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Abstract – The paper presents a new method for the identification
of frequency-domain Volterra kernels. Based on the assumption
that frequency-domain kernels are locally smooth, the kernel
surface can be approximated by interpolation techniques, thus
reducing the complexity of the model. Similarly to the unreduced
(Volterra) model, this smaller model is also (i) linear in the
unknowns, (ii) only locally sensitive to its parameters and (iii) free
of structural assumptions about the system. The parameter
estimation boils down to solving a linear system of equations in the
least-squares (LS) sense.

The design of the interpolation scheme is described, and the
performance of the approximation is analyzed, and illustrated by
simulation. The algorithm allows a significant saving in
measurement time compared to other kernel estimation methods.

Keywords – nonlinear system, system identification, Volterra series,
Volterra kernel, interpolation, random multisine, B-spline.

I. INTRODUCTION+

Many nonlinear systems can be described by a Volterra series
[1], and can be well approximated around an operating point
by the first few terms of the series. In this paper the focus is
on the identification of a second order kernel. The frequency
domain transform of a second order Volterra series is shown

in Eq. 3. It is linear in the unknowns ( ( ) ( )1
1 kG , ( ) ( )21

2 , kkG ),

however, there are many more unknowns than equations ob-
tained from a single measurement. The objective is to reduce
the number of necessary measurements.

II. PRELIMINARIES

A. Normalized random multi-sine excitation signals

In this paper, a normalized random multisine excitation will
be used. Multisine excitation and frequency domain methods
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for the identification of linear systems are treated in [2]-[5]. A
random multisine is a broadband, periodic signal:
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with ( ) ( ) ( ) kjekUkUkU ϕ=−= , where maxf  is the maximum

frequency of the of the excitation signal, N  is the number of
frequency components, and the phases kϕ  are independent,

uniformly distributed, random variables on [ )π2,0 , such that

{ } 0 =kjeE ϕ . Different random phases result in different

realizations of the random multisine.

Let ( ) [ ] +→ R,0:ˆ
maxffU . If N is varied, then )(tu  can be

normalized: ( ) 

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N
kU , resulting in a normalized

random multisine. Its time-domain amplitude distribution is
asymptotically Gaussian ( )∞→N as , its RMS is independent

from N, whereas its spectral resolution and period length
varies in proportion to N:

 
max

period f

N
T = .  (2)

B. Frequency-domain truncated Volterra model

A Volterra series [1] provides a description for dynamic
systems in a similar way as the Taylor series does for static
input/output relationships, i.e., the system output is split into
linear, quadratic, cubic, etc. contributions (see Fig. 1 ) (N. B.
a Volterra series cannot model some nonlinear behaviors,
such as hysteresis and chaos but these are out of scope, here.)

linear dynam.

quadratic dyn.

cubic dynam.

. . .

( )tu ( ) ( )ty 2

( ) ( )ty 3

( ) ( )ty 1

( )ty

( ) ( )ty α

Figure 1. Linear, quadratic, etc., contributions in the Volterra series expansion.
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In this paper the system is restricted to its 1st- and 2nd-order
frequency-domain Volterra kernels. The response of this
model to a multisine excitation (Eq. 1) is periodic and can be
described by the following Fourier coefficients:
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where ( )2U  is a second order polyspectrum (the tensor
product of two spectra):

( )( ) ( ) ( )2121
2 , kUkUkkU ⋅= . (4)

In these equations, 

- ( )ikU  is the complex Fourier coefficient of the th
ik

harmonic of the input.

- ( )kY  is the complex Fourier coefficient of the thk  harmonic

of the output; ( ) ( )kY 1  and ( ) ( )kY 2  are the linear and the

quadratic contributions, respectively. Only the excited band
is observed, hence: k <= N .

- ( ) ( )1
1 kG   and ( ) ( )21

2 , kkG  are samples of the 1st and 2nd-

order Volterra kernels, respectively; the index ki being a

substitute for the explicit frequency maxf
N

ki ⋅ . The first-

order kernel ( )1G  is a frequency response function (FRF).

The frequency band of the excitation determines the band in
which the system characteristics can be identified. This is
illustrated for the quadratic kernel in Fig. 2. The quadratic
polyspectrum is zero outside the square shown in Fig. 2.a,
and contains symmetrical and complex conjugate pairs
according to Eq. 4. Equation 3 is a weighted sum of

(poly)spectrum points, where ( ) ( )1
1 kG   and ( ) ( )21

2 ,kkG  are

the weights; the quadratic contributions are illustrated in

Fig. 2.b. The ( )2G  kernel can be made symmetrical, too, and
the domain depicted in Fig. 2.c can be selected for estimation.

C. Measurement set-up and operating point

( )kU ’s and ( )kY ’s are obtained by executing band-limited

experiments with the excitation described in Eq. 1, and aver-
aging FFT’s of whole periods in steady state. It is important
to note that not only the observations are band-limited, but the
input to the system, as well. For the sake of simplicity, at
first, noise-free observations are assumed.

The DC component at the input and the output is considered
as an operating point, thus all terms containing U(0) must be
omitted from Eq. 3 (where ( )0Y  is excluded already). This

involves that for a pure square-law device, for instance, the
identified model will contain non-zero linear components

( ( )1G ) if the operating point is different from 0 ( ( ) 00 ≠U ).

III. PROBLEM SETTING & NEW APPROACH

Equation 3 is a linear problem vis-a-vis the unknowns
( ) ( )1
1 kG , ( ) ( )21

2 , kkG . By executing a measurement with a

single realization of the random multisine, N  equations are
obtained ( )Nk ,...,1= . However, the quadratic contributions

contain ( )2NO  complex unknowns. This means that ( )NO

measurements must be accomplished (each with a different
realization of the random multisine) to identify the kernels.

In this paper, ( ) ( )21
2 , kkG ’s will be considered linearly

dependent on each other: the quadratic kernel is conceived as
an interpolated surface, of which the parameters are linear.
Thus the number of the linear unknowns can be reduced to

( )NO , hence ( )0NO  realization of the measurement will be

sufficient. This approach is introduced in Section III.B.

conjugate
pairs

max-f

maxf

( )1 f

symmetrical
pairs

 f
0 max f kf

kfff =+






 21
maxfmax-f

( )1f

( )2f

conjugate
pairs

( )( ) fY 2∑

( )2 f

A. B. C.

maxf

max-f

( )1f

symmetrical
    pairs

conjugate
pairs

max-f

max-f

( )2f

maxf

maxf
max-f

max-fsymmetrical
    pairs

Figure 2.  a) Domain on which the quadratic polyspectrum is different from zero. Symmetrical and complex conjugate pairs.

b) Summing the weighted polyspectrum along ( ) ( ) kff
N

k
ff =⋅=+ max21  yields ( )( )kfY 2 .  Horizontal, bold segment: band of observed output.

c) Hexagon: domain on which the kernel can be identified. Trapezoid: selected, non-redundant part of the kernel.

 a)  c) b)

( ) ( ) kfff =+ 21
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A. Fundamental problem setting ( ( )2NO  unknowns)

The linear problem to be solved is different from Eq. 3, since:
1. according to Section II.C, all terms containing U(0) must

be omitted, and

2. the redundant unknowns (symmetrical pairs in ( )2G )
must be eliminated in order to get a full-rank problem.

For each k, the resulting equations (which are not written out
explicitly) contain a sum of products (similarly to Eq. 3),
which can be written as a scalar product of vectors:

( ) kkkY gu ⋅= T ,  Nk ,,1 �= (5)

where ku ’s and kg ’s contain the samples of the two kernels

and the (poly)spectra, respectively, (the superscript T
denoting the transpose, not conjugated). The N equations,
which are not coupled, can be assembled into a matrix form:

gUy ⋅= , (6)

where ( ) ( )[ ] 1T C,...,1 ×∈= NNYYy , 1C ×∈ Mg  and MN ×∈CU ,

with ( )2NOM =  the number of complex unknowns†. U is a
sparse matrix, in each column having a single nonzero entry.

By executing the measurement with more than one
realizations of the excitation, the obtained y’s and U’s can be
concatenated by rows, yielding:

( ) ( ) gUy ⋅= RR   to1  to1 , (7)

with ( ) [ ] 1
1  to1 C;;;; ×⋅∈= NR

RiR yyyy ��  , (8)

and ( ) [ ] MNR
RiR

×⋅∈= C;;;;1  to1 UUUU �� , (9)

where R denotes the number of different realizations, and the
subscript i refers to the ith realization of the measurements.

By generating ( )NO  different realizations of the

measurements, enough rows could be obtained for solving
Eq. 7. However, the measurement would take relatively long,
unless N is reduced. A similar approach can be found in [6,7].

B. New approach: a reduced complexity model
(only ( )NO  unknowns)

In order to reduce the number of unknowns, an assumption is
made. Namely, that the kernels are locally smooth, thus the

                                                                       

† 
4

1

2

1

4

3 2 −−= NNM  if N is odd, NNM
2

1

4

3 2 +=  if N is even.

real and imaginary parts of the quadratic kernel can be sought
for in the form of interpolated surfaces. For the sake of sim-
plicity, we consider here the case when the same kind of in-
terpolation is used for the real and the imaginary components.

Without considering the exact choice of interpolation, only its
linear property is used:

( ) aPag ⋅=ˆ , (10)

where LM×∈RP  is the interpolation matrix, 1C ×∈ La  is the
parameter vector, with ( )NOL =  the number of complex

unknowns. Thus, the number of the unknowns may be
significantly reduced. Eq. 10 implies

( ) ( )aPg ReˆRe ⋅=  , and ( ) ( )aPg ImˆIm ⋅= , (11)

i.e., the real and imaginary components of the kernels are
approximated using the same basis vectors (columns of P).

The output of the approximate model is:

( ) ( )agUay ˆˆ ⋅= . (12)

The output error of the approximate model is:

yyh −= ˆ . (13)

By adopting the notations of Eqs. 7-9 for the case when
several realizations are observed,

( ) ( ) ( )RRR   to1  to1  to1 ˆ yyh −= , (14)

and ( ) ∑
=

=
R

i
iR

1

2

2

2

2  to1 hh . (15)

The performance function will be the mean-square output
error:

( ) { }
1

2

2
  ;

=
=

R
EMSE hPa ϕ , (16)

where the statistical expectation is taken with respect to all
realizations of ϕ  (see Sect II.A). MSE(a) is a quadratic

function of a, and is parameterized by P. The optimal
parameter setting a =  is the one yielding the least-mean-
square output error (using a given P):

( )a
a

MSEminarg= . (17)
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To approximate , the following equation may be solved in
LS sense:

( ) ( )( )     to1  to1 aPUy ⋅⋅= RR . (18)

The resulting a ˆ=  minimizes ( )
2

2  to1
R

1
Rh  for the realiza-

tions involved in the specific experiment. Since ( )
2

2  to1
R

1
Rh

converges to MSE as ∞→R , it can be proved that ˆ  is an
asymptotically unbiased and weakly consistent estimate of :

( )( ) 0ˆProb lim   :0 =>−>∀
∞→

εR
R

. (19)

IV. ALGORITHM

A. Steps of the identification process

1) Select the operation point and the desired excitation class
(RMS,  fmax , etc. ; see Sect. II.A).

2) Design P. (See subsection B.)

3) Select N and R (i.e., the number of harmonics and the
number of realizations), so that the equation to unknown
ratio of Eq. 18 be 1/ >⋅ LNR . The necessary ratio also
depends on the noise level and the higher order nonlinear
contributions. Then generate a multisine to start the
measurements. The duration of the measurements is:

 
max

meas f

NR
pT

⋅⋅= ,  (20)

where p is the number of periods measured with each re-
alization. It is necessary to wait several periods to
achieve steady state. Additional periods can be measured
to filter the additive noise by averaging the FFTs. The
higher order nonlinear contributions are periodic, hence,
these are not filtered with the noise. On the other hand,
these can be averaged by increasing R and N.

It is advised to carry out additional realizations of the
measurements (e.g. 4/test RR = ) to collect observations

as test data, for the assessment of the later estimate.

4) When the data are available, solve Eq. 18 in LS sense to
obtain ˆ , but do not use the test data for this estimation.

5) Estimate ( )P;ˆMSE  by using the test data:

( ) ( ) 2

2test
test

test ,;ˆ1
,;ˆ UPhUP

R
MSE =

∧
. If ( )ˆ

∧
MSE  is

satisfactory, then the procedure may be finished, or the
result might be improved by including the ‘test data’ in

the estimation of . If ( )ˆ
∧

MSE  is not satisfactory, then

further iterations are necessary through steps 3-5
(keeping P) or 2-5. (The recursive least-squares solution
is out of the scope, here. See [7].)

B. Design of the interpolation scheme: P

Interpolation by B-splines [8] is used because it is (i) locally
smooth, (ii) only locally sensitive to the parameters, and (iii)
it can be applied to arbitrary dimensions by tensor product
extension. The two-dimensional extension is as follows:

( ) ( )( ) ( )( )∑∑
⋅

==

==
mn

l
ll

mn

ji
jiji yxBayxBayxf

1

2
,

1,

2
,, ,,,ˆ , (21)

where  ( )( ) ( ) ( )yBxBx,yB jiji ⋅=2
, . (22)

( ){ }n
i xB 1   is a “horizontal” B-spline basis, whereas ( ){ }m

j yB
1

 is

a “vertical” B-spline basis. If values of ( )yxf ,ˆ  are arranged

in a column vector ĝ , and ( )( ){ } nm

l yxB
⋅

1
2 ,  are arranged like-

wise into the columns of a matrix P, then Eq. 10 is obtained
formally. (The difference is that ĝ  in Eq. 10 includes the

linear kernel, too, which is not reduced by interpolation.)

Two alternatives are obvious in selecting the directions for
the horizontal and the vertical axes:
1. parallel to the frequency axes of the quadratic kernel, or
2. parallel to the complex conjugation axis and the

symmetry axis of the quadratic kernel, respectively.

Only the latter option is analyzed here. (See Fig. 4). To avoid
unnecessary boundary effects, first, a basis must be designed
over the redundant kernel area, then the redundant parameters
must be eliminated by taking into account the symmetries of
the quadratic kernel (see Figs. 3-4). Finally, the bases func-
tions must be ‘clipped’ to the non-redundant kernel area.

0
0

0.5

1

kB  sym,
2

1
 sym,

+nB
2

1
 sym,

−nB

Figure 3. Symmetrical basis obtained from cubic B-splines (with uniform
knot-placement and not-a-knot boundary condition):

2

1
1 ,  sym,

n-
,...,kBBB knkk =+= −

,   and  ( ) ( ) 2/12/1 sym, ++ = nn BB
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Since the real part of the kernel is symmetrical to

( ) ( ) 021 =+ ff , whereas the imaginary part is anti-symmetrical

to it, different basis vectors should be used for the two
surfaces. If this choice is taken, then Eq. 11 is replaced by

( ) Resym
ˆRe aPg ⋅=  and ( ) Imsym-anti

ˆIm aPg ⋅= , and the following

equation must be solved in LS sense, instead of Eq. 18:

( )
( ) ( )

( ) ( )
( ) ( ) ( )









⋅








⋅







 −
=








− Im

Re

symanti

sym

  to1  to1 ReIm

ImRe

Im

Re

a

a
P0

0P

UU

UU

y

y

RR

 (23)

where all values are real. Rea  and Ima  may have different

dimensions. The total number of real-valued parameters shall
be denoted by ReL  (sum of lengths of Rea  and Ima ).

At interpolation boundaries, the constraints are fewer. When
the B-splines are constructed, this is taken into account,
which solves the probem for the boundaries of the basis (see
the rectangle in Fig. 4). However, these boundaries do not
match the boundaries of the excited domain of the kernel at

( ) max1 ff =  and ( ) max2 ff =  . Consequently,  here the degree

of liberty of the interpolation is too high. This will set back
the performance of the estimation.

C. Computational complexity

The computational complexity is dominated by the solution
of the least-squares problem. In the simulations, Gaussian

elimination was used implying 2
Re2 LNR ⋅⋅⋅≈  flops.

V. ERROR SOURCES

Suppose that the physical system being identified can be
described by a Volterra series, then some of the following
effects may dominate the ( )P;ˆMSE , and call for remedy:

1. Capability of the interpolation scheme to approximate
the surface. The model set is reduced by Eq. 10. Since in
general ( )Pg range∉ , an approximation error is

necessarily present, which depends on P and the system.

2. Convergence of the LS solution. ( )Pa;MSE  has one

single minimum: ( )P;MSE ; hence, ≠ˆ  introduces

an additional approximation error.

3. Observation noise. Zero-mean, uncorrelated, additive,
output noise introduces no additional bias into , but
increases its variance. Therefore, if certain output
frequencies are more noisy than others, then a weighted
least-squares solution can be applied instead of Eq. 23,
with weights inversely proportional to the estimated

noise variance. Noise in the input observations always
introduces a bias.

4. Convergence of the Volterra series that describes the
true system. Higher order nonlinear contributions have
similar effects to additive, possibly correlated, output
noise. In [4,5] it is shown that even order nonlinear
contributions do not bias the linear FRF estimate, when a
linear model is being identified, whereas odd order
contributions do. It also follows, that the output error that
is due to the approximation of the quadratic kernel does
not introduce a bias in the linear kernel estimate.

VI. SIMULATIONS

A. The simulated system

In this section, simulations are provided using the system:

( ) ( ) ( ) ( )tuctubtyaty 2⋅+⋅=⋅+� , (24)

where π2=== cba . The operating point is U(0) = 0. The
RMS of the excitation is 0.25 V, whereas its bandwidth is
fmax = 8.1 Hz. Throughout the simulations N = 81 harmonics
are applied and the magnitude spectrum is flat. The
observations are noiseless, and the system does not produce
higher order nonlinear contributions, thus points one and two
of the previous section are illustrated in the followings.

B. Illustration of the consistency

By increasing the number of realizations (R), the MSE must
decrease. In Fig. 5 Yav is the root-mean-square of the output

( )2f

( )1f

( ) ( )21 ff +
maxfmaxf− 0

( ) ( )21 ff −

maxf

max2 f−

0
‘not-a-knot’
boundary

Domain covered by the bases
(not-a-knot boundary condition)

‘free’
boundary

Domain of interpolation
Vertical

basis

Symmetrical

Horizontal basis   Real: Symmetrical, Imag: Anti-symmetrical

Figure 4. The bases (for the real and imaginary parts of the quadratic kernel)
are defined by the tensor product of the horizontal and the vertical bases.

Redundant domain

Non-redundant domain

Vertical
basis

missing
constraints

Horizontal basis
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of the system, ( )2
avY  is the quadratic component of Yav,

whereas the lower curves show the root-mean-square error at
each frequency. The equation to unknown ratio in Eq. 23 is

Re/2 LNR ⋅⋅ , which yields 1.1, 1.3, 1.5  and 6.6, respec-

tively, in the presented cases. The convergence is rapid. By
using 30 realizations, the MSE is bound to hit a floor
depending on the interpolation scheme. (See Section V.)

C. Illustration of the performance for several interpolation
schemes

The performance of four interpolation schemes will be
compared, and the notation adopted in Table 1 will be used.
For the interpolation schemes that have fewer parameters,
fewer observations are used at the parameter estimation.

Table 1. Interpolation schemes with the number of realizations used.

# of quadratic
kernel param.

NL ⋅− 2Re

cubic 5th order
# of

realizations
R

Equation to
unknown ratio

Re/2 LNR ⋅⋅
573 P1 P2 7 1.54

1179 P3 P4 12 1.45

In Fig. 6 the lower curves are the mean-square error
components for each frequency. Curves P1, P2, P3 and P4

must be compared to ( )2
avY  since they mostly result from the

error of the quadratic kernel. Near ( ) ( ) 021 =+ ff  the

approximation performs worse due to the steep variation of
the kernel surface in this region (Fig. 7). Near Hz 1.8max =f

the error grows rapidly due to boundary effects (Figs. 4,6).
The curves are in agreement with the expectations. Namely,
that 5th order splines can better follow the variations of the
kernel surface, but they are also more vulnerable to boundary
effects, since the basis functions have larger support. These
effects are smaller when the number of the parameters is high.

The quadratic kernel shown in Fig. 7 has been identified
using P1. Compared to the solution of the non-parametric
problem setting as described in Section III.A, the saving in
measurement time is a ratio of N / R = 13.
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Figure 7. Identified quadratic kernel (Re & Im part & Magnitude) using P1.
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Figure 5. Convergence of the root-MSE components as R increases.
Four cases: 5,6,7 and 30 realizations are used for the parameter estimation.
In each case, the curves are estimated by using 30 independent realizations.
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