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Abstract

A method is proposed for closed loop identification of an unstable first-order plus time delay with a zero transfer
function model using the step response of a PI or PID-controlled system. A standard optimization method is used to
estimate the model parameters to match the closed loop response of the model with that of the actual response. A
simple method is proposed for initial guesses of the transfer function model parameters (time delay, time constant, gain
and the value of zero). The method is applied to unstable transfer function models with a positive or negative zero, and
to a CSTR to identify an unstable FOPTD (first-order plus time delay) with a zero. It gives good results in all the
simulation case studies considered. The effect of measurement noise and controller settings on the identification of
transfer function model is studied.
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1. Introduction

Transfer function models are used to design PI/PID controllers [1], [2]. Closed loop identification
method is preferred over the open loop method since the former is insensitive to disturbances,
and is essential to identify the transfer function model of an unstable system. Kavdia and
Chidambaram [3] and Srinivas and Chidambaram [4] have proposed closed loop methods for
identifying unstable first-order plus time delay (FOPTD) without any zero using the response of
a proportional controller. Since the proportional controller introduces an offset in the response,
the method is not employed in chemical plants. In addition, in the case of certain parameter
values (for example, when the ratio of time delay to time constant is greater than 0.7) of unstable
FOPTD systems, proportional controller alone cannot stabilize the processes. Recently, Pramod
and Chidambaram [5] have proposed a closed loop method for identifying an unstable FOPTD
model without any zero using the step response of a PID-controlled systems response. There are
systems which are to be modeled as unstable FOPTD with a zero: kp (1 – τN s) e-Ls/(τ s – 1). Here,
kp is the process steady-state gain, τN, the time constant of the numerator, τ, the time constant of
the system and L, the time delay. τN, τ and L have units of time. Transfer function model can be
obtained by linearizing the dynamic mathematical model or by using the servo response of the
closed loop system. The zero may be positive or negative depending on the process behavior.
Such transfer functions are reported for systems such as chemical reactors [6]. The presence of
a zero in the transfer function model introduces overshoot or inverse response (depending on
whether the zero is negative or positive) behaviour [7]. If the system has an unstable pole, then
both the initial undershoot and overshoot are further increased. In the present work, a closed
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loop identification method based on a standard optimization technique is proposed. The method
is applied to three transfer function models and to a chemical reactor problem.

2. Proposed method

The response (yp,cl) of the closed system using a PI or PID controller is obtained for a known
magnitude of change in the set point. The transfer function of the process is assumed as
kp (1 – τN s) e-Ls/(τ s – 1). From the closed loop response, the initial guess values for the model
parameters (kp, τN, τ and L) are calculated (see next section). Using this model and same controller
settings, the closed loop response for the same step magnitude is obtained by simulation. Let the
response be denoted by ym,cl. The final model parameters are obtained by minimizing the sum of
the squared difference between yp,cl and ym,cl. The objective function is then the sum of
(yp,cl – ym,cl)2 over several points of the response. The MATLAB optimization routine leastsq is
used in the present work. This method employs Levenberg–Marquadrt algorithm.

A major criticism in using any optimization method is the selection of initial guess values of
the model parameters for which a procedure is suggested in the present work for model parameters
kp, τN, τ and L: (i) The time delay is assumed to be that of the closed loop response. (ii) The guess
value for the time constant of the process is assumed as half of the effective time constant (τe) of
the closed loop response. The value of τe is assumed as ts/4, where τs is the settling time of the
closed loop response (to reach 98% of the steady-state value and to remain within the limit).
Hence, the initial guess for τ is given by ts/8. (iii) The guess value for kp is calculated from
simple proportional controller formulae for unstable FOPTD system [8] as (τ/L)0.5/kc,  where L
is the guess value for the time delay and kc, the proportionality constant of the PID controller
used.

The initial guess value for τN is selected as that of the closed loop system. The guess for τN

for the closed loop system is selected as follows: (i) If the response shows an inverse behaviour
(similar to that shown in Fig. 1), then the guess value for τN is selected as the time duration in
which the inverse response is observed in the output. This assumption follows from the
approximation exp (–τNs) = 1–τNs. In case no inverse response is noticed, then the open loop
transfer function must contain a negative zero (1+τNs). In such cases, the initial guess for τN is
assumed to be the delay or 0.

To evaluate the proposed method, transfer function model with known model parameters is
considered with suitable PI/PID controller and the closed loop response obtained. Using the
proposed method and the data of the closed loop response, model parameters are estimated and
the closed loop response of the identified model is compared with the original system for the
same PID settings.

For the system whose transfer function is not known, closed loop servo response should be
obtained with a suitable PID controller. Employing the proposed method and the data of  closed
loop response, model parameters are estimated. A PID controller is designed for the identified
model. This PID controller will be implemented on the original system and also on the identified
model and the servo responses compared.
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3. Simulation results

3.1. Case study 1

Let us consider the process (1 – 0.25 s) e-0.25s / (s–1). The PI settings used are k =1.43 and τI =15.
The closed loop response for a unit step change in set point is obtained by the Simulink package
and the response is shown in Fig. 1(a). As discussed in the previous section, the initial guess
values for the model parameters are obtained from Fig. 1(a) as: L = 0.25, τN = 0.25, kp = 1.9 and
τ = (15/8) =1.85. MATLAB routine leastsq is used. The final converged parameters are L = 0.25,
τN = 0.25, kp = 1 and τ = 1. The computational time on Pentium III PC (933MHz) is 9.9 s and the
number of iterations is 69. The closed loop response of this identified model with the same PI
settings, shown in Fig. 1(a) along with that of the actual process, has very good matching. The
initial guess values are changed by 10% of the proposed method considering one parameter at a
time. The model parameters converge to the same values. The computational time required and
the number of iterations for the perturbed initial guesses are listed in Table I. The computational
time and the number of iterations using the proposed method for the initial guesses are less
compared to the ±10% perturbed values of initial guesses of the proposed method. This is
particularly seen in the case of increased initial guess values (+10%) for process gain and time

(a) (b) (c)
FIG. 1. Identification of transfer function model for case study 1 with (a) PI controller, (b) PID controller and (c) noise
corrupted output. Solid: actual process, dot: identified model.

Table I
Effect of initial guess values of the model parameters on the number of iterations and
computational time for case study 1

Parameter For For guess For guess For guess For guess
guesses variation in kp variation in τ variation in L variation in τN

by the
present +10% –10% +10% –10% +10% –10% +10% –10%
method

Number of 69 77 69 126 62 69 132 70 71
iterations
Computational 9.9 11.3 10.2 19.1 9.18 10.16 19.39 10.27 10.71
time

+10%: The initial guess values used are 1.1 times that of the values of the proposed method.
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constant and decreased values (–10%) of time delay. However, the model parameters converge
to the same values.

As stated earlier, the initial guess is important for any optimization method. To show the
importance of the proposed method, the initial guess values of the parameter were deviated
significantly (each value is twice that of the value of the proposed method). The optimization
method did not converge. Hence, it is better to use the guess values of the present method which
offer guaranteed convergence.

The same process with different PI controller settings [kc = 1.2852, τI = 18] is considered.
The closed loop response of the process is shown in Fig. 1(b). The initial guess values for the
model parameters are obtained from Fig. 1(b) as τd =  0.25, τN =  0.33, kp =  2.58 and τ =
(20/8) = 2.5. The optimization method (leastsq) converged to the same parameters (τd = 0.25, τN

= 0.25, kp = 1 and τ = 1). The computational time on Pentium III PC is 14.39 s and the number
of iterations is 84. The closed loop response of this identified model with the same PI settings,
shown in Fig. 1(b) along with that of the original process, offers very good matching. The
identified model is robust to the controller settings (Table II).

The effect of measurement noise on the model parameters is evaluated by adding white
noise with noise power 0.001 and the sample time 0.1 s to the process output. The corrupted
output (refer Fig. 1(c)) is used for feedback control action and for model identification. To get
the initial guesses, a smooth curve is first drawn. As discussed earlier, the initial guess values of
the model parameters are noted from the smoothed curve as τd = 0.25, τN = 0.25, kp = 2.32 and
τ = (20/8) = 2.5. The final identified parameters obtained from the optimization method are
τd = 0.2535, τN = 0.2626, kp = 1.0009 and τ = 1.0272.  These parameters are close to those
obtained without measurement noise. The computational time on Pentium III PC is 13.2 s and
the number of iterations is 94 (to Table III). The proposed method hence is robust to the
measurement noise.

3.2. Case study 2

Let us consider the process (1+0.25 s) e-0.25s/(s–1). The PI settings used are kc = 1.87 and τI = 8.6.
The closed loop response for a unit step change in set point is obtained by Simulink package and
the response is shown in Fig. 2(a). As discussed in the previous section, the initial guess values
for the model parameters obtained from Fig. 2(a) are: L = 0.25, τN = 0.0, kp =1.69 and τ = (20/8)
= 2.5. MATLAB routine leastsq is used. The final converged parameters are L = 0.2692, τN =

Table II
Effect of changing controller settings on the identification of transfer function model

Transfer PID settings Initial guess values Final converged parameters
function
model kc τI kp τ τN L kp τ τN L

Case 1.43 15 1.9 2.5 0.25 0.25 1 1 0.25 0.25
study 1 1.29 18 2.58 2.8 0.33 0.25 1 1 0.25 0.25

Case 1.87 8.6 1.69 2.5 0.0 0.25 0.99 0.98–0.25 0.27
study 2 1.68 10.32 1.88 2.5 0.0 0.25 0.99 0.98–0.25 0.25
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–0.2516, kp= 0.9957 and τ = 0.9784, the computational time is 11.1 s and the number of iterations
is 70. The closed loop response of this identified model with the same PI settings shown in
Fig. 2(a) along with that of the actual process offers very good matching. The initial guess
values are changed by 10% of the proposed method considering one parameter at a time. The
model parameters converge to the same values. The identified model is the same even if the
controller settings are changed (refer to Table II). The effect of white noise in the process output
on identification of transfer function model is evaluated and the converged parameters are listed
in Table III.

3.3. Case study 3

Let us consider the process (1+0.25 s) e-0.25s/[(s–1) (0.1 s +1)]. The PID settings used are kc =
1.8515, τI = 9.817 and τD = 0.1233. A first-order filter time constant 0.135 is also used in series
with the controller. The closed loop response for a unit step change in set point is obtained by
Simulink package and the response is shown in Fig. 2(b). As discussed in the previous section,
the initial guess values for the model parameters obtained from Fig. 2(b) are: L = 0.25, τN = 0.0,
kp = 1.71 and τ = (20/8) = 2.5. MATLAB routine leastsq is used. The final converged parameters
are L = 0.3266, τN = -0.2135, kp = 1.0002 and τ = 1.0087. The computational time is 12.19 s and
the number of iterations is 76. The closed loop response of this identified model with the same
PID settings, shown in Fig. 2(b) along with that of the actual process, offers very good matching.
The effect of white noise in the process output on identification of transfer function model is
evaluated and the converged parameters are listed in Table III.

3.4. Case study 4: Application to a chemical reactor problem

We consider an isothermal CSTR with the reaction rate given by [–k1 c/(1+k2 c)2]. The nonideal
mixing is described by Cholette’s model. Here n is the fraction of the reactant feed that enters
the zones of the perfect mixing and m the fraction of the total volume of the reactor where
reaction occurs [ i.e. (1−m) fraction of the volume is a dead zone]. Liou and Chien [9] give the
transient equation for the reactor as:

(a) (b) (c)
FIG. 2. Identification of transfer function model for (a) case study 2, (b) case study 3 and (c) the reactor problem. Solid:
actual process, dot: identified model.
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dc/dt = (nq/mv)(cf-c) – [k1 c/(1+k2 c)2 ] (1)
n c + (1-n) cf = ce (2)
at t = 0, c = co (3)

Here, c and ce are, respectively, the concentrations of the reactant in the well-mixed reactor zone
and the exit stream. The controlled variable is ce and the manipulated variable is the feed
concentration cf. For the present simulation study, we consider n = m = 0.75, k1 = 10 s–1; k2 = 10
(mol/l)–1; V = 1 l.

This particular rate form [–k1 c/(1 + k2 c)2] has been extensively studied [10] and its applicability
to heterogeneous and enzyme-catalyzed reactions has been demonstrated. For cf = 3.288 mol/l,
we get ce = 1.8 mol/l and c = 1.304 mol/l, and the linearization of the nonlinear equations around
these nominal operating points gives the transfer function model as ∆ce(s)/ ∆cf (s) = 2.21 (1 +
11.133 s) e–20s/(98.3 s–1). We have assumed a measurement delay of 20 s in the derivation of the
above transfer function model. A PID controller with the settings kc = 1.477, τI = 229.1 and
τD = 9.56 and a first-order filter (time constant = 10.67) is considered. The closed loop servo
response of the nonlinear equation for a step change in ce from 1.8 to 1.9 is obtained as shown in
Fig. 2(c) (in terms of deviation variable). Employing the method discussed earlier, the initial
guesses for the model parameters are obtained from the response as L = 20, τN = 0, kp = 1.311 and
τ = (600/8) =75. The leastsq MATLAB routine gives the final converged parameters as L =
20.254, τN = –10.55, kp = 4.23 and τ = 175.4. The computational time on Pentium III PC is
64.5 s and the number of iterations is 110. The closed loop response of this identified model
with the same PID and filter settings gives very good comparison with that of the actual response
as shown in Fig. 2(c). The initial guess values are changed by 10% of the proposed method
considering one parameter at a time. The optimization routine gives the same final converged
parameters. The effect of white noise on the process output on identification of transfer function
model is evaluated and the converged parameters are listed in Table III.

In all the above case studies, the closed loop time constant is obtained from the response as
(ts/4). It is assumed that the closed loop time constant is equal to twice that of open loop time
constant, i.e. τc = 2τ and hence τ = τc/2= ts/8. For higher order systems, τc = nτ, where n is more

Table III
Effect of noise on the identification of transfer function model

Transfer Without noise With noise
function Final converged values No Time Final converged values No Time
model kp L τN τ kp L τN τ

Case 1 0.25 0.250 1 69 9.9 1 0.254 0.264 1.02 94 13.2
study 1

Case 1 0.25 –0.25 1 70 11.1 1 0.22 –0.21 1.04 196 31.7
study 2

Case 0.99 0.32 –0.21 1 76 12.2 1 0.29 –0.17 1.04 260 41.8
study 3

Chemical 4.23 20.3 –10.6 175 110 64.5 4.2 25.2 –17.5 198.4 134 78.81
reactor

L, τN and τ are in s.
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than two. If we take n = 3, then τ = ts/12. The value of n depends on the controller system design.
Initial guess values of τ also affect the initial guess values of kp. If we take ts/12 rather than ts/8
for the guess value of τ, for some cases during the iterative process (unconstrained optimization),
this value goes to the negative side and reverts to the positive side thereby taking longer time to
converge. Therefore, we recommend the initial guess for τ to be ts/8. By simulation, it has also
been observed that depending on the case study the parameter that is insensitive to initial guesses
keeps changing.

4. Conclusions

A method is proposed to identify an unstable first-order plus time delay model with a zero using
the PI or PID-controlled step response data. The identification is carried out by a standard
optimization routine. The initial guesses for the model parameters are obtained from the closed
loop initial delay, settling time, the controller gain and the time during which an inverse response
is obtained. The proposed method can be used regardless of the type of closed loop response
(such as over or under damped) in the identification step. The proposed method gives model
parameters whose response matches well with that of the system. The effect of changing controller
settings on identification of the transfer function model is also studied. The proposed method is
robust to measurement noise and change in controller settings. If the initial guess is selected
arbitrarily, the optimization routine does not converge. The guess values by the present method
give guaranteed convergence. Simulation studies of the proposed method of three unstable transfer
function models and also of the nonlinear CSTR control problem show that the identified models
are in good agreement with the original processes.
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