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Abstract In this paper describing functions inversion is
used and the restoring force of a nonlinear element in a
MDOF system is characterized. The describing functions
can be obtained using linearized frequency response
functions (FRFs). The response of the system to harmonic
excitation forces at distinct frequencies close to the resonant
frequency results in linearized FRFs. The nonlinear system
can be approximated at each excitation frequency by an
equivalent linear system. This approximation leads to
calculation of the first-order describing functions. By
having the experimental describing functions calculated
and the system’s responses corresponding to the nonlinear
element (measured or interpolated), nonlinear parameter
identification can be performed. Two numerical and
experimental case studies are provided to show the
applicability of this method.
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Introduction

Several methods have been developed for identification of
structural nonlinear systems since Ibanez [1] pioneered the
idea at 1973. These methods can be categorized into

linearization, time domain methods, frequency domain
methods, time-frequency methods, modal methods, black-
box modeling and structural model updating. Kerschen et al.
[2] presented a comprehensive literature survey on the above
methods. From the time domain methods the restoring force
surface method proposed by Masri and Caughey [3] has
gained many attention for its simplicity and robustness.

For the weakly nonlinear systems usually the lineariza-
tion method gives satisfactory results. Harmonic balance
method [4] and describing functions method [5] can be
used to obtain the equivalent linear system. Rice [6] used
the equivalent linear system obtained by experimentally
recorded structural responses and identified the parameters
of a nonlinear system. Mayer and Link [7] linearized a
nonlinear system by means of the harmonic balance
method. They then identified the nonlinear stiffness and
damping parameters by minimizing the differences between
analytical and experimental frequency responses.

The aim of the describing functions method is to obtain
an equivalent amplitude-dependent stiffness and damping
coefficients for the nonlinear elements. Kul and Chen [8]
proposed a method which can be used for obtaining the
describing functions of hysteretic type nonlinearities. Their
method is based on circular geometry shapes. The radius of
the circular geometry shapes is a measure of the non-
linearities. Watanabe and Sato [9] used the first-order
describing functions and linearized the nonlinear stiffness
of a beam structure. Kuran and Ozguven [10] proposed an
approach for quasi-linearization of MDOF systems by
introducing describing functions for the cubic stiffness
nonlinearity. Tanrikulu et al. [11] improved the method
proposed by Kuran and Ozguven [10] by including a wider
range of first-order describing functions. Besancon-Voda
and Blaha [12] developed a multi-input describing function
for the friction damping nonlinearity.

H. Jalali (*)
Iran University of Science and Technology-Arak Branch,
Arak 38181-41167, Iran
e-mail: jalali@iust.ac.ir

B.T. Bonab :H. Ahmadian
Center of Excellence in Solid Mechanics and Dynamics,
Iran University of Science and Technology,
Tehran 16868, Iran

Experimental Mechanics (2011) 51:739–747
DOI 10.1007/s11340-010-9375-x



Elizalde and Imregun [13] used the first order describ-
ing functions and obtained closed form expressions for
frequency response functions of a nonlinear MDOF
system. They considered cubic stiffness and friction
damping nonlinearities. Ozer et al. [14] proposed a method
for calculating describing functions by using the harmonic
response of a MDOF nonlinear system. They then
identified the restoring forces of the nonlinear element
by curve fitting the plots of the obtaining describing
functions vs. response amplitudes. The result will be a
restoring force as a function of response amplitude. They
also considered cubic stiffness and friction damping
nonlinearities. For these types of nonlinearities the
describing functions depend only upon the response
amplitude level.

This paper considers identification of more general
nonlinearities where their describing functions depend upon
the response amplitude and frequency. Also the nonlinearity
is identifies as a function of time. This is achieved by using
the first-order describing functions obtained from experi-
mental results. In fact, by measuring the systems response
to a harmonic excitation force the linearized frequency
response functions are obtained. Having the linearized
frequency responses at each excitation frequency an
equivalent linear system is constructed for the nonlinear
system which leads to obtaining the describing functions.
Performing an inversion of the describing functions finally
results in the nonlinearity identification.

Describing Functions: Definition and Inversion

The describing functions method was first originated in
control theory for solving nonlinear systems [15]. In this
method each nonlinear element is replaced with a (quasi)
linear element described by a function relating the
elements’ output to the input (i.e. a gain). The gain of the
linear element is a function of its input amplitude. The
form of the describing function therefore depends on the
type of inputs. Sinusoidal input describing functions
(SIDF) [5, 16] and random input describing functions
(RIDF) [17] are two commonly used categories of
describing functions. Following the SIDF method which
is used in this paper is described in more details.

The SIDF approach can be used for characterization of
nonlinear systems in frequency domain. As the name
implies the system should be in periodic response condi-
tion. Consider the following SDOF nonlinear system,

m
::
xðtÞ þ gðxðtÞ; �xðtÞÞ ¼ f sinðwtÞ ð1Þ
Assuming that the response of the system presented in

equation (1) is sufficiently close to a pure sinusoidal i.e.

x(t)≈asin(τ), where τ = ωt+= and there is little energy
leaked to frequencies other than ω, the nonlinear restoring
force can be approximated by a quasi-linear amplitude
dependent function as,

gðxðtÞ; �xðtÞÞ ffi npða;wÞ þ jnqða;wÞ
� �

xðtÞ ð2Þ
where np and nq which are real and imaginary parts of an
equivalent complex spring to be replaced with the nonlinear
restoring force can be obtained by using the optimum
quasi-linearization theory as [5],

npða;wÞ ¼ 1

pa

Z2p
0

g a sinðtÞ; aw cosðtÞð Þ sinðtÞdt ð3Þ

nqða;wÞ ¼ 1

pa

Z2p
0

g a sinðtÞ; aw cosðtÞð Þ cosðtÞdt ð4Þ

The SIDF of many nonlinear restoring forces have been
derived. A comprehensive list can be found in [5].
Equations (3) and (4) offer the describing functions of a
known restoring force. The problem can be considered
from the identification point of view as well. Given np(a,ω)
and nq(a,ω) one may be interested in finding the restoring
force to which the given describing functions correspond.
This procedure is called describing function inversion. In
control theory polynomial based and piecewise-linear based
describing function inversions are used. In structural
dynamics Ozer et al. [14] identified the restoring forces of
a nonlinear element in a MDOF system by curve fitting the
plots of the obtained describing functions vs. response
amplitudes. The result will be a restoring force as a function
of response amplitude. They considered the cases where
either np(a,ω) or nq(a,ω) is zero. In this paper the describing
functions of a MDOF system containing a nonlinear
element is used and the restoring force of the nonlinear
element is identified as a function of time.

Problem Statement

Equations governing the dynamic response of a nonlinear
MDOF structure can be represented as,

½M �f::xg þ ½K�fxg þ fFNLðtÞg ¼ fFðtÞg ð5Þ
In equation (5), [M] and [K] are n × n structural mass

and stiffness matrices, respectively, {F(t)} is the vector of
external excitation and {FNL(t)} is a vector containing the
nonlinearity effects. It is assumed that the system contains
one nonlinear element between ith and jth DOFs. Therefore
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the nonlinear vector in equation (5) can be considered to
have the following form,

fFNLðtÞg ¼ ½0; 0; . . . ; fNLðz; �zÞ
ith

; 0; 0; . . . ;� fNLðz; �zÞ
jth

; . . . ; 0; 0�T

zðtÞ ¼ xiðtÞ � xjðtÞ
ð6Þ

Consider that the structure described in equation (5) is
subjected to an external harmonic excitation force of the
form {P}cos(ωt). The excitation frequency belongs to a
frequency interval containing the sth natural frequency of
the structure, i.e. ω = [ωs-σ, ωs+σ]; where σ is chosen
small and usually σ<0.1ωs. Ahmadian and Zamani [17]
showed that in such circumstances an equivalent linear
system can be found for the nonlinear system at each
excitation frequency. The governing equations of the
equivalent linear system may be expressed as,

½M �f::xg þ ð½K� þ ½eK�Þfxg ¼ fPg cosðwtÞ ð7Þ

½eK� is a complex matrix containing the linearized stiffness
and damping effects of the nonlinear force fNLðz; �zÞ. The
real part represents the linearized stiffness and the imagi-
nary part models the linearised damping effects. ½eK� may be
defined as,

eK ¼ zerosðn; nÞ; eKð½i; j�; ½i; j�Þ ¼ k
1 �1
�1 1

� �
; k ¼ kr þ jki

ð8Þ
Provided that the linearized frequency responses of the

nonlinear system are available, kr and ki can be obtained by
solving the following equations in an iterative procedure
[17],

ðws
2 þ ½Jw�fΔkg � w2ÞfX ðwÞg

� ð½Jϕ�fΔkg þ fϕsgÞTfPgð½Jϕ�fΔkg þ fϕsgÞ ¼ 0
ð9Þ

½Jw� ¼ @w2
s

@fΔkg ; ½Jϕ� ¼ @fϕsg
@fΔkg ; fΔkg ¼ ½Δkr;Δki�T ;

fX ðwÞg ¼ fX exðwÞg �
XN

r¼1;r 6¼s

fϕrgTfPgfϕrg
w2
r � w2

ð10Þ
where {Xex(ω)} is the experimental frequency response
vector. Linearized frequency response functions will be
described in more details in next sections. In the following
it will be shown that the equivalent linear springs, i.e. kr
and ki, are the describing functions introduced in previous
section.

The structure is subjected to a harmonic excitation force
with a frequency close to sth natural frequency; therefore at

each excitation frequency the response can be approximated
by using its sth normal mode as fX ðtÞg ¼ efs� �

qðtÞ. The
normal mode efs� �

corresponds to the equivalent linear
system obtained at that excitation frequency. Substituting
the assumed response into equations (5) and (7), pre-
multiplying the resultant equation into fefsgT and using the
orthogonality properties of the mode shapes finally leads
respectively to equations (11) and (12),

::
qðtÞ þ ws

2qðtÞ þ ðefsi � efsjÞfNLðz; �zÞ ¼ fefsgTfPg� 	
cosðwtÞ

ð11Þ

::
qðtÞ þ ws

2qðtÞ þ ðefsi � efsjÞ2 kr þ jkið ÞqðtÞ

¼ fefsgTfPg� 	
cosðwtÞ ð12Þ

In equation (11) zðtÞ ¼ ðefsi � efsjÞqðtÞ. efsi and efsj are
respectively the ith and jth members of fefsg. Comparing
the last two equations, equations (11) and (12), shows that,

fNLðz; �zÞ ffi kr þ jkið ÞzðtÞ ð13Þ
Comparing equations (2) and (13) indicates that the real and
imaginary parts of the equivalent linear system, i.e. kr and
ki, can be considered as describing functions. kr and ki are
obtained from the linearized frequency responses of the
nonlinear system as was described in equations (9) and
(10).

Equations (3), (4), (9) and (10) pave a foundation for
identification of nonlinear systems using experimental
results. First the linearized parameters kr and ki are
identified using experimental frequency responses and by
adopting equations (9) and (10). The linearized parameters
are then substituted in equations (3) and (4). Solving these
two equations simultaneously leads to identification of the
nonlinear function fNLðz; �zÞ. Equations (3) and (4) needs
z(t) and its time derivative to be known. It is not always
possible to measure this response coordinate; especially
when the nonlinear element is a joint or a boundary
condition. Elizalde and Imregun [13] measured this
coordinate directly from the test experiment. In this paper
this coordinate is obtained by using the equivalent linear
system of equation (7).

The remaining sections of this paper go as follows. In
next section the above described method are applied to a
2DOF system with a nonlinear element consisting of a
cubic spring and a quadratic damping to show the
capability of the method in simulated data. Next the method
is evaluated using experimental results measured from test
set-up of a clamped beam. Micro-slips develop at the
clamped end at high excitation amplitudes.
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Numerical Example

A schematic of the two degrees-of-freedom system used in
numerical example is shown in Fig. 1. The system which
includes a nonlinear element NL is excited using a
harmonic force. A model consisting of a softening spring
and a quadratic damping is considered in this paper for
nonlinear element NL. The capability of the method
described in previous section in identification of this model
is investigated here. The restoring force of nonlinear
element NL is defined as,

fNLðx2; �x2Þ ¼ k3x2ðtÞ � k4x2ðtÞ3 þ c1 �x2ðtÞ þ c2 �x2ðtÞj �x2ðtÞj
ð14Þ

The parameters of equation (14) are given in Table 1.
The equations governing dynamic response of the system
shown in Fig. 1 can be expressed as,

m1 0

0 m2

� � ::
x1ðtÞ
::
x2ðtÞ


 �
þ k1 þ k2 �k2

�k2 k2

� �
x1ðtÞ
x2ðtÞ


 �

þ 0

fNLðx2; �x2Þ


 �
¼ F

0


 �
cosðwtÞ

ð15Þ

Equation (15) is solved numerically using a fourth order
variable step Runge-Kutta method and the time domain
response of two masses is obtained at different excitation
frequencies. At each excitation frequency, simulated noise
signals are added to the numerically calculated responses.
This is done to investigate the robustness of the proposed
method in identification of the nonlinear system parameters.
The added noise signals are generated using randn function
of MATLAB. Three cases of zero mean noise signals are
considered. Their standard deviations are chosen to be 5%,
10% and 15% of the maximum amplitude of the system
response signals.

In order to calculate the frequency response functions
(FRFs), first the time domain responses are low-pass
filtered and only their first harmonic is kept, i.e.
xiðtÞ � Xi wt þ y ið Þi ¼ 1; 2. y i is the phase difference
between excitation force and response signals. Having the

single harmonic response signals, the FRFs are obtained
using the following equations,

ai1ðwÞ ¼ Xi
F e jy i ; i ¼ 1; 2 ; ð16Þ

It is worth mentioning that by band-pass filtering the
response signals of nonlinear system, linearized FRFs are
obtained. The linearized FRF of the nonlinear system is
compared with the FRF obtained from the linear system in
Fig. 2. The results shown in Fig. 2 correspond to the case of
noise free responses.

By using the linearized frequency responses and employ-
ing equations (9) and (10), parameters of the equivalent
linear system, i.e. kr and ki, are identified at each excitation
frequency. Having the parameters of the equivalent linear
system available, the frequency response curve of nonlinear
system can be regenerated for comparison purposes. This is
done in Fig. 2 for the case of noise free responses. In this
figure circles (o) show the regenerated frequency response
curve. The good agreement between these two sets of the

1m 2m
1k 2k

NL

cos(ωt)F

Fig. 1 Nonlinear 2DOF system, m1=2 Kg, m2=3 Kg, k1=100N/m,
k2=250N/m, F=5N

Table 1 Exact and identified parameters of system with softening
stiffness and quadratic damping

k3 (N/m) k4 (N/m
3) c1 (N.s/m) c2 (N.s/m

2)

Exact 120 800 3 1

Identified (noise free) 119.99 792.37 2.99 1.03

Error (%) 0.0 −0.95 −0.30 3.04

Identified (5% noise ) 119.99 792.49 2.98 1.03

Error (%) 0.0 −0.93 −0.47 3.63

Identified (10% noise) 119.98 792.59 2.98 1.04

Error (%) 0.0 −0.92 −0.64 4.22

Identified (15% noise) 119.98 792.65 2.97 1.04

Error (%) −0.01 −0.91 −0.80 4.81

5 5.5 6 6.5 7 7.5 8
0.01

0.02

0.03

0.04

0.05

Frequency (Rad/s)

Fig. 2 (Color online) The FRF of linear system (red), the linearised
FRF (blue) and the FRF obtained from equivalent linear system (o)
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results show the accuracy in identification of the parameters
of the equivalent linear system. Similar results are also
obtained for the other cases of added simulated noise signals.

Up to this point the filtered response signals (i.e. the
approximated single harmonic signal) and the parameters of
the equivalent linear system kr and ki, or describing
functions, have been calculated at different excitation
frequencies. Next we turn our attention to identify the
parameters of the nonlinear restoring force fNLðx2; �x2Þ.
Substituting equation (14) into equations (3) and (4) results
in the following equations,

npðX2;wÞ ¼ 1

pX2

Z 2p

0
fk3X2sin

2t � k4ðX2Þ3sin4t

þ c1wX2 cos t sin t þ c2w
2ðX2Þ2 cos t sin tj cos tjgdt

ð17Þ

nqðX2;wÞ ¼ 1

pX2

Z 2p

0
fk3X2 sin t cos t � k4ðX2Þ3sin3t

cos t þ c1wX2cos
2t þ c2w

2ðX2Þ2cos2tj cos tjgdt
ð18Þ

It should be noted that np(X2,ω) and nq(X2,ω) are
respectively equal to kr and ki at corresponding frequencies.
Performing the above integrals at each excitation frequency
and after rearrangements, the results can be expressed in the
form of a set of linear equations as [Γ]{y} = {b}, where:

½*� ¼

1 � 3
4 ðX2Þ2w1

0 0
0 0 w1

8
3p ðX2Þw1

w2
1

..

. ..
. ..

. ..
.

1 � 3
4 ðX2Þ2wn

0 0
0 0 wn

8
3p ðX2Þwn

w2
n

2
6666664

3
7777775
;

fyg ¼
k3
k4
c1
c2

8>><
>>:

9>>=
>>; ;fbg ¼

krjw1

kijw1

..

.

krjwn

kijwn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð19Þ

where ðX2Þwn
; krjwn

and kijwn
are respectively amplitude of

filtered response of mass m2, real and imaginary parts of
equivalent stiffness coefficient (or describing functions); all
calculated at excitation frequency of ωn. Solving equation
(19) finally results in unknown parameters of nonlinear
restoring force, i.e. yf g ¼ Γ½ �� bf g. [Γ]± represents the
pseudo-inverse. The exact and identified parameters are
compared in Table 1 for three different cases of considered
noisy responses.

Results presented in Table 1 shows that the method
described in this paper is well able in identification of the
nonlinear system parameters when the noise level is under
10%. This indicates the robustness of the proposed method.
In next section the method is verified using experimental
results.

Experimental Case Study

A clamped-free beam as is depicted in Fig. 3 is used in this
section. The beam contains nonlinear effects due to friction

Fig. 3 Test set up

Table 2 First four natural frequencies (Hz)

ω1 ω2 ω3 ω4

Experimental 12.19 76.97 213.99 407.03

Updated 12.14 77.21 215.01 403.68

Error (%) 0.35 −0.31 −0.48 0.82
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contact at the clamped end. The material and geometric
properties of the beam are: E=202.403 MPa, ρ=7800Kg/
m3, L=0.527 m and A=116 mm2. The beam is excited by
means of a B&K 4810 mini-shaker at point B. The applied
force is measured using a B&K 8100 force transducer. The
beam response at points A, B and C are measured by three
DJB A/120/V accelerometers. Points A, B and C are shown
in Fig. 3.

Measurements are performed in two stages. In the first
stage, the structure is excited using a low level random
excitation force and the linear frequency response functions
are measured. The natural frequencies of the structure
extracted from the linear FRFs are tabulated in Table 2. In
the second stage of experiments, a set of harmonic forces
are used in order to extract the linearized frequency

response functions of the nonlinear system. Four different
excitation amplitudes are considered; namely 80, 120, 200
and 300 mN. It is believed that the nonlinear response of
the structure is dominated by the micro-slips developing at
the contact interface of clamped end [18]. Micro-slips are
well excited near the second mode of the structure.
Therefore keeping the excitation amplitude constant, the
structure is excited at distinct frequencies near the second
natural frequency. The steady state responses of points A,
B and C and the applied force signals are measured.
Having measured the excitation force and response signals,
low-pass filtering the response signals and by employing
equation (16), the linearized frequency response curves are
obtained. The results corresponding to the accelerometer at
point B are shown in Fig. 4.

The frequency responses shown in Fig. 4 indicate the
softening effect due to the micro-slips developing at the
clamped end. In the next section a Valanis model is
considered for taking into account the effects of micro-
slips and its parameters are identified using the method
described in previous sections.

Linear and Nonlinear Parameter Identification

A FE model of the structure shown in Fig. 3 is built using
20 Euler-Bernoulli (2D) beam elements. In order to take
into account the linear effects of the clamped end, the
following stiffness matrix is added to the stiffness matrix of
the beam at corresponding DOFs,

½K� ¼ kww kwt
kwt ktt

� �
ð20Þ

74 74.5 75 75.5 76 76.5 77 77.5 78 78.5
-4.2

-4

-3.8

-3.6

-3.4

-3.2
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-2.6

Frequency (Hz)

R
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ta
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e 

(L
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M
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)
80mN
140mN
200mN
300mN

Fig. 4 Nonlinear frequency response curves at point B
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Fig. 5 Experimental describing functions
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where kww, ktt and kwt represent respectively the lateral
stiffness, bending stiffness and coupling stiffness of the
clamped end. These parameters are considered complex to
take into account the damping effects of the contact
interface. The linear stiffness parameters in equation (20)
need to be identified. These parameters are identified by
minimizing the differences between linear experimental
FRFs and the FRFs obtained by using linear FE model. The
experimental natural frequencies and those obtained from
the updated FE model are compared in Table 2. These two
sets of natural frequencies show a good agreement which is
a result of accurate identified linear stiffness parameters.

Next, identification of the nonlinear characteristics of the
clamped end is considered. A nonlinear FE model needs to
be constructed for the beam shown in Fig. 3. The equation
governing the nonlinear response of the beam is similar to
equation (5). Mass matrix, stiffness matrix and the vector of
external excitation forces are known from the linear FE
model. A nonlinear force fNL is considered to represent the
nonlinear effects of the micro-slips developing at the
contact surface of the clamped end. The micro-slips
correspond to the rotation DOF; therefore the vector of
nonlinear forces {FNL(t)} to be substituted in equation (5)
can be expressed as,

fFNLðtÞg ¼ ½0; fNLðq; �qÞ; 0; . . . ; 0�T ; ð21Þ
In equation (21), θ is the rotation DOF of the beam at the

clamped end about the axis normal to the plane containing
the beam and the shaker. In this paper a Valanis model is
considered to govern the behavior of the micro-slips. The

equation governing the restoring force of the Valanis model
is shown in following,

�
f NLðq; �qÞ ¼

E0
�
q 1þ l

E0
sgnð �qÞ Etq � fNLðq; �qÞ

� �h i
1þ k l

E0
sgnð �qÞ Etq � fNLðq; �qÞ

� � ð22Þ

where E0 is the stiffness coefficient of the clamped end at
sticking condition, Et denotes the slope of the slip motion,
k controls the transition from stick to slip condition and 1
is characterized by the stick limit. The parameters of the
Valanis model shown in equation (22) are identified in
following using the method described in previous sections.
It is worth mentioning that the experimental results
corresponding to the excitation amplitude of 80 mN are
used in identification. Then, the identified model is
validated by regenerating the experimental results
corresponding to excitation amplitudes of 140 mN,
200 mN and 300 mN.

First the experimental describing functions are calculated
from the linearized frequency response function shown in
Fig. 4. The describing functions will be substituted in
equations (3) and (4) and the parameters of the Valanis
model will be identified. In order to calculate the describing
functions, a linear complex stiffness, as in equation (13), is
replaced with the nonlinear Valanis model in equation (5).
Then, using the frequency responses shown in Fig. 4 and
employing equations (9) and (10) result in the describing
functions (Fig. 5).

The next step in the identification of the Valanis model
parameters is the calculation of the beam response states
corresponding to the rotation DOF at the clamped end, i.e.
θ(t) and

�
qðtÞ. It is not possible to measure these response

states directly from the test set up, but they can be
calculated by using the equivalent linear system and the
measured response signals. Having obtained the equivalent
linear system, or describing functions, the second mode
shape ef2� �

is calculated by using the FE model. Then, by

Table 3 The parameters of Valanis model

E0 (N/m) Et (N/m) 1 (1/m) k

123.70 58.46 21234.00 0.81

-1
-0.5

0
0.5

1

x 10
-3

-0.5

0

0.5

-0.2

-0.1

0

0.1

0.2

f N
L

(N
)

)(radθ 

)/( sradθ

Fig. 6 The experimental
(points) and predicted (lines)
restoring force surfaces,
80 mN (o), 140 mN (□), 200 mN
(Δ) and 300 mN (◊)
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writing equation fX ðtÞg ¼ ef2� �
qðtÞ for the measured

responses, q(t) is calculated and using q(t) the rotation
DOF at the clamped end, i.e. θ(t), is obtained. Performing
differentiation on θ(t),

�
qðtÞ is also known. It is worth

mentioning that the structure is a weakly nonlinear system
and is excited close to the second natural frequency;
therefore it is assumed that the response is governed by
the second mode, hence only this mode is used in
calculation of θ(t). It also should be noted that because
the equivalent linear systems, or describing functions, are
amplitude dependent, different values for ef2� �

are obtained
at different excitation frequencies [18].

Up to this point the describing functions and the
response states corresponding to the clamped end of the
beam, i.e. θ(t) and

�
qðtÞ, are calculated. The final step in

identification of the Valanis model parameters is as
follows. First, a set of initial parameters are considered
for Valanis model. At each excitation frequency the
response states corresponding to rotation DOF at the
clamped end, i.e. θ(t) and

�
qðtÞ, are known. Having known

the Valanis model parameters and the response states,
equation (22) is solved numerically and fNL is obtained.
fNL is then substituted in the right hand side of equations
(3) and (4) and the integrals are calculated numerically.
The left hand side of equations (3) and (4) are describing
functions, i.e. kr and ki, which are known at each
excitation frequency from the equivalent linear systems.
The right hand side of these equations will result in
describing functions too provided that the Valanis model
parameters are correct. With the initial guess made for the
Valanis model parameters, equations (3) and (4) usually
results in residues. Applying the above procedure for all
excitation frequencies, a vector of residues is obtained.
The norm of this vector is minimized and the optimum
Valanis model parameters are obtained. In this paper the
genetic algorithm toolbox of Matlab is used and the vector
of residues is minimized. Table 3 shows the optimum
Valanis model parameters.

The parameters shown in Table 3 were obtained by using
experimental results corresponding to the excitation ampli-
tude of 80 mN. Using the Valanis model identified at
80 mN, the experimental results for other three excitation
amplitudes, i.e 140, 200 and 300 mN, can be predicted for
validation purposes. In Fig. 6 the experimental and
predicted restoring forces obtained at different excitation
amplitudes are compared. The contours in Fig. 6 corre-
spond to the resonant frequency points of the frequency
responses shown in Fig. 4. The experimental data in this
figure are obtained by substituting measured responses into
equation (11) and solving this equation for fNL. The
predicted restoring forces shown in Fig. 6 are obtained by
substituting response states, i.e. θ(t) and

�
qðtÞ, into equation

(21) and solving this equation numerically.

The results shown in Fig. 6 indicate that the Valanis
model which was considered to represent the nonlinear
effects of the micro-slips at the clamped end is a valid
model. It can regenerate the experimental results used in
identification and also is capable to predict the experimental
results corresponding to higher excitation amplitudes with
an acceptable accuracy.

Conclusion

Identification of weakly nonlinear MDOF systems was
considered by using describing functions inversion. The
system consists of a nonlinear element. An equivalent linear
spring (to be replaced with nonlinear element) was
identified at each excitation frequency and it was shown
that real and imaginary parts of the equivalent linear
stiffness are the describing functions of the nonlinear
element restoring force. Using the describing functions
inversion (numerically or analytically) the restoring force of
the nonlinear element can be identified. This procedure was
applied to two numerical and experimental case studies. In
a numerical 2DOF system the nonlinear element was
considered as combination of a cubic spring and a quadratic
damping. The parameters of the nonlinear element were
identified using the method described in this paper. An
experimental clamped beam was also considered. The
clamped end shows nonlinearity effects due to micro-slips
developing at its contact interface. A Valanis model was
considered to govern the micro-slip mechanism and its
parameters were identified. The results showed that the
proposed method is capable to identify the nonlinear
systems with an acceptable accuracy.
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