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Abstract:    This paper describes the identification of waterflooded zones and the impact of waterflooding on reservoir properties 
of sandstones of the Funing Formation at the Gao 6 Fault-block of the Gaoji Oilfield, in the Subei Basin, east China. This work 
presents a new approach based on a back-propagation neural network using well log data to train the network, and then generating 
a cross-plot plate to identify waterflooded zones. A neural network was designed and trained, and the results show that the new 
method is better than traditional methods. For a comparative study, two representative wells at the Gao 6 Fault-block were chosen 
for analysis: one from a waterflooded zone, and the other from a zone without waterflooding. Results from this analysis were used 
to develop a better understanding of the impact of waterflooding on reservoir properties. A range of changes are shown to have 
taken place in the waterflooded zone, including changes in microscopic pore structure, fluids, and minerals. 
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1  Introduction 
 
The Funing Formation is the main exploration 

target in the Gaoji Oilfield of the Subei Basin in east 
China. Previous studies on the Formation have fo-
cused mainly on the reservoir’s heterogeneity, the 
distribution of residual oil (Chen, 2003), and the 
burial history (Li et al., 2011) of the study area and 

adjacent areas. However, there have been few studies 
on the identification of waterflooded sands and the 
impact of waterflooding on reservoir properties. De-
velopment of freshwater injection in the Gaoji Oil-
field dates back to 1995, and production throughout 
the field has continued until the present day. However, 
exploration still has a low efficiency. Therefore, there 
is an urgent need to carry out studies on logging the 
identification and evaluation of waterflooded zones, 
with the aim of improving the accuracy of the inter-
pretation of residual oil saturation. Several attempts 
have been made to achieve this, but most were based 
on traditional methods that employ only single well 
log data to identify waterflooded zones. Application 
of such data has limitations and the success rate is less 
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than 50%. Because of the multiplicity of logging in 
the waterflooded zone, a comprehensive study was 
deemed necessary to provide an understanding of 
combination logging.  

In recent years, artificial neural network meth-
odology has been successfully applied to studies of 
reservoir rock properties (Baldwin et al., 1990), 
lithology (Rogers et al., 1992; Benaouda et al., 1999; 
Qi et al., 2004), porosity and permeability (Rogers et 
al., 1995; Ogiesoba, 2010), flow units (Aminian and 
Ameri, 2005), missing logs (Saggaf and Nebrija, 
2003), seismic interpretation (Chawathé et al., 1997; 
Balch et al., 1999) and fractured reservoirs (Jenkins et 
al., 2009). This paper describes an approach based on 
a back-propagation neural network to identify water-
flooded zones, and establishes an identification 
cross-plot plate using well log data. In addition, we 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

examine the changes in reservoir parameters after 
waterflooding. 

 
 

2  Geological setting 
 
The Subei Basin is located in east China (Fig. 1a) 

and is tectonically divided into three major units: the 
Dongtai Depression, Yanfu Depression and Jianhu 
Uplift (Fig. 1b). The Gaoji Oilfield is a fault-block 
group that was formed during the Wubao movements 
in the northwest of the Dongtai Depression. A group 
of northeast-trending faults developed with the fault 
throws ranging between 40 and 140 m (Fig. 1c). The 
evolution of these faults controls the distribution of 
source rocks and reservoirs, which play an important 
role in the formation of hydrocarbon trapping in the 
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Fig. 1  Location map of the Gao 6 Fault-block of the Gaoji Oilfield in the Subei Basin 
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study area. The Gao 6 Fault-block is one of the major 
producing blocks in the oilfield. It is composed of 
medium-porosity and low- to medium-permeability 
sandstone reservoirs of proven hydrocarbon reserves 
of 470×104 t. 

 
 

3  Materials and methods 
 
The back-propagation neural network is by far 

the most commonly used type of network. Input to the 
network consisted of a combination of five well logs: 
natural gamma ray (GR), acoustic log (DT), laterolog 
eight (RFOC), deep resistivity (RILD), and medium 
resistivity (RILM). The output variable was set to two 
dimensions in the neural network architecture, in 
which the code of the oil reservoir was set as (0.25, 
0.25), the dry layer as (0.25, 0.75), the waterflooded 
zone as (0.75, 0.25) and the water layer as (0.75, 
0.75). The network thus had an input layer consisting 
of five input neurons and two output layer neurons 
(Fig. 2a). Well logs of 160 sands were selected as 
training samples according to the well testing reports, 
including 40 oil sands, 40 dry sands, 40 waterflooded 
sands, and 40 water sands. Before network training, 
well logs must be normalized to make their values 
between 0 and 1. The network was trained to adjust 
the network weights and thresholds according to the 
network prediction error to minimize the network 
error. This process continued until the mean squared 
error dropped to 0.09, the best validation perform-
ance, after four-epoch network iterations (Fig. 2b). In 
this way, the training process achieved the identifica-
tion accuracy goal for waterflooded zones. 

After training, we superimposed the network 
output values and the well testing reports. A good 
correlation was obtained between the training sam-
ples and the target vectors, with a clear distinction 
between each category. Each category has different 
symbols representing the oil reservoir, dry layer, wa-
terflooded zone, and water layer on the cross-plot 
plate (Fig. 2c). Thus, we have obtained a cross-plot 
plate to predict the presence of waterflooded sands in 
the Gao 6 Fault-block. 

Ten sandstone samples were selected for modal 
analysis (300 points per thin section). An FEI— 
Quanta Inspect SEM (G02342, the Netherlands) was 
used to observe the texture of clay minerals and their  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
porosity. The ≤2 µm clay fraction was separated from 
the sandstones and analyzed by XRD, using a 
D/max-1200 (G02013, Japan) diffractometer. 

 
 

4  Results 

4.1  Identification of waterflooded reservoirs 
based on the back-propagation neural network 

Using the above method, we selected well logs 
of another 20 adjustable sands, which we entered into 
the cross-plot plate to act as unknowns. From this we 
obtained the distribution of the recognition results, 
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Fig. 2  Architecture of the back-propagation neural net-
work (a); Network error according to the network predic-
tions (b); Distinction of each fluid zone on the identifica-
tion cross-plot plate (c) 
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which consisted of 20 points representing the 20 ad-
justable sands on the cross-plot plate. By applying the 
Euclidean algorithm to calculate the distance from 
each point to the center of each fluid zone on the 
cross-plot plate, the nearest fluid zone was identified 
as the type applicable to each distribution point. As 
shown above, the back-propagation neural networks 
identified four different fluid zones. 

Comparing the well testing reports with the 
neural network recognition results, we found that the 
network predicted 17 out of the 20 samples correctly 
(Table 1). This success rate confirms the ability of the 
neural network to act as an excellent tool to predict 
waterflooded reservoirs, and proves that it performs 
better than traditional methods in identifying water-
flooded zones from well logs. 

4.2  Impact of waterflooding on reservoir properties 

To develop a complete description of waterflood 
conditions, it is necessary to predict not only the types 
of fluid zone but also what impact waterflooding has 
on reservoir properties. For this purpose, we selected 
wells G6-2 and G6-104, which are less than 40 m 
apart, to perform a comparative study. Whereas well 
G6-2 is located in an oil reservoir, well G6-104 is 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

located in a waterflooded zone. There is a significant 
change in the amplitude of the spontaneous potential 
(SP) curve of well G6-104 (Fig. 3a). In addition, the 
baseline wanders a great deal, reflecting obvious 
changes in character within the interval, due to 
freshwater waterflooding. 

4.2.1  Changes in reservoirs after waterflooding 

Based on Folk (1980)’s scheme classification, 
sandstone core samples from the two wells (G6-2 and 
G6-104) are classified as lithic arkose. We can capture 
ripple bedding, low-angle cross-bedding and biotur-
bation from the core photos of the two wells, reveal-
ing the same type of sedimentary facies (Fig. 3b). 
However, the porosity of well G6-104 increases at a 
certain rate after waterflooding but the permeability 
shows no significant change. Also, carbonate cements 
slightly increase. 

The total amount of clay minerals declines from 
5.4% to 2.5% after waterflooding (Table 2). The 
contents of illite and chlorite, as well as the relative 
content of smectite, are reduced in well G6-104. 
Poor-crystal form kaolinite can be seen in local areas 
in the waterflooded zone, caused mainly by washing 
of the freshwater injection (Fig. 4a). 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Table 1  Twenty discriminant results from test samples of ten wells 

Well GR DT RFOC RILD RILM Depth (m) 
Well testing 

reports 
Neural network 

recognition results

G6-48 65.38 253.44 27.76 23.19 25.94 2039.75–2040.88 Water layer Water layer 

G6-48 67.75 253.44 19.06 17.20 18.00 2041.00–2041.75 Water layer Water layer 

G6-48 66.88 245.36 20.73 16.88 17.68 2046.50–2047.88 Water layer Water layer 

G6-48 63.25 258.75 29.48 24.30 27.70 2062.13–2064.00 Water layer Water layer 

G6-72 77.87 234.52 21.79 17.81 19.84 1986.00–1987.00 Water layer Water layer 

G6-73 66.10 245.17 24.63 27.35 19.25 1980.63–1981.38 Oil reservoir Oil reservoir 

G6-73 70.00 226.07 23.49 25.78 18.58 1988.75–1989.25 Oil reservoir Oil reservoir 

G6-58 75.58 251.74 26.81 30.04 29.60 1927.15–1830.88 Oil reservoir Oil reservoir 

G6-53 81.00 236.09 16.01 16.50 15.94 1949.25–1949.75 Oil reservoir Oil reservoir 

G6-52 68.20 248.98 25.73 21.93 19.97 1985.50–1989.13 Oil reservoir Oil reservoir 

G6-51 75.49 226.21 12.47 12.35  9.87 1999.13–2002.50 Dry layer Dry layer 

G6-51 71.25 228.72 10.73 10.78  8.52 2013.75–2015.88 Dry layer Dry layer 

G6-63 66.76 243.44 13.41 20.79 20.41 1980.87–1981.50 Dry layer Dry layer 

G6-63 65.41 256.25 20.60 21.58 21.72 1991.75–1995.00 Dry layer Waterflooded zone

G6-63 67.30 241.10 19.66 33.79 30.23 2000.00–2005.00 Dry layer Oil reservoir 

G6-35 70.00 249.42 10.30 13.02 15.97 2045.25–2046.75 Waterflooded zone Water layer 

G6-35 63.61 267.61 23.06 23.60 25.04 2047.13–2048.75 Waterflooded zone Waterflooded zone

G6-71 74.84 249.24 18.64 15.75 18.13 1965.25–1965.75 Waterflooded zone Waterflooded zone

G6-104 73.01 247.81 21.66 18.30 23.78 1905.10–1919.37 Waterflooded zone Waterflooded zone

G6-104 69.91 243.61 18.82 14.29 16.20 1920.39–1938.98 Waterflooded zone Waterflooded zone
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4.2.2  Microscopic pore structure changes in the wa-
terflooded zones 

The microscopic pore structure of the reservoirs 
is an important geological condition that determines 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
fluid flow and hydrocarbon migration. We examined 
thin sections and SEM photomicrographs from the 
G6-104 and G6-2 wells. In well G6-104, results in-
dicate that (1) the contacts between the grains are 
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Fig. 3  Comparison of logging curves from well G6-104 and well G6-2 (a); Sedimentary facies of the core photos of 
the two wells (b) 

Table 2  Reservoir properties before and after waterflooding 

Well 
Depth 

(m) 
Helium 

porosity (%) 
Air perme-

ability (mD) 
Carbonate

cements (%)
Clay min-
erals (%)

S 
(%)

I/S
(%)

I 
(%)

K 
(%) 

Ch 
(%) 

Oil saturation 
(%) 

G6-2 1888.90– 
1923.05 

14.30 38.11 16.26 5.4 20 0.77 1.31 – 2.81 57.80 

G6-104 1905.10– 
1938.98 

16.96 38.21 16.75 2.5 15 0.54 0.63 0.28 1.06 31.06 

S: smectite; I/S: illite/smectite mixed layer; I: illite; K: kaolinite; Ch: chlorite 
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loose, (2) there is relative development of secondary 
intergranular pores (Figs. 4b and 4c), and (3) pore 
distribution becomes non-uniform, and some throats 
become thick and even mesh (Fig. 4c). However, well 
G6-2 has dense lithology, and the relations of pore 
throat connectivity are not clear (Fig. 4d). 

4.2.3  Changes in fluid after waterflooding 

The average water salinity of the original for-
mation of the Funing Formation of the Gao 6 
Fault-block is about 7866–8159 mg/L, while the 
formation water salinity of well G6-104 has declined 
significantly to 3148 mg/L. 

With continuous displacement of oil by fresh-
water injection, water saturation of the waterflooded 
zone of well G6-104 has increased, with a corre-
sponding decrease in residual oil saturation (Soo and 
Radke, 1986a; 1986b; Bedrikovetsky et al., 2011). 
The oil saturation of the waterflooded area dropped to 
31.1% from 57.8%, reflecting the strong washing 
experienced by the reservoir. 

The relative permeability curves derived from 
the two wells were compared (Figs. 5a and 5b). The 
water saturation curve from the waterflooded zone 
generally translates to the right. The intersection of 
the curves from G6-104 also has a larger shift to the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

right compared with that of G6-2, a sign that is 
strongly characteristic of a freshwater waterflooded 
zone. 

 
 

5  Discussion 
 
These results confirm the feasibility of using a 

back-propagation neural network to identify water-
flooded zones. Due to the limitations of the experi-
mental data, the separation of dry layers from water-
flooded zones by applying the technique on the 
cross-plot plate was incomplete. With the further 
exploration and development of the study area, it 
should be possible to produce a more complete 
separation using training based on supplementary 
well testing reports. 

Based on the results of this work, this paper fo-
cuses on the mechanism of reservoir changes after 
waterflooding. Few changes occurred in permeability, 
whereas porosity shifted to the right (Fig. 5c). The 
correlation between porosity and permeability (Zhang 
et al., 2008) tended to be better after a waterflood, 
showing that the sorting features of pores become 
better and pore structure seems more uniform. With 
the washing of the injection water, the reservoir forms 
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Fig. 4  Thin section and scanning election photomicrographs 
(a) Kaolinite with poor crystal form in the waterflooded zone; (b) Development of secondary intergranular pores which 
increase porosity; (c) Non-uniform pore distribution after waterflooding in well G6-104; (d) Relatively dense lithology of 
well G6-2. K: kaolinite; Fs: feldspar 
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microfissures, and clay minerals of the cores are 
flushed out to propagate through the reservoir. Thus, 
the cores become larger, which increases their porosity.  

Not only does the content of clay minerals 
change, but also their composition and structure. For 
example, illite has a filamentous role, and can cause a 
change in water or speed sensitivity. However, res-
ervoir properties have not changed very rapidly due to 
the low content of clay minerals in the study area. 

Oil saturation and permeability showed a strong 
positive correlation in well G6-2 (Fig. 5d). However, 
oil saturation in well G6-104 was significantly lower 
than that in well G6-2. Furthermore, there was a trend 
showing decreasing oil saturation as permeability 
increased, implying that well G6-104 has experienced 
tremendous amounts of waterflooding (Yang et al., 
2000; Zhang and Xie, 2011). 

 
 

6  Conclusions 
 

1. In this study, a back-propagation neural net-
work was used to accurately estimate waterflooded 
zones, by utilizing a combination of well logs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
composed of GR, DT, RFOC, RILD, and RILM. We 
used 89% of the data to train the network and 11% to 
act as unknowns. A neural network cross-plot plate 
for identification was set up, and the success rate was 
up to 85%. 

2. Secondary intergranular pores developed, in-
creasing porosity after waterflooding, while the con-
tent of clay minerals declined as a result of washing 
migration. Apparent reductions occurred in the water 
salinity of the formation and the saturation of residual 
oil in the waterflooded zone. 

3. A variety of physical and chemical changes 
have occurred in the reservoir after waterflooding, 
which have affected the composition and distribution 
of minerals. 
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