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Transverse mass and rapidity distributions for charged pions, charged kaons, protons, and antiprotons
are reported for ,/syy =200 GeV pp and Au + Au collisions at Relativistic Heary Ion Collider
(RHIC). Chemical and kinetic equilibrium model fits to our data reveal strong radial flow and long
duration from chemical to kinetic freeze-out in central Au + Au collisions. The chemical freeze-out
temperature appears to be independent of initial conditions at RHIC energies.

DOI: 10.1103/PhysRevLett.92.112301 PACS numbers: 25.75.Dw

Quantum chromodynamics predicts a phase transition  state serve as strong evidence of QGP formation. These
from hadronic matter to quark-gluon plasma (QGP) at  bulk properties include strangeness and baryon produc-

critical temperature 7, = 170 MeV, at extreme condi- tion rates, collective transverse radial flow, and system
tions of high energy density, possibly achieved in rela-  temperature. These can be studied via particle spectra.

tivistic heavy-ion collisions [1]. Signals of QGP may In this Letter we report results on charged pion (7%),
remain in the bulk properties of the collision, and simul-  charged kaon (K~), proton (p), and antiproton (p) pro-

taneous observations of multiple QGP signals in the final ~ duction from pp and Au + Au collisions at Relativistic
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Heavy Ion Collider (RHIC) by the STAR experiment at
the nucleon-nucleon center-of-mass energy of /syy =
200 GeV. In some models it is argued that particle multi-
plicity density per transverse area of interaction measures
the initial gluon density [2], particle ratios measure the
chemical freeze-out conditions [3], and transverse mo-
mentum spectra measure the kinetic freeze-out condi-
tions [4]. We study these properties at midrapidity as a
function of centrality. The rapidity dependences of par-
ticle production and spectra shape are also investigated.

Charged particles are detected in the STAR time pro-
jection chamber (TPC) [5]. The TPC is surrounded by a
solenoidal magnet providing a uniform magnetic field of
0.5 T along the beam line. Zero degree calorimeters and
beam-beam counters [6] provide a minimum bias trigger
for Au + Au and pp collisions, respectively. Events with
a primary vertex within =25 cm of the geometric center
of the TPC along the beam axis are accepted. For this
analysis, about 2.0 X 10° Au + Au and about 2.5 X 10°
pp minimum bias accepted events are used. Only pri-
mary tracks—tracks pointing to the primary vertex
within 3 cm—are selected. The Au + Au events are
divided into nine centrality classes based on measured
charged particle multiplicity within pseudorapidity 7| <
0.5. These classes consist, from central to peripheral,
of (0-5)%, (5-10)%, (10—-20)%, (20—30)%, (30—40)%,
(40-50)%, (50-60)%, (60—70)%, and (70—80)% of the
geometrical cross section.

Particle identification is accomplished by measuring
the ionization energy loss dE/dx. The mean (dE/dx) is
determined from 70% of the samples with the lowest
dE/dx along a track. To ensure good momentum and
(dE/dx) resolution, tracks are required to have at least
25 out of the maximum 45 hits in the TPC. The (dE/dx)
resolution varies between 6% and 10% from pp to central
Au + Au events. The reconstructed momenta are cor-
rected most likely for energy loss in the detector. The
correction is negligible for 77, under 2% for K= and
under 5% for p and p in the covered momentum ranges.
The momentum resolution was estimated to be about 2%
at p; = 0.5 GeV/c. Uncorrected particle yields are ex-
tracted from (dE/dx) distributions for each p |, rapidity
and centrality bin [7-10].

Corrections are applied to account for tracking ineffi-
ciency, detector acceptance, hadronic interactions, and
particle decays. The total reconstruction efficiencies are
obtained from embedding Monte Carlo (MC) tracks into
real events at the raw data level and subsequently recon-
structing these events. The propagation of single tracks is
calculated using GEANT, a detailed description of the
STAR geometry, and a realistic simulation of the TPC
response [7-10]. The efficiencies for 7= are (50-70)%
and (80—-90)% in the covered p ; for the (0—5)% and (70—
80)% events, respectively. The corresponding efficiencies
for K= are (20-50)% and (40—70)% and for p and p (70—
75)% and (75-80)%. Background protons knocked out
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from the detector material are subtracted. This back-
ground is (50-60)% at p; = 0.4 GeV/c and becomes
less than 5% at 1.0 GeV/c [8].

Corrections for the pp data are similar to those for the
(70-80)% Au + Au events. Additional corrections are
applied for primary vertex reconstruction inefficiency
and fake events (events with misreconstructed vertex
due to the pileup background). These corrections are ob-
tained by embedding HIJING [11] events into events that
had been triggered on empty bunches, and reconstructing
the combined events. The vertex reconstruction ineffi-
ciency strongly decreases with increasing event multi-
plicity resulting in approximately 14% of the events
being missed, over 80% of which have fewer than three
tracks in the TPC. About 12% of pp events are fake events
with reconstructed multiplicity about half of that of real
events due to time distortion in the pileup background,
resulting in an overall correction of (6—8)% in the cov-
ered p| range.

The pion spectra are further corrected for weak decay
products, muon contamination, and background pions
produced in the detector material. The resulting correc-
tion is approximately 12%. Because weak decay (anti)-
protons carry most of the parent momentum, their tracks
behave as those originating from the primary vertex,
resulting in the same reconstruction efficiency for weak
decay and primary (anti)protons over the measured
p1 range. The inclusive (anti)protons closely reflect
total (anti)baryon production [7,8]. Therefore, we
present inclusive proton and antiproton distributions that
are not corrected for weak decays. Based on the measured
A distribution [12], we estimate that about 40% of the
measured protons are from weak decays, and the mea-
sured inclusive {(p,) are similar to those of primary
protons.

The point to point systematic uncertainties on the
spectra are estimated by varying event and track selection
and analysis cuts and by assessing sample purity from the
dE/dx measurement. The estimated uncertainties are less
than 4% for 7=, p, and p. Those for K= are less than 12%
for p, bins with significant overlap in dE/dx with e* or
7=, and less than 4% for other bins. An additional Sys-
tematic error on the proton spectra due to background
subtraction is estimated to be 5% at low p, and negligible
at high p, [8]. A correlated systematic uncertainty of
5% 1is estimated for all spectra and is dominated by
uncertainties in the MC determination of reconstruction
efficiencies.

Figure 1 shows transverse mass (m; = pzl + m?)

spectra for 7=, K=, p, and p for pp and all centrality
bins of Au + Au data within |y| < 0.1. For clarity, proton
spectra are scaled by 0.8. While the 77~ spectra shapes are
similar for pp and Au + Au, K=, p, and p spectra show a
progressive flattening from pp to central Au + Au events.
Similar trends were also observed for Au + Au collisions
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Invariant yield as functions of transverse mass for 7=, K=, and inclusive p and p at midrapidity (|y| <0.1) for pp

(bottom) and Au + Au events from (70-80)% (second from bottom) to the (0—5)% centrality bin (top). The curves shown are

explained in the text.

by PHENIX [13]. Our pp results are consistent with
previous measurements at similar multiplicities [14].

The blast-wave model—a hydrodynamically moti-
vated model with a kinetic freeze-out temperature Ty;,
and a transverse flow velocity field 8 [4]—can simulta-
neously fit the K=, p, and p spectra and the high-p | part
(p1 > 0.50 GeV/c) of the 77 spectra. We used a velocity
profile of B = B,(r/R)", where r =< R (the term r/R
accounts for the change in the velocity as a function of
radial distance), B, is the surface velocity, and n is treated
as a free parameter. The value of n ranges from 1.50 =
0.29 in peripheral to 0.82 £ 0.02 in central events. The fit
results are superimposed in Figs. 1(b) and 1(c). The
obtained fit parameters for the (0—-5)% Au + Au events
are Ty, = 89 = 10 MeV and (B) = 0.59 = 0.05, B, =
0.84 £ 0.07, and are similar to the 130 GeV results re-
ported in [9,14]. The systematic uncertainties in the fit
parameters are estimated by excluding the kaon or the
(anti)proton spectra from the fit.

Recent attempts to fit the measured RHIC spectra with
a single (chemical and kinetic) freeze-out temperature
claim this is possible if all the resonance and weak decay
feed downs are taken into account [16]. Our MC study of
that scenario shows significantly higher y?/NDF com-
pared to our blast-wave fits.

The low-p | part of the pion spectrum deviates from
the blast-wave model description, possibly due to large
contributions from resonances at low p . We fit the pion
spectra to a Bose-Einstein distribution [o<1/(expZ+ —
1)], the results of which are superimposed in Fig. 1(a).
The yields outside the measured p; region are extrapo-
lated using the blast-wave model for K=, p, and p and the
Bose-Einstein distribution for 7. The extrapolation is
approximately 30% for pions, and varies with centrality
from about 35% to 55% for kaons and (anti)protons. The
uncertainties on these extrapolations are estimated by
comparing to results using other functional forms. The
estimated extrapolation uncertainties in the (p,) and
total yield are 5% for 7= and 5% to 10% for K=, p, and
p (varying from pp to central Au + Au collisions). For
the (0-5)% Au + Au collisions, the integrated yields are
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dN/dy = 322 * 32 for ", 327 = 33 for w—, 51.3 + 7.7
for K*,49.5 = 7.4 for K—, 34.7 + 6.2 for p, and 26.7 *
4.0 for p. The obtained p/p ratio for the 0%—5% Au +
Au collisions is 0.77 = 0.05, indicating a nearly net-
baryon free midrapidity region at this RHIC energy.

We extract the fiducial dN/dy by summing up the
yields within the p; range of 0.20-0.70 GeV/c for 7,
0.25-0.60 GeV/c for K~, and 0.50-1.05 GeV/c for p.
Figure 2 depicts the rapidity dependence of the fiducial
dN/dy and extrapolated (p, ) for the (0-5)% and (70—
80)% Au + Au events. We do not observe changes in
either shape or yield for any particle species within |y| <
0.5. The pp data and all other centrality bins of the Au +
Au data exhibit the same behavior. Such an absence of
rapidity dependence of particle spectra was also observed
for 77, p, and p at VSvy = 130 GeV Au + Au collisions
[8,9]. This uniformity indicates the development of a
boost-invariant region within the measured kinematic
ranges.

The centrality dependence of the extracted (p | ) within
|yl < 0.1is shown in Fig. 3(a). A smooth changeover from
pp to peripheral Au + Au collisions is observed for all
particle species. The (p | ) increases from pp and periph-
eral Au + Au to central Au + Au collisions, especially
for p, p, and K=. This behavior is consistent with an
increase of radial flow with collision centrality.

The K~ /7~ and p/#7 ratios of the integrated dN/dy
yields within |y| < 0.1 are depicted in Fig. 3(b). We ob-
serve little centrality dependence of the K~ /7~ or p/m~

k) 40 00-0-0-0-0-0-0-0-4 /5] f -0-0-0-0-0-0-0-0-0-0- T~ /5
£ 30+ 15 1L ,
20| ek kR K etk Ao K

10+ REAEEEEE RSN 5 - 05 G 5 ]
0 0-5% Au+Au 0 70-80% Au+Au
S <054 ¥-yrQv. 7-Q.5— S -0.5 0 0.5
% 1 ORrvrele Q55 % 1k R
o i S S Pl NG 7:A:A:AfAfA:A*AZAi& p_
R P SUSUONE b S Sevssorri d S
»— =
b 0L0-5% AurAu v 0L70-80% Au+Au
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FIG. 2. Rapidity distributions of the fiducial yields and in-
tegrated (p ).
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FIG. 3.

(a) (py)and (b) K~ /7~ and p/a~ as a function of dN,/dn. (c) Midrapidity K~/ as a function of%. Systematic

errors are shown for STAR data, and statistical errors for other data.

ratio from midcentral to central Au+ Au colli-
sions, indicating a similar freeze-out condition in these
collisions. Similar centrality behavior has been observed
for other particle ratios measured at ,/syy = 200 and
130 GeV [8,10].

The observed centrality independence of K~ /7~ is in
contrast to low energy data at Super Proton Synchrotron
(SPS) [17] and Alternating Gradient Synchrotron (AGS)
[18], where a continuous increase in K~ /7 was observed,
roughly doubling from peripheral to central collisions. To
put our results into perspective with low energy data, we
plot in Fig. 3(c) the K~/ ratio as a function ofm,
in an attempt to reflect effects of both the collision energy
and centrality. Here S is an estimate of the transverse
overlap area: § = 7[1.12(Nyy/2)"/3?, where number of
participants Np,, is experimentally measured for the
AGS and SPS data and calculated via the MC Glauber
model for RHIC data [9]. The % may be related to
the initial conditions of the collision [2,19], such as
energy density. In high energy collisions the initial gluon
density is saturated up to a momentum scale that is
proportional to /(dN/dy),/S [2]. Using data over a
wide range of collision energy measured in various col-
liding systems, Fig. 3(c) shows a distinct change in the
ratio behavior. Low energy measurements (each repre-
senting approximately the top 60% of the geometrical
cross section) appear to follow a trend that saturates at
RHIC energies. One interpretation of this is that strange-
ness production at low energies depends on how the
collision was initially prepared, but not at RHIC energies.
On the other hand, the K /7 and p/7 ratios display a
different behavior with / 4)y . However, we note that
the net-baryon density, 51gn1ﬁcant at low energies, greatly
affects K* and p abundances through associated produc-
tion of K* with baryons [10] and baryon-antibaryon
annihilation [20], respectively.

In the framework of a chemical-equilibrium model
[3,21], integrated yield ratios can be described by a set
of parameters: the chemical freeze-out temperature (7,),
the baryon and strangeness chemical potentials (ug, w,),
and the strangeness suppression factor (y,). We fit our
measured ratios with such a model to extract these pa-
rameters. The value obtained for the chemical potential,

g =~ 22 * 4 MeV, is independent of centrality within
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errors, and u, is consistent with 0. The obtained v,
increases from 0.56 = 0.04 in pp to 0.86 = 0.11 in central
Au + Au collisions reflecting the measured K /7 ratios.
The obtained T, is summarized in Fig. 4 as a function of
charged hadron multiplicity, together with T};, and {(8)
extracted from the blast-wave model fit to our data. As
seen in Fig. 4, \/(dN/dy),/S increases with centrality,
T, is independent of it, T};, decreases, and (B) increases
with centrality. This suggests that Au + Au collisions of
different initial conditions always evolve to the same
chemical freeze-out condition, and then cool down fur-
ther to a kinetic freeze-out dependent on centrality. The
expansion of the system gives rise to collective flow.

During expansion from chemical to kinetic freeze-out,
entropy density drops approximately as T° [22], implying
that the system size at kinetic freeze-out is at least a
factor of ]:“ of the size at chemical freeze-out. This
suggests a time span from chemical to kinetic freeze-
out in central collisions is at least of the order of Ar =
(Tkh — 1)R/B,; = 6 fm/c. Here we have taken R = 6 fm,
the Au nuclei radius, as an estimate of the system size at
chemical freeze-out.

In summary, we have reported transverse mass and
rapidity distributions of 7=, K=, p, and p for pp and
Au + Au collisions at ,/syy = 200 GeV at RHIC. A
boost-invariant region of at least Ay = 1 is developed at
midrapidity for particles within our measured p, range.
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0.4+ , * 11 06 |4 4
| f ‘ l A T ‘ ‘
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02l T A [
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ch dl’] chh

FIG. 4. (a) J(dN/dy),/S (stars), Ty, (circles), and Ty, (tri-
angles), and (b) {(B) as a function of dN./dn. Errors are
systematic.
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The spectra are well described by the blast-wave model,
yielding a decreasing Ty;, and increasing (8) with cen-
trality, reaching the values of Tj;, = 89 £ 10 MeV and
(B)=10.59 = 0.05 in the 5% most central collisions.
Particle ratios vary smoothly from pp to peripheral Au +
Au and remain relatively constant from midcentral to
central Au + Au collisions. The K~/ ratio from various
collisions over a wide range of energy reveals a distinct
behavior in %. A chemical-equilibrium model fit to
the ratios yields a T, insensitive to centrality with a value
of 157 = 6 MeV for the 5% most central collisions. The
drop in temperature from T, to Ty;, and the development
of strong radial flow suggest a significant expansion and
long duration from chemical to kinetic freeze-out in
central collisions. From these results the following picture
seems to emerge at RHIC: collision systems with varying
initial conditions always evolve towards the same chemi-
cal freeze-out condition followed by cooling and expan-
sion of increasing magnitude with centrality.

We thank the RHIC Operations Group and RCF at
BNL, and the NERSC Center at LBNL for their support.
This work was supported in part by the HENP Divisions
of the Office of Science of the U.S. DOE; the U.S. NSF;
the BMBF of Germany; IN2P3, RA, RPL, and EMN
of France; EPSRC of the United Kingdom; FAPESP of
Brazil; the Russian Ministry of Science and Technology;
the Ministry of Education and the NNSFC of China;
Grant Agency of the Czech Republic, DAE, DST, and
CSIR of the Government of India; the Swiss NSE

*Electronic address: www.star.bnl.gov
[1] E Karsch, Nucl. Phys. A698, 199¢c (2002).
[2] D. Kharzeev and E. Levin, Phys. Lett. B 523, 79 (2001).

112301-6

(31
(4]
(3]
[6]
(7]
(8]
(91
(10]
[11]
[12]
[13]
[14]

[15]
[16]

(17]

[18]

P. Braun-Munzinger, 1. Heppe, and J. Stachel, Phys. Lett.
B 465, 15 (1999).

E. Schnedermann, J. Sollfrank, and U. Heinz, Phys. Rev.
C 48, 2462 (1993).

K. H. Ackermann et al, Nucl. Instrum. Methods Phys.
Res., Sect. A 499, 624 (2003).

J. Adams et al, Phys. Rev. Lett. 91, 172302 (2003).

C. Adler et al., Phys. Rev. Lett. 87, 262302 (2001).

J. Adams et al., nucl-ex/0306029; C. Adler et al., Phys.
Rev. Lett. 86, 4778 (2001);90, 119903 (2003).

J. Adams et al., nucl-ex/0311017.

C. Adler et al., nucl-ex/0206008.

X.-N. Wang and M. Gyulassy, Phys. Rev. D 44, 3501
(1991).

C. Adler et al., Phys. Rev. Lett. 89, 092301 (2002).

S.S. Adler et al., nucl-ex/0307022.

C. Albajar et al, Nucl. Phys. B335, 261 (1990);
T. Alexopoulos et al, Phys. Rev. D 48, 984 (1993).

C. Adler et al., Phys. Rev. Lett. 87, 182301 (2001).

A. Baran, W. Broniowski, and W. Florkowski, Acta Phys.
Pol. B 35, 779 (2004).

E Siklér, Nucl. Phys. A661, 45¢ (1999); 1. G. Bearden
et al., Phys. Lett. B 471, 6 (1999); H. Bgggild et al., Phys.
Rev. C 59, 328 (1999); S.V. Afanasiev et al., Phys. Rev. C
66, 054902 (2002).

T. Abbott er al, Phys. Rev. Lett. 66, 1567 (1991); Phys.
Rev. D 45, 3906 (1992); Phys. Rev. C 50, 1024 (1994);
L. Ahle et al., Phys. Rev. C 60, 044904 (1999); 58, 3523
(1998); 57, 466 (1998); L. Ahle et al., Phys. Lett. B 476, 1
(2000); 490, 53 (2000).

J. D. Bjorken, Phys. Rev. D 27, 140 (1983).

M. Bleicher et al., Phys. Lett. B 485, 133 (2000); E Wang,
J. Phys. G 27, 283 (2001).

N. Xu and M. Kaneta, Nucl. Phys. A698, 306c (2002).
C.Y. Wong, Introduction to High Energy Heavy-Ion
Collisions (World Scientific, Singapore, 1994).

112301-6


http:r.bnl.gov

