJen: A server for multistep T cell epitope prediction. BMC Bioinform. 7, 131 
(2006).

 79. Larsen, M. V. et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinform. 8, 424 
(2007).

 80. Singh, H. & Raghava, G. P. S. ProPred1: Prediction of promiscuous MHC class-I binding sites. Bioinformatics 19, 1009–1014 
(2003).

 81. Lundegaard, C. et al. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I a�nities 
for peptides of length 8–11. Nucleic Acids Res. 36(suppl_2), W509–W512. https:// doi. org/ 10. 1093/ nar/ gkn202 (2008).

 82. Saha, S. & Raghava, G. P. S. AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res. 
34(suppl_2), W202–W209. https:// doi. org/ 10. 1093/ nar/ gkl343 (2006).

 83. Dimitrov, I., Bangov, I., Flower, D. R. & Doytchinova, I. AllerTOP v.2—A server for in silico prediction of allergens. J. Mol. 
Model. 20(6), 1–6. https:// doi. org/ 10. 1007/ s00894- 014- 2278-5 (2014).

 84. Gupta, S. et al. In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8, e73957 (2013).
 85. Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R. & Warwicker, J. Protein-Sol: A web tool for predicting protein 

solubility from sequence. Bioinformatics 33, 3098–3100 (2017).
 86. McGu�n, L. J., Bryson, K. & Jones, D. T. �e PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000).
 87. Kumar, T. A. CFSSP: Chou and Fasman Secondary Structure Prediction server. Wide Spectrum 1 1(9), 15–19 (2013).
 88. Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: A uni�ed platform for automated protein structure and function prediction. Nat. 

Protoc. 5, 725–738 (2010).
 89. Bhattacharya, D., Nowotny, J., Cao, R. & Cheng, J. 3Dre�ne: An interactive web server for e�cient protein structure re�nement. 

Nucleic Acids Res. 44, W406–W409 (2016).
 90. Heo, L., Park, H. & Seok, C. GalaxyRe�ne: Protein structure re�nement driven by side-chain repacking. Nucleic Acids Res. 41, 

W384–W388 (2013).
 91. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & �ornton, J. M. PROCHECK: A program to check the stereochemical quality 

of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).
 92. Ferdous, S., Kelm, S., Baker, T. S., Shi, J. & Martin, A. C. R. B-cell epitopes: Discontinuity and conformational analysis. Mol. 

Immunol. 114, 643–650 (2019).
 93. Sweredoski, M. J. & Baldi, P. PEPITO: Improved discontinuous B-cell epitope prediction using multiple distance thresholds and 

half sphere exposure. Bioinformatics 24, 1459–1460 (2008).
 94. Ponomarenko, J. et al. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinform. 9, 514 (2008).
 95. Rubinstein, N. D., Mayrose, I., Martz, E. & Pupko, T. Epitopia: A web-server for predicting B-cell epitopes. BMC Bioinform. 10, 

287 (2009).
 96. Mosaheb, M. M., Reiser, M. L. & Wetzler, L. M. Toll-like receptor ligand-based vaccine adjuvants require intact MyD88 signaling 

in antigen-presenting cells for germinal center formation and antibody production. Front. Immunol. 8, 3 (2017).
 97. Kozakov, D. et al. �e ClusPro web server for protein-protein docking. Nat. Protoc. 12, 255–278 (2017).
 98. Yan, Y., Zhang, D., Zhou, P., Li, B. & Huang, S. Y. HDOCK: A web server for protein-protein and protein-DNA/RNA docking 

based on a hybrid strategy. Nucleic Acids Res. 45, W365–W373 (2017).
 99. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: servers for rigid and symmetric 

docking. Nucleic Acids Res. 33(suppl_2), W363–W367. https:// doi. org/ 10. 1093/ nar/ gki481 (2005).
 100. Andrusier, N., Nussinov, R. & Wolfson, H. J. FireDock: Fast interaction re�nement in molecular docking. Proteins Struct. Funct. 

Genet. 69, 139–159 (2007).
 101. Grote, A. et al. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res. 33, 

W526 (2005).
 102. Jiang, Z. et al. A novel technique for constructing infectious cloning of type 3 porcine circovirus. Front. Microbiol. 11, 1067 

(2020).
 103. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): A curated non-redundant sequence database of 

genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).
 104. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. 

Mol. Biol. Evol. 30, 2725–2729 (2013).
 105. Bui, H. H., Sidney, J., Li, W., Fusseder, N. & Sette, A. Development of an epitope conservancy analysis tool to facilitate the design 

of epitope-based diagnostics and vaccines. BMC Bioinform. 8(1), 361. https:// doi. org/ 10. 1186/ 1471- 2105-8- 361 (2007).
 106. Urrutia-Baca, V. H. et al. Immunoinformatics approach to design a novel epitope-based oral vaccine against Helicobacter pylori. 

J. Comput. Biol. 26, 1177–1190 (2019).
 107. Wizemann, T. M., Adamou, J. E. & Langermann, S. Adhesins as targets for vaccine development. Emerg. Infect. Dis. 5, 395–403 

(1999).
 108. Centurion-Lara, A. et al. Treponema pallidum major sheath protein homologue Tpr K is a target of opsonic antibody and the 

protective immune response. J. Exp. Med. 189, 647–656 (1999).
 109. Shey, R. A. et al. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related �larial diseases. Sci. 

Rep. 9, 1–18 (2019).
 110. Binkowski, T. A., Naghibzadeh, S. & Liang, J. CASTp: Computed atlas of surface topography of proteins. Nucleic Acids Res. 31, 

3352–3355 (2003).
 111. de Vries, S. J. & Bonvin, A. M. J. J. Cport: A consensus interface predictor and its performance in prediction-driven docking 

with HADDOCK. PLoS ONE 6, e17695 (2011).
 112. Meza, B., Ascencio, F., Sierra-Beltrán, A. P., Torres, J. & Angulo, C. A novel design of a multi-antigenic, multistage and multi-

epitope vaccine against Helicobacter pylori: An in silico approach. Infect. Genet. Evol. 49, 309–317 (2017).
 113. Santi-Rocca, J. et al. A multi-parametric analysis of Trypanosoma cruzi infection: Common pathophysiologic patterns beyond 

extreme heterogeneity of host responses. Sci. Rep. 7, 1–12 (2017).
 114. Nogueira, R. T. et al. Recombinant yellow fever viruses elicit CD8+ T cell responses and protective immunity against Trypano-

soma cruzi. PLoS ONE 8, e59347 (2013).
 115. Michel-Todó, L. et al. In silico design of an epitope-based vaccine ensemble for chagas disease. Front. Immunol. 10, 2698 (2019).
 116. Versteeg, L., Almutairi, M. M., Hotez, P. J. & Pollet, J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. 

Vaccines 7(4), 122 (2019).

https://doi.org/10.1093/nar/gkn202
https://doi.org/10.1093/nar/gkl343
https://doi.org/10.1007/s00894-014-2278-5
https://doi.org/10.1093/nar/gki481
https://doi.org/10.1186/1471-2105-8-361


25

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17626  | https://doi.org/10.1038/s41598-021-96863-x

www.nature.com/scientificreports/

Acknowledgements
�is work was supported by the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation. We are also thankful to 
Amity University for the support provided during the conduct of this study.

Author contributions
K.R., P.H., U.S., and M.E.B. designed research; K.R., B.A.A., R.S., S.Si., T.S., A.M., and K.M. performed research; 
K.R., R.S., D.S., and K.M. contributed new reagents/analytic tools; K.R., B.A.A., D.S., and S.So. analysed data; 
K.R., B.A.A., D.S., P.H., M.E.B. and U.S. wrote the paper; and K.R., A.K.D., T.S., P.G., A.C., S.G., P.P., P.K., PR.S., 
S.K.N., and P.S., compiled information from many di�erent sources.

Funding
�is work was supported by a Grant from the Robert J. Kleberg, Jr. and Helen C. Kleberg Foundation, USA, Texas 
Children’s Hospital and Baylor College of Medicine, Houston USA. We also acknowledge the grant provided 
by SERB, Department of Science and Technology, Government of India (File Number: CVD/2020/000842).

Competing interests 
�e authors declare no competing interests.

Additional information
Supplementary Information �e online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 96863-x.

Correspondence and requests for materials should be addressed to K.R.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional a�liations.

Open Access  �is article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. �e images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© �e Author(s) 2021

https://doi.org/10.1038/s41598-021-96863-x
https://doi.org/10.1038/s41598-021-96863-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Identification of vaccine targets in pathogens and design of a vaccine using computational approaches
	Methodology
	Features and thresholds. 
	Tools. 
	Strategies. 
	Optimisation of thresholds. 
	Machine learning approach. 
	Screening of proteomes of pathogens to shortlist vaccine candidates. 
	Evaluation of experimentally known antigenic and non-antigenic proteins. 
	Application of Vax-ELAN on T. cruzi. 
	Retrieval of genome and proteome sequences for vaccine designing. 
	Vax-ELAN pipeline for prediction of vaccine candidates. 
	Alternate strategies adopted for protein filtering. 
	Conversion of proteins’ featureproperty values into binary values. 
	Strategy—ORF-based screening of TC-CLB. 
	Comparison of different strategies to find top ranking proteins. 
	Interspecies and inter-strain comparison of trypanosoma. 

	Design of multi-antigenic and multi-epitope vaccines against TC-CLB. 
	Identification of epitopes. 
	Selection of linear B-cell epitopes. 
	T-cell epitope prediction. 
	Selection of cytotoxic T lymphocytes [CTL] epitopes. 
	Selection of helper T cells [HTL] epitopes. 
	The assemblage of multi-epitope vaccine candidate sequence. 
	Evaluation of antigenicity and allergenicity of vaccine construct. 
	Analysis of solubility and physicochemical properties. 
	Prediction of the secondary structure of the construct. 
	Tertiary structure assessment of the vaccine construct. 
	Refinement of the tertiary structure. 
	Validation of the model stability. 
	Prediction of discontinuous B-cell epitopes for the vaccine construct. 
	Molecular docking of the vaccine construct with TLR-4 and several HLA alleles. 
	Codon optimization of the chimeric protein. 
	Characterization of the immune profile of the vaccine construct. 
	Evaluation of genetic diversity. 


	Results
	Defining a potential vaccine candidate (PVC). 
	Selection, ranking, and filtering of PVCs. 
	Identification of subcellular location of the proteins. 
	Identification of TC-CLB proteins that are non-homologous to human proteins. 
	Instability analysis. 
	Non-allergenicity analysis. 
	Evaluation of antigenicity. 
	Adhesion prediction. 
	Shortlisted potential vaccine candidates (PVCs). 
	Epitope predictions. 
	Linear B-cell epitopes identification. 
	T-cell epitopes [CTL] prediction. 
	Helper T lymphocytes [HTL] prediction. 
	The assemblage of multi-epitope subunit vaccine construct. 
	Evaluation of antigenicity and allergenicity of the vaccine constructs. 
	Analysis of solubility and physicochemical properties. 
	Secondary structure analysis. 
	Tertiary structure assessment of the vaccine construct. 
	Refinement of the tertiary structure. 
	Validation of model stability. 
	Prediction of discontinuous B-cell epitopes. 
	Molecular docking of the chimeric protein with TLR-4. 
	Codon optimization of the chimeric protein. 
	Characterization of the immune profile of the vaccine construct. 
	Evaluation of genetic diversity. 


	Discussion
	Conclusion
	References
	Acknowledgements


