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The ability to detect and respond appropriately to aversive stimuli is essential for all organ-
isms, from fruit flies to humans. This suggests the existence of a core neural network
which mediates aversion-related processing. Human imaging studies on aversion have
highlighted the involvement of various cortical regions, such as the prefrontal cortex, while
animal studies have focused largely on subcortical regions like the periaqueductal gray and
hypothalamus. However, whether and how these regions form a core neural network of
aversion remains unclear. To help determine this, a translational cross-species investiga-
tion in humans (i.e., meta-analysis) and other animals (i.e., systematic review of functional
neuroanatomy) was performed. Our results highlighted the recruitment of the anterior
cingulate cortex, the anterior insula, and the amygdala as well as other subcortical (e.g.,
thalamus, midbrain) and cortical (e.g., orbitofrontal) regions in both animals and humans.
Importantly, involvement of these regions remained independent of sensory modality.This
study provides evidence for a core neural network mediating aversion in both animals and
humans. This not only contributes to our understanding of the trans-species neural corre-
lates of aversion but may also carry important implications for psychiatric disorders where
abnormal aversive behavior can often be observed.
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INTRODUCTION
BACKGROUND ON AVERSION
The ability to detect and respond appropriately to potentially
harmful stimuli is essential to the well-being and self-preservation
of all organisms. Avoidance behavior can be observed in both
humans and animals. Even organisms with relatively simple ner-
vous systems (e.g., worms, fruit flies) display avoidance behaviors
to aversive stimuli, implying the existence of some evolutionar-
ily conserved mechanisms (Glanzman, 2005; Ardiel and Rankin,
2010). In its most basic form, an aversive event (regardless of its
origin) is one that an organism will expend energy to minimize
or avoid; in this context, it is operationally opposite to reward
(Wise, 2004). The occurrence of such behavior across higher-
and lower-order species allows one to assume the existence of a
basic or core neural network mediating aversion. For instance,
in a recent review paper, Seymour et al. (2007) suggested that
regions such as the prefrontal, orbitofrontal, and insular cortices

Abbreviations: ACC, anterior cingulate cortex; AI, anterior insula; amyg, amygdala;
BNST, bed n of the stria terminalis; ctx, cortex; d, dorsal; DMPFC, dorsomedial
prefrontal ctx; DR, dorsal raphe; DS, dorsal striatum; Hab, habenula; Hipp, hip-
pocampal area; Hyp, hypothalamus; IC, inferior colliculus; IL, infralimbic ctx; Ins,
insula; lat, lateral; LC, locus coeruleus; n, nucleus; NAc, nucleus accumbens; NTS, n
of the solitary tract; OFC, orbital frontal ctx, PAG, periaqueductal gray; Parahipp,
parahippocampal gyrus; PBN, parabrachial n; PFC, prefrontal ctx; PL, prelimbic;
RTG, rostral temporal gyri; SC, superior colliculus; Sens, sensory ctx; Sep, septal
n; SMA, secondary motor area; Thal, thalamus; VLOFC, ventrolateral orbitofrontal
ctx; VTA, ventral tegmental area.

(along with other regions such as the amygdala and basal gan-
glia) were essential in regulating the effects and actions associated
with social aversion. The main hypothesis of the present inves-
tigation is that there are a number of brain regions which are
initially involved in the basic processing of aversive stimuli, as
empirical evidence for such a core aversion network remains to be
provided.

Human neuroimaging studies have been key in understanding
the role of many predominantly cortical regions (e.g., prefrontal,
orbitofrontal, and insular cortices; e.g., Rolls et al., 2008; Meriau
et al., 2009) in the processing of aversive stimuli (e.g., by show-
ing subjects aversive pictures or exposing them to mild shocks or
uncomfortable temperatures). In addition, some of these studies
have also investigated various behavioral and cognitive facets of
aversion-related to fear, anxiety, and pain (e.g., Labar et al., 1998;
Chua et al., 1999; Ploghaus et al., 1999; Milad et al., 2007). Similar
to those studies looking at responses to generally aversive stimuli,
these studies also report recruitment of areas such as the medial
prefrontal cortex, the amygdala, the insula, and the anterior cingu-
late cortex (ACC). Such an overlap between activations associated
with generally aversive stimuli on the one hand and those associ-
ated with fear, anxiety, and pain on the other, suggest an underlying
core neural network mediating aversion-related processing. How-
ever, given the limited spatial resolution, neuroimaging mainly
allows insight into cortical regions while it is less able to provide
detailed information about subcortical regions (though a growing
number of studies aim to overcome this using imaging sequences
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focused on precise areas of interest; e.g., Prevost et al., 2011). This
is particularly relevant if one assumes that aversion-related pro-
cessing recruits a basic neural network across species, including
those with a less developed cortex.

Animal studies on aversion have largely focused on various
subcortical regions. In particular, aversion-related studies in ani-
mals have highlighted the importance of subcortical areas such
as the periaqueductal gray (PAG), hypothalamus, bed nucleus
of the stria terminalis (BNST), raphe nuclei, nucleus accum-
bens/ventral striatum (NAc/VS), and ventral tegmental area (VTA;
e.g., Misslin, 2003; Walker et al., 2003; Jhou, 2005; and for a
related review see Carlezon and Thomas, 2009). For instance,
direct electrical activation of the PAG results in robust aver-
sive/avoidance behaviors and activates other subcortical structures
such as the thalamus and hypothalamus (Vianna et al., 2003).
However, whether these subcortical regions, in conjunction with
the above reported cortical regions, form a core aversion network
remains unclear.

The general aim of this study is to investigate the regions
involved in aversion-related processing in both humans and non-
human animals. To this end, we conducted systematic analyses of
human and animal data and compared them for neuroanatom-
ical overlaps and differences. Our specific aims were as follows.
First, we aimed to conduct a meta-analysis on human imag-
ing data. Based on the previous data, we hypothesized that this
meta-analysis would associate activations in the anterior cingulate,
amygdalae, anterior insula (AI), and medial or lateral prefrontal
cortex with aversion. We focused on the mere passive perception
of aversive stimuli (e.g., the viewing of unpleasant pictures; expo-
sure to unpleasant, but non-painful, tactile/thermal stimuli), while
excluding studies with more complex task requirements as well
as those implicating additional cognitive and behavioral variables
(e.g., decision-making tasks, reflex tasks, tasks specifically targeting
pain, fear, or anxiety responses).

Our second aim consisted in the systematic investigation of
various aversion studies in animals. Given results from prior stud-
ies, noted above, we hypothesized the predominant involvement
of subcortical regions like the VTA, NAc/VS, BNST, and PAG with
aversion. Because the results from both animals and humans could
reflect the impact of unspecific effects associated with distinct
sensory modalities, we carefully controlled for this potential con-
found by contrasting the aversive stimuli according to modality
[i.e., auditory, tactile, and visual; olfaction (three studies included)
and gustation (one study included) were not investigated in the
meta-analysis due to too few studies].

Methodologically, the use of a meta-analytical approach allows
for the clear distinction of areas which have been identified reli-
ably across numerous studies – in comparison to individual brain
imaging studies which may have low power and/or report a high
percentage of false positive activations (Wager et al., 2009). As
previously demonstrated by our group in the case of depression
(Alcaro et al., 2010), the incorporation of animal studies allows for
a cross-species comparison and ensures that especially subcorti-
cal areas, which may be important for aversion-related processing
(but may not be noted in many human imaging studies due to
technical limitations), are identified.

MATERIALS AND METHODS
AVERSION-RELATED BRAIN ACTIVATION IN HUMANS
Literature search
To form a dataset of coordinates, we conducted multiple PubMed1

searches to initially identify all imaging studies – positron emission
tomography (PET) and functional magnetic resonance imaging
(fMRI) – published from 2000 to February 2010. The search
included keywords such as “aversion,” “aversive,” “avoidance,”
“fear,” “anxiety,” “punishment,” “reinforcement” (to capture those
studies focusing on reward that have also included independently
analyzed aversive conditions),“PET,”“positron emission tomogra-
phy,” “fMRI,” and “functional magnetic resonance imaging.” Fur-
thermore we searched the reference list of identified articles and
several reviews, including meta-analyses (for example Costafreda
et al., 2008; Mechias et al., 2010).

Inclusion and exclusion criteria
Our main goal was to investigate the basic neural correlates of
aversion. Therefore, we included only those studies and contrasts
which used the mere passive presentation of aversive stimuli (e.g.,
the viewing of unpleasant pictures; exposure to unpleasant, but
non-painful, tactile/thermal stimuli) but did not require any active
responses. Without behavioral measures, the nature of aversive
experiences were determined subjectively and often supported
through physiological measures such as electrodermal activity. As
such, designs whose contrasts involved explicit behavioral tasks,
learning tasks, or those that did not include specific comparisons
relevant to the current analysis (i.e., involving the passive per-
ceptual component of aversion, independent of explicit cognitive
processes, memory, or attention) were excluded. In addition, only
studies that reported coordinates from whole-brain analysis were
included (although some studies discussed region-of-interest data,
those coordinates were not included here).

Most studies investigating responses to specific negative emo-
tions through face-viewing (e.g., angry or sad faces) were also
excluded given the social nature of such stimuli and the ambigu-
ous interpretations possible (e.g., inconsistent relationships to
empathy or the signaling of physical contamination, for instance
related to disgust; e.g., see Anderson et al., 2003; Chakrabarti et al.,
2006). For an analysis of such emotional stimuli, showing results
consistent with the present study, the reader is referred to the
meta-analyses by Fan et al. (2010) and Kober et al. (2008). Studies
investigating explicitly social aspects of aversion (e.g., Eisenberger
et al., 2003) were also excluded given they typically involve both
behavioral responses, as well as other potential confounder vari-
ables such as empathy and theory of mind (e.g., Rilling et al., 2004).
An extensive list of studies involving conditioned fearful stimuli
in both humans (e.g., Bach et al., 2011; Delgado et al., 2011) and
animals (e.g., Johnson et al., 2011; Parsons and Davis, 2011) were
also excluded to avoid issues pertaining to recent learning effects
and complex designs (e.g., involving various temporal and spatial
parameters), although the authors acknowledge that these stud-
ies often use similar stimuli and their results are largely in line
with those reported here. Finally, studies investigating responses

1http://www.pubmed.gov
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to painful stimuli were also presently excluded as the unique expe-
rience of pain may confound the present results. However, the
authors acknowledge that future studies should investigate such
studies in this regard.

In addition, to control for the possible confounding effects
of using aversive stimuli from different sensory modalities, we
contrasted the stimuli according to modality (i.e., auditory, tac-
tile, and visual; olfaction and gustation were not investigated
due to too few studies). This resulted in the following contrasts:
auditory >< tactile, auditory >< visual, visual >< tactile.

We included studies reporting single group data (i.e., healthy
subjects only); thus, we did not consider coordinates reporting a
main effect of processing across the control and a clinical group,
nor did we consider coordinates relative to functional,psychophys-
iological, or psychopathological correlations. Studies including
individuals with psychiatric illnesses, or a history thereof, those
with volumetric abnormalities or brain injuries, those taking any
medications or illicit drugs, and those belonging to a group that
may result in a sample bias (e.g., war veterans) were excluded.
In addition, a large number of studies were excluded due to
the absence of coordinates, identification of coordinate systems,
and/or incomplete statistical information.

We then individually screened all the articles for the presence
of Talairach or Montreal Neurological Institute (MNI) coordi-
nates and tabulated the reported regional foci. We focused on
studies that directly compared the activation of aversion-related
circuitry in healthy adult subjects. These criteria resulted in the
selection of 34 studies (for a total of 427 subjects; 45% male),
which included 44 contrasts (see references for studies included in
the meta-analysis). The authors acknowledge that these stringent
inclusion/exclusion criteria have prevented the inclusion of many
imaging studies investigating the processing associated with the
perception of aversive stimuli. We have done this so as to reduce
the number of possible confounding variables but acknowledge
that some studies may have been overlooked, particularly if they
did not use typical aversion-related terminology (e.g., aversion,
punishment, negative).

Multilevel kernel density analysis meta-analytic technique
The benefits of using the multilevel kernel density analysis
(MKDA) meta-analytic approach over others, as well as an exten-
sive elaboration of technical considerations, has been covered
in-depth elsewhere (Salimi-Khorshidi et al., 2009; Wager et al.,
2009). Briefly, MKDA is a coordinate-based meta-analytic method
which determines the activation probability of each voxel (to create
voxel-based study comparison maps) and contiguous voxel clus-
ters (to create extent-based study comparison maps which identify
significant clusters of activation) across the brain. Compared with
other meta-analysis methods, MKDA prevents any single study
reporting a large number of activations from biasing the results
(i.e., the study is the unit of analysis) and weights contrasts based
on the quality of the study (e.g., random vs. fixed effects) and
the sample size. Peaks from each study were convolved with a
spherical kernel of 10 mm radius; the threshold for statistical sig-
nificance was determined using a Monte Carlo simulation with
3000 iterations (using 5000 iterations did not alter the results).
The voxel size for the present study was 2 mm × 2 mm × 2 mm

(i.e., 1 voxel = 8 mm3) and cluster sizes were all greater than 10
voxels (>80 mm3). We have reported peak voxel-wise activations
as well as peak cluster-wise activations (which include contiguous
voxels significant at p < 0.001; whole-brain FWE corrected). All
results are family wise error rate whole-brain corrected at p < 0.05.
Analyses were performed in Matlab 2009a (Mathworks, Natick,
MA, USA) using MKDA software created by Tor Wager2.

AVERSION-RELATED BRAIN ACTIVATION IN ANIMALS
Literature search
We conducted multiple PubMed (see text footnote 1) searches to
initially identify all non-human animal studies related to aver-
sion (∼350 studies) published in English from 2000 to February
2010. Furthermore we searched the reference list of identified
articles and several reviews. The search included keywords such
as “aversion,” “aversive,” “avoidance,” “fear,” “anxiety,” “punish-
ment,” “threat,” “reinforcement,” “c-Fos,” “Fos,” “immediate early
genes,” “IEG,” “electrophysiology,” “positron emission tomogra-
phy”, “PET,” “functional magnetic resonance imaging”, “fMRI.”
Of the total studies identified, only those clearly showing altered
brain metabolism (e.g., increased/decreased c-Fos or blood oxy-
genated level dependent activity, or BOLD) in mammals were
included in the systematic review (i.e., 42 studies). Due to lack
of methodological instruments, absence of precise standardized
coordinate systems, the wide range of experimental procedures,
and the diversity of regional anatomy in different species, we were
not able to conduct the same rigorous meta-analysis in animals as
in humans.

We looked at the following metabolic indexes of non-human
animal brain activity: immediate early gene activation (e.g., c-
Fos or Fos-like expression), BOLD activity in fMRI, [14C]-2-
deoxyglucose, and [14C]-iodoantipyrine. Each of these indexes has
previously been related to neural activity and/or metabolism. Con-
sidering the broad spectrum of animal models of aversion-related
behavior (e.g., footshock exposure, conditioned taste aversion
etc.), we looked at all those data that report clear effects in brain
activity between control animals and those exposed to non-painful
aversive stimuli.

Inclusion and exclusion criteria
As in humans, our main goal was to investigate the basic neural
correlates of aversion. Therefore, we aimed to include only those
studies which investigated changes in brain metabolism (e.g.,
increases in immediate early genes, such as c-Fos, or changes in
BOLD activity) related to the mere passive presentation of stim-
uli (e.g., mild footshock, predatory odor, aversive taste), and not
directly related to any behavioral task which might be involved.
This is important to note given that many animal studies (includ-
ing many of those noted here) involve the measurement of a
behavioral variable (e.g., avoidance of a stimulus as a reflection
of its aversive properties). However, the present studies were cho-
sen for their careful controlling of such behavioral variables and
their general focus on brain areas associated with the processing of
aversive stimuli. Although an explicit analysis on sensory modal-
ity was not undertaken in animals (due to too few studies in each

2http://www.columbia.edu/cu/psychology/tor/
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domain), the available studies were informally compared for brain
activations across modalities and compared to the meta-analytic
results noted in humans.

Similar to human studies, many animal studies have been
excluded for their use of complex behavioral tasks, a focus on
social aversion factors, or those focused mainly on memory- or
learning-related mechanisms as opposed to basic aversion-related
processing. Studies focused on biological/molecular changes or
manipulations (e.g., locally injected drugs) related specifically to
neurochemicals (which have many known functions throughout
the nervous system; e.g., neurotransmitters such as dopamine and
GABA), were also excluded in the present study – although the
authors acknowledge that future such analyses may prove helpful.
In addition, studies involving adolescent animals, chronic expo-
sure to aversive stimuli (as considered in relation to the paradigm
under investigation), and exposure to drugs of abuse and drugs
which have a known direct effect on aversion- or reward-related
brain circuitry, were excluded (although non-drug-exposed con-
trols were included where appropriate). This was done in order to
avoid confounding issues related to neurodevelopment and drug
interactions and/or drug-induced changes in brain structure or
function unrelated to the acute aversive treatment. Studies using
electrical/chemical lesions or other irreversible alterations (e.g.,
the use of knock-out or transgenic rodents or animals bred for
psychiatric disorder-related phenotypes) were also excluded for
clarity.

These inclusion and exclusion criteria resulted in the selection
of almost exclusively studies involving rodents, except for a sin-
gle study involving macaques (Hoffman et al., 2007). While only
one non-human primate study met the strict criteria for inclusion,
we have included some primate studies in the discussion section
involving electrophysiological techniques or targeted lesions (e.g.,
Morrison and Salzman, 2009; Machado et al., 2010) in an attempt
to better bridge the gap between animals and humans. Nonethe-
less, while we recognize the limitations of this approach (discussed
below), we believe that it is the best available approach at present.

In order to compare aversion-related activity across the human
and animal data, we listed the respective regions for both species
and checked for hyper- and hypo-activity. As few studies in any
domain reported hypoactivity, these are not discussed in detail
here. Although a detailed comparison of commonly activated
regions in both humans and animals would be informative, spa-
tial limitations in human imaging techniques, and the absence
of a clear human-to-non-human-mammal brain atlas, make this
difficult beyond the descriptive level. Any comparison between
human and animal data raises the question of homology of brain
regions. Since they show analogous anatomy and are described
by similar names, analysis of subcortical regions do not raise the
problem of homology (Panksepp, 1998). In contrast, the issue
of homology becomes more problematic in the case of cortical
regions that show both anatomical and terminological differences
between humans and animals. Nonetheless, even areas which may
be considered largely“higher-order”or evolutionarily more recent,
such as the prefrontal cortex, may show strong structural and func-
tional homologies between primates and other mammals, such as
rodents (Heidbreder and Groenewegen, 2003; Dalley et al., 2004).
Concerning cortical regions, we relied on criteria of homology as

established by recent authors (Ongur and Price, 2000; Shumake
and Gonzalez-Lima, 2003; Vertes, 2006).

RESULTS
AVERSION-RELATED BRAIN ACTIVATION IN HUMANS
Meta-analysis results indicated the activation of core aversive
brain circuitry involving the amygdala (Amyg), AI, ACC, ven-
trolateral orbitofrontal cortex (VLOFC), hippocampus (Hipp),
and parahippocampal gyrus (Parahipp), dorsal striatum (DS),
rostral temporal gyri (RTG), and thalamus (Thal). Significant
clusters, extending from regions with peak activations, were also
noted in the dorsomedial prefrontal cortex (DMPFC), secondary
motor area (SMA), and midbrain (see Figure 1; Table 1, for peak
voxel-wise activations and Table 2 for extended clusters). While
not a major finding in this study (due to the use of only nine
individual contrasts), we also checked for activations which may
be specific for the anticipation, as opposed to the reception, of
aversive stimuli. In this regard, it is interesting to note that the con-
trast of anticipation > reception resulted in one small peak cluster
of activation (−16, 6, 2; 10 voxels) in the putamen of the DS;
alternately, the contrast of reception > anticipation resulted in the
following peak activations within clusters including: left and right
amygdalae, including superior temporal gyrus and hippocampal–
parahippocampal areas (−22, −2, −18, 605 voxels; 24, −8, −18,
97 voxels), right culmen (42, −46, −26; 2 voxels), right parahip-
pocampal gyrus (12, 0, −20; 2 voxels), right DS (26, −8, −10; 1
voxel).

As the studies in the meta-analysis investigated the passive
reception of aversive stimuli (when compared to non-aversive
stimuli; and therefore required little or no action on the part of
the subjects), there was no need to control for task-related effects
(as related to cognitive task effects). However, the stimuli across
studies were presented in various sensory modalities. As such, we
attempted to control for unspecific effects associated with distinct
sensory modalities (i.e., auditory, tactile, and visual; olfaction and
gustation were not investigated due to too few studies) by per-
forming contrasts between the three senses. As the number of
visual contrasts was higher (33) than either tactile (5) or audi-
tory (6), six visual contrasts were chosen (twice) at random and
compared to the other modalities.

There were no significant activations noted for the follow-
ing contrasts: tactile > visual; tactile > auditory; auditory > tactile;
auditory > visual; visual > auditory. Alternately, the contrast
visual > tactile resulted in activation of the left amygdala (−20,
−6, −16; 110 voxels; results not shown).

AVERSION-RELATED BRAIN ACTIVATION IN NON-HUMAN ANIMALS
Animal studies assessing brain activity in response to non-painful
aversive stimuli implicated all of the same regions shown in
humans (see Table 3). In addition, subcortical areas such as the
BNST, habenula (Hab), hypothalamus (Hyp), nucleus of the soli-
tary tract (NTS), NAc, PAG, parabrachial nucleus (PBN), and
septal nuclei were also noted. For individual study details and
inter-study comparisons, see Table 4.

Similar to the human analysis, brain activations resulting
specifically from aversive stimuli in each sensory modality were
noted in studies across animals. However, in comparison to human
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FIGURE 1 | Aversion network in humans. Results of meta-analysis for
human aversion-related studies. Yellow represents peak voxels in a local
neighborhood, blue represents significant extended clusters. All results
are family wise error rate whole-brain corrected at p < 0.05. The numbers
below each axial section represent the Z coordinate. Note that each area
is noted only once unilaterally for clarity. SeeTables 1 and 2 for related

coordinates and Figure 2 for an illustrated summary. Abbreviation: ACC,
anterior cingulate cortex; AI, anterior insula; Amyg, amygdala; DMPFC,
dorsomedial prefrontal cortex; DS, dorsal striatum; Parahipp/Hipp,
parahippocampus/hippocampus; RTG, rostral temporal gyri; SMA,
secondary motor cortex; Thal, thalamus; VLOFC, ventrolateral orbitofrontal
cortex.

Table 1 | Aversion network in humans – peak voxels.

Cluster MNI Number of peak voxels

(within clusters > 10 voxels)

Region BA

X Y Z

1 −22 −2 −18 526 Left amygdala, RTG, and hippocampus–parahippocampus

2 −24 10 −28 1 Rostral temporal gyri 38

3 20 −4 −14 386 Right amygdala, RTG, and hippocampus–parahippocampus

4 −22 18 −20 7 Inferior prefrontal gyrus (OFC) 47

5 −26 18 −16 2 Inferior frontal gyrus

6 −10 4 −14 1 Parahippocampal gyrus 34

7 42 16 −12 2 Inferior frontal gyrus

8 40 16 −4 4 Inferior prefrontal gyrus (OFC) 47

9 44 16 −4 1 Inferior prefrontal gyrus (OFC)

10 −36 20 4 27 Left anterior insula 13

11 30 10 0 1 Right dorsal striatum (DS)

12 −40 16 4 1 Left anterior insula 13

13 10 −10 6 2 Thalamus

14 10 −12 10 1 Thalamus

Results of MKDA analysis: Peak voxel-wise activations; see Figure 1 for associated activations.

All results are family wise error rate whole-brain corrected at p < 0.05.

studies, the majority of animal studies (done mostly in rodents)
use gustatory or olfactory aversive stimuli. Despite this difference,
and similar to the meta-analysis results, there are no areas over-
lapping with humans which can clearly be identified as modality
specific (see Table 4).

CONVERGENCE BETWEEN HUMAN AND ANIMAL DATA
Comparing the regions found in the human meta-analysis (see
Figure 1; Tables 1 and 2) to those found in the systematic animal
review (see Tables 3 and 4), a clear overlap of aversion-related
brain areas was noted. These areas have been summarized and
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Table 2 | Aversion network in humans – clusters.

Cluster MNI Size of

clusters

Region BA

X Y Z

1 −28 6 −28 752 Left amygdala/left RTG

2 48 0 −30 203 Right middle temporal

gyrus

3 32 22 −18 1089 Right inferior

prefrontal gyrus (OFC)

4 6 −34 −16 177 Midbrain (area of PAG)

5 −20 −44 −6 229 Left parahippocampal

gyrus

6 −14 2 −12 2276 Left hippocampus–

parahippocampal

gyrus

7 28 −6 −14 1486 Right amygdala

8 38 16 −4 1510 Right inferior

prefrontal gyrus (OFC)

47

9 −34 20 −6 1752 Left inferior frontal

gyrus

10 10 −24 0 578 Thalamus

11 −4 −16 0 1603 Thalamus

12 14 4 8 1367 Dorsal striatum

13 44 34 0 350 Right inferior frontal

gyrus

14 4 24 30 1084 ACC 32

15 0 52 32 784 DMPFC

16 −2 −10 38 1000 midACC 24

17 0 8 54 516 SMA

Results of MKDA analysis: cluster-wise activations; see Figure 1 for associated

activations.

Contiguous voxels (clusters) significant at p < 0.001 uncorrected and family wise

error rate whole-brain corrected at p < 0.05.

illustrated in Figure 2 as dark blue brain regions. Additional sub-
cortical regions, identified only in the systematic animal review
(although some individual human studies may have also noted
them), are identified as light beige brain regions. Furthermore, it
is interesting to point out that some areas (i.e., amygdala, insula,
prefrontal cortex – including regions of the ACC and orbitofrontal
cortices) appeared to show particularly robust activations across
both the human and animal analyses.

DISCUSSION
The present work aimed to clearly identify a network of brain
regions involved in the processing of aversive stimuli using a cross-
species translational approach. A comparison was made between
studies investigating the passive reception of aversive stimuli in
humans (using a meta-analysis; see Figure 1; Tables 1 and 2)
and non-human animals (using a systematic review; see Tables 3
and 4).

This translational analysis has identified a core cross-species
aversion-related network of brain regions which include cortical
(i.e., ACC, AI, DMPFC, RTG, SMA, and VLOFC) and subcortical

Table 3 | Major brain activations in 42 aversion non-human animal

studies using brain metabolites (e.g., c-Fos) or neuroimaging.

Rank order: Aversion (42 studies)

Area Studies reporting

activation

Percentage of studies

reporting activation

Amyg 32 76

Thal 13 30

Hyp 12 29

NTS 10 24

Parahipp/Hipp 9 21

PBN 8 19

PAG 8 19

Ins 7 17

PFC (PL, IL)/OFC 7 17

BNST 5 12

NAc 5 12

Septal 3 7

ACC, DR, DS, LC 2 Each 5

Motor, habenula, VTA 1 Each 2

Results are ordered by the number of studies reporting specific activations; per-

cent of studies reporting activations is used for comparative illustration only.

Activity reported here appears to be largely independent of sensory modal-

ity. For individual study details and inter-study comparisons, see Table 4. See

abbreviations list and/or Figures 1 and 2.

(i.e., Amyg, DS, Hipp, Parahipp, Thal, and midbrain) areas (see
Figure 2 for an illustrative summary and Evidence for a Common
Core Aversion-Related Network below for more in-depth discus-
sion; also see abbreviations list for area identification). We have
termed these regions “core” aversion-related regions as they were
collectively identified in the human meta-analysis and, in paral-
lel, confirmed through a review of animal studies. However, it is
possible that other regions (i.e., BNST, Hyp, Hab, NAc, NTS, PAG,
PBN, and septal nuclei), identified primarily in animals, may also
be activated consistently in response to aversive stimuli in humans
(and thus be part of the core network, but may be underreported
in imaging studies due to technical limitations), and have there-
fore been indicated (in light beige) in Figure 2. The involvement of
some areas (i.e., amygdala, insula, prefrontal cortex) appeared to be
a particularly robust finding across both animals and humans. In
addition, it was found that this aversion-related processing does
not appear to be dependent on the sensory modality in which
the aversive stimulus is presented. These data strongly suggest
the involvement of these subcortical–cortical regions in aversion-
related processing across species; this activity remains sensory
modality independent, thus further supporting the existence of
a core neural network mediating aversion.

AVERSIVE STIMULI ACTIVATE A CORE NETWORK IN HUMANS
The first aim was to identify brain regions associated with the
processing of aversive stimuli in humans. These results revealed
activations (Figure 1; Tables 1 and 2) which included: Amyg,
ACC, VLOFC, DMPFC, secondary motor cortex, Hipp/parahipp,
DS, RTG, Thal, and midbrain. These are in accordance with other
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FIGURE 2 | Core aversion-related circuitry. Sagittal section of a human
brain illustrating core areas consistent with all data (dark blue; for
abbreviations see Figure 1 or abbreviations list) as well as those implicated
mainly in non-human animal studies (light beige) but which may be core

areas across mammals. Abbreviation: BNST, bed nucleus of the stria
terminalis; Hab, habenula; Hyp, hypothalamus; NAc, nucleus accumbens;
NTS, nucleus of the tractus solitarius; PAG, periaqueductal gray; PBN,
parabrachial nucleus.

human imaging studies, even those associated with identifying
areas specific for some aspects of aversion, such as fear (Klucken
et al., 2009), threat (Mobbs et al., 2007), and social punishment
(Eisenberger et al., 2007). For example, in a review outlining the
putative neurobiology of social punishment, Seymour et al. (2007)
rely on human and animal studies to outline a set of structures
(i.e., prefrontal, orbital frontal, and anterior insular cortices, basal
ganglia, amygdala, and PAG) which they suggest mediate the com-
bined cognitive, conditioning-based, and action-based aspects of
social punishment. However, the present results go beyond these
suggestions by targeting an even more basic neural network related
only to aversive stimuli themselves (when compared to non-
aversive ones) that remains independent of behavioral expression
in a social or non-social context (Figure 1). This is supported by
the fact that the present meta-analysis included only those studies
using passive stimuli, while social, cognitive, and behavioral vari-
ables were excluded. This makes it seem rather unlikely that the
similarly identified brain areas would be unique to social punish-
ment. Instead, combined with our results, their suggestions appear
to further support the existence of a core aversion-related network
and suggest that aversive stimuli are, at least partly, processed in a
similar way using similar neurobiological substrates.

AVERSIVE STIMULI ACTIVATE A CORE NETWORK IN ANIMALS
While the systematic review of animal studies also identified the
same regions as in humans, additional subcortical activations were
noted predominantly in animals, including the BNST, Hab, Hyp,
NTS, NAc, PAG, PBN, and septal nuclei (see Table 3; although for
some instances of subcortical involvement in humans see imaging
studies by Becerra et al., 2001; Zald and Pardo, 2002; Jensen et al.,
2003; Herwig et al., 2007; Levita et al., 2009). It is, however, impor-
tant to note that while they support the human meta-analysis
data, most animal studies investigate targeted brain regions using
explicit, a priori determined, hypotheses (as opposed to using a
whole-brain approach). Nonetheless, most studies investigated at
least 5 brain regions, with only 8 of the 42 studies focusing on 4
or less (Radwanska et al., 2002; Badowska-Szalewska et al., 2006;
Calandreau et al., 2007; Calfa et al., 2007; Hoffman et al., 2007;
Mediavilla et al., 2007; Yasoshima et al., 2007; Baumgartel et al.,
2008; Kwon et al., 2008). Therefore, the summary in Table 3 of
the percentage of animal studies noting specific brain activations
must be considered illustrative – as these results will reflect both
the involvement of each area in aversion-related processing as well
as a general interest in the field of studying such areas. Regard-
less, similar to that in humans, these results are in accordance
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with other animal studies, even those associated with fear (Lim
et al., 2009), threat (Day et al., 2004), and social punishment
(Nikulina et al., 2008). Unlike the human studies, however, those
in animals are better able to identify and characterize subcorti-
cal regions associated with aversion-related processing as well as
provide more detailed analysis regarding the precise mechanisms
involved (e.g., identifying subregional differences and the role of
various biochemicals).

For instance, while the hypothalamus is rarely found to be
activated during aversion-related processing in the human liter-
ature (e.g., Herwig et al., 2007), many studies in animals have
identified this area as playing a key role – particularly in orches-
trating the autonomic stress responses related to the presentation
of aversive stimuli (for a general review, see Smith and Vale, 2006).
These studies have even identified subregions and nuclei within
the hypothalamus that appear to be particularly involved, such as
the paraventricular (e.g., Johnson et al., 2010a,b), ventromedial
(e.g., Fekete et al., 2009), and dorsomedial nuclei (e.g., Baffi and
Palkovits, 2000). In addition, while some areas in Table 3 were only
identified in a few studies (e.g., habenula, ACC), it should be noted
that this is likely due to the stringent inclusion/exclusion criteria
applied in the present investigation (e.g., the use of passive per-
ception of aversive stimuli; studies involving metabolic indicators
or imaging only). For example, the ACC’s inclusion here is also
supported by a number of studies using painful aversive stimuli
which robustly activate the ACC (Lei et al., 2004a,b; Li et al., 2009).
Nonetheless, areas such as the habenula were included in Figure 2
as being potentially good candidates (identified in light beige)
for the core aversion-related network as emerging data from ani-
mal studies in non-human primates (Matsumoto and Hikosaka,
2009a) and rodents (Roseboom et al., 2007) and some studies in
humans (Salas et al., 2010), have indicated its involvement in the
processing of aversive stimuli.

Although regions such as the amygdala, AI, and areas of the
prefrontal cortex show robust activations across both animals and
humans (see further discussion below), it remains unclear what
role the subcortical areas, identified mainly in the animal studies,
play in the core aversion-related network. This is likely due, in
part, to the fact that the role of subcortical areas in human imag-
ing studies are largely underestimated as these techniques typically
focus on whole-brain analysis and have lower subcortical and sub-
regional resolution (see Logothetis, 2008 for a brief discussion of
fMRI capabilities). While some human imaging studies have iden-
tified areas such as the PAG and Hyp in regulating and modulating
pain processing (e.g., Hsieh et al., 1996; Becerra et al., 2001), these
areas are not typically identified in studies using general aver-
sive stimuli. Alternately, many studies in animals have shown that
activation of the PAG (e.g., through electrical or chemical activa-
tion) induces aversive responses and activations in other aversion-
related brain areas, and even identify subregional differences (i.e.,
dorsomedial and dorsolateral PAG) as well as activation-level
dependent responding (e.g., freezing, escape, or defensive behav-
iors; Vianna et al., 2003; Zanoveli et al., 2007). To clarify the role of
these regions in human aversion-related processing, future studies
of aversion should investigate these subcortical regions in greater
detail. Additionally, they could include them in hypotheses regard-
ing their interactions with cortical regions known to be a part of

the core aversion-related network –particularly given recent evi-
dence of intrinsic functional connectivity between, for example,
the PAG and ACC (Kong et al., 2010).

EVIDENCE FOR A COMMON CORE AVERSION-RELATED NETWORK
Taken together, this translational analysis identified a core cross-
species aversion-related network of cortical and subcortical areas,
including the Amyg,ACC,VLOFC, DMPFC, secondary motor cor-
tex, Hipp/parahipp, DS, RTG, Thal, and midbrain (see Figure 2
which identifies these regions in dark blue and the subcortical
regions identified mainly in animals, and considered candidates
for the network, in light beige). In order to fully appreciate the
function of this network, it will likely be necessary to understand
the role of each area. Although this is beyond the scope of the
present investigation, it is important to briefly note some of this
work in order to underscore its complexity. In this regard, it is
interesting to note that the strongest findings across both human
and animal studies involved the amygdala, AI, and PFC (including
the orbitofrontal cortex and ACC; Figure 1; Table 3).

Although the precise role of the amygdala is not fully under-
stood, there is good evidence to suggest that it is involved in
processing the saliency (Ewbank et al., 2009) and general valu-
ation (Morrison and Salzman, 2010) of emotional stimuli, as well
as being involved in aversive learning and anticipation (Buchel
et al., 1998; Sarinopoulos et al., 2009). However, it has also been
posited as a core integrator of emotion-related sensory informa-
tion (Ledoux et al., 1990; Murray, 2007) which may be central in
mediating aversive-related processing. While bilateral brain activa-
tion is common in response to aversive stimuli, the fact that the left
amygdala showed greater activity in response to visual stimuli (and
during the reception over the anticipation of stimuli) is consistent
with the finding that it appears to be more involved in processing
stimuli containing explicitly communicated signals (particularly
those which have been acquired through language; see Funayama
et al., 2001), as opposed to the right amygdala which is involved
more in the processing of implicit/masked stimuli (Costafreda
et al., 2008). Overall, the involvement of the amygdalae here is
consistent with its role in danger/aversion detection and avoid-
ance as is, for instance, seen in primate studies where amygdala
lesions impair aversion-related processing (e.g., the consumption
of unpleasant foods or the avoidance of predators or unfriendly
conspecifics; Machado and Bachevalier, 2006; Machado et al.,
2010).

The variety of functional roles is similarly seen in other regions
noted in the present study. For instance, the functions of the
ACC and orbitofrontal cortex are equally complex in that they
are incompletely understood although they appear to be broadly
implicated in functions such as error processing (Simons, 2010),
reward-related processing (Haber and Knutson, 2010), and adap-
tive decision making (Walton et al., 2007, 2010). Similar to the
amygdala, these areas may also be involved in sensory processing
– particularly regarding the emotional representations associated
with olfactory and gustatory information (Rolls, 2008). In addi-
tion, electrophysiological studies in humans and non-human pri-
mates support the involvement of these regions in aversion-related
processing as they have found that single cells in these regions
respond to aversive stimuli (Kawasaki et al., 2005; Hosokawa
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et al., 2007; Morrison and Salzman, 2009). Finally, the AI is often
considered an intero-exteroceptive convergence zone where exte-
roceptive input, as for instance a potentially aversive stimulus, is
compared and matched with the current interoceptive state of the
organisms’ body (Craig, 2003, 2009; Lovero et al., 2009). While
being intuitively plausible that aversion is closely related to intero-
ceptive stimuli and the current state of the body, experimental
support remains to be acquired. Nonetheless, a recent meta-
analysis on the role of the human insula found a differentiation
of four domains (i.e., sensorimotor, cognitive, social-emotional,
and olfacto-gustatory) and an overlapping integrative area in the
AI (Kurth et al., 2010) – providing some support for the notion
that especially the anterior portion of the insula is an integrator of
salient stimuli. This is nicely in accordance with our results from
the human data that showed especially the AI to be implicated in
mediating aversive stimulus-related processing.

The present investigation demonstrated the amygdala, OFC,
and AI as common regions in aversion in both humans and ani-
mals. If these regions are indeed core regions of aversion-related
processing, one would assume that their activation remains inde-
pendent of a specific sensory modality. This is so because aversive
stimuli can occur in different sensory modalities, for instance
visually (e.g., using complex scenes or images), as used predomi-
nantly in human studies, or olfactorily or gustatorily as is the case
especially in animal studies. In order to rule out sensory modality-
specific effects, we controlled for them in our meta-analysis. As
indicated in the Section “Results,” the only sensory-specific acti-
vation was noted for the contrast visual > tactile, which revealed a
greater activation of the left amygdala (−20, −6, −16; 110 voxels).
However, this was a relatively small portion of the total activation,
and all of the evidence in both humans and animals suggests that
the amygdala is involved in processing from all modalities. That
aversion-related activations were found to not be specific for sen-
sory modality, while visually (and, though not contrasted here,
gustatory and olfactory) aversive stimuli appear to result in some-
what greater activations in the amygdala, is consistent with the
literature (Markowitsch, 1998; Costafreda et al., 2008; Mouraux
et al., 2011). These results suggest that while sensory-specific
regions are, of course, involved in processing stimuli based on
their modal origin (e.g., sounds are initially processed in the audi-
tory cortex and inferior colliculi), activation of the core aversion
network is largely sensory-independent.

However, there are a few important caveats to note. While there
may indeed be a common cross-species neural network for basic
aversion-related processing, given the differential reliance on sen-
sory systems across species (e.g., humans rely more heavily on
visual information, while rodents rely more heavily on olfactory
cues from the environment), the present study cannot comment
on the impact of likely species-specific responses to aversive stim-
uli from the different senses. The specific impact, for instance, of
aversive gustatory or olfactory stimuli in humans could have been
explored more thoroughly had studies investigating the disgust
response been included in the present study (these were left out,
as described above, in an attempt to limit potential confounds
related to ambiguous and/or higher-order processing such as the
response to physical contaminants). Nonetheless, studies included
in the meta-analysis which used these sensory stimuli (e.g., Rolls

et al., 2003; Grabenhorst et al., 2007), and other studies using
cross-modal stimuli (e.g., including olfactory cues in the context
of disgust; Seubert et al., 2010a,b), showed activations consistent
with a common aversion-related network. Finally, one should be
careful not to characterize a whole region as sensory-independent
with regard to aversive-related processing. Only some subregions
or subpopulation of neurons within a given region may be sensory-
independent while others may mediate sensory-specific effects
related to other types of processing, for example those pertain-
ing to reward-related effects. Our present results cannot make any
contribution in this direction; however, these results do define
those regions that could be targeted in future studies combining
single cell recordings and human imaging studies on aversion.

In addition to sensory modality-specific effects, we also ruled
out possible behavioral and cognitive confounding effects. This
was accomplished by including only human and animal studies
which focused on the passive reception of stimuli, where aver-
sive and non-aversive stimuli had to be merely perceived but not
acted upon. Our results of a common aversion-related core net-
work must thus reflect the neural processing of aversive stimuli
when compared to non-aversive ones rather than some unspecific
task-related effects associated with the presentation of the stimuli.
We are aware however that despite our careful selection of studies,
we are not completely able to rule out task-related effects since
even during passive perception some implicit task-related effects
may occur. For instance, implicit judgment or attention effects
may be greater in aversive (compared to non-aversive) stimulus
processing. Future studies focusing on the interaction between
aversive (vs. non-aversive) stimuli and task-related effects (like
judgment, attention or anticipation) may therefore need to be
conducted. Additionally, the degree of aversion from moderate to
severe should also be considered in future, as should the com-
parison to pain-related activations. Nonetheless, it is important to
point out that a recent set of experiments by Mouraux et al. (2011)
which investigated brain activations in fMRI to pain- vs. non-pain
stimuli using visual and auditory stimuli, revealed results which
are well in line with those described here, both in terms of the
network involved as well as indicating modality-independence.

Taken together, these results demonstrate that this core
aversion-related network is activated independent of sensory
modality and is not related explicitly to cognitive or behavioral
effects. In addition, while no single brain area is responsible for the
processing of aversive stimuli, there may be at least some differen-
tiation at the subregional (e.g., rostrocaudal/anteroposterior gra-
dations) and/or neuronal level. Regardless, these results raise many
questions and leave open numerous possibilities for future stud-
ies, including: Is this aversion-related network specific for aversive
stimuli? How does the network differentially encode the anticipa-
tion and reception of aversive stimuli? And what neurochemical
mechanisms are involved?

FUTURE DIRECTIONS AND LIMITATIONS
Is this aversion-related network specific for the processing of aver-
sive stimuli? Given the fact that the observed core aversion-related
network appears to remain independent of sensory, cognitive, and
behavioral processing, one may raise the question of exactly what
kind of processing is mediated by this network. Although we

Frontiers in Integrative Neuroscience www.frontiersin.org October 2011 | Volume 5 | Article 49 | 13

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive


Hayes and Northoff Translational aversion-related network

aimed to remove any potential cognitive effects by focusing on
studies employing the use of passive aversive stimuli, we cannot
completely eliminate the possible impact of “top-down” processes
(such as cognitive reappraisal). In particular, as event-related fMRI
designs generally use the repetition of stimuli across many tri-
als, subjects may be consciously or automatically/unconsciously
using coping strategies to help control their emotional responses
to the unpleasant stimuli. Although we suspect that each of the
regions presently identified are involved in basic aversion-related
processing, it is probable that some are also particularly involved in
higher-order cognitive processing as well. As such, future studies
should continue to investigate the impact of stimulus anticipation
and trial repetition, especially as a few studies have already sug-
gested differential activities within regions such as the amygdala
and areas of the prefrontal cortex (Wright et al., 2008; Kanske et al.,
2011). In addition, these results should be compared directly to
those from animal studies employing very similar designs in order
to provide comparative translational evidence for the precise role
of each network component.

Another suggestion is that this network processes stimulus
saliency (i.e., the importance of a stimulus to a particular organ-
ism, irrespective of valence), especially given that the amygdala, for
instance, is involved in processing the saliency of emotional stimuli
(Ewbank et al., 2009). However, although stimulus saliency may
be involved in the activation of some areas (e.g., insula, amygdala;
Menon and Uddin, 2010), it may not be specific to aversive-related
processing. For instance, saliency may also be central in reward-
related processing in order to help detect potentially valuable, and
thus rewarding, stimuli (see for instance Zink et al., 2004; Graben-
horst et al., 2010). Furthermore, this raises the question regarding
the relationship between reward and aversion.

Both reward- and aversion-related stimuli are highly salient –
a fact that might be reflected in the common activation of many
brain regions such as the OFC, ACC, and NAc, as noted above.
Nonetheless, there are many regions which are currently thought
to be selectively or predominantly activated during the presenta-
tion of either rewarding or aversive stimuli. For instance, some
areas that appear to be more selective for reward include the ven-
tromedial prefrontal cortex, nucleus basalis, ventral pallidum, and
dorsal VTA (Tindell et al., 2006; Brischoux et al., 2009; Cybulska-
Klosowicz et al., 2009; Xue et al., 2009), while those that are more
selective for aversion include the amygdala (particularly the central
and basolateral nuclei; also underscored in Table 4; however, there
are a number of studies in both humans and animals identifying
its role in reward, for instance see Holland and Gallagher, 2004),
DMPFC, ventral VTA (Brischoux et al., 2009; Machado et al., 2009;
Xue et al., 2009). Emerging evidence at the cellular/neurochemical
level is showing that, overall, different populations of dopamine
cells encode value and salience and do so through differential
signaling patterns (Matsumoto and Hikosaka, 2009b; Bromberg-
Martin et al., 2010). However, all salient and highly emotional
stimuli tend to include, by definition, value, and valence (i.e.,
they are rewarding or aversive to some degree). Thus, the fact
that they are conceptually tied may be reflected by an inability
to completely dissociate them experimentally. Regardless of such
concerns, these data suggest that it is most likely that the combined
aversion-related activations reported in the present investigation

cannot be merely attributed to saliency, although the exact nature
of the relationship between saliency, aversion, and reward is still
unclear. Future studies and meta-analyses should aim to clarify the
similarities and differences between processing related to saliency,
aversion, and reward.

One major limitation of the present study in addressing these
issues, as noted above, is the fact that brain imaging techniques
typically have lower subcortical and subregional resolution. How-
ever, consideration of some imaging studies identifying subcortical
areas in aversion-related processing (e.g., Jensen et al., 2003; Her-
wig et al., 2007; Levita et al., 2009) and the inclusion of animal
studies in the present investigation have helped to reduce these lim-
itations. Nonetheless, it is clear that at least some areas within the
network code for multiple (even apparently opponent) processes
(e.g., aversion and reward). For instance, many animal studies
(e.g., Hayes et al., 2010; and see Carlezon and Thomas, 2009 for
review) and some human work (Levita et al., 2009; see also Lek-
nes and Tracey, 2008) have implicated the NAc as playing a key
role in coding for both aversive and rewarding states. In addition,
there are numerous cell types with various response characteristics
throughout the amygdala, OFC, and ACC which may respond to
the presence or anticipation of rewarding, aversive, or both types
of stimuli; often in the absence of an obvious topology (Kawasaki
et al., 2005; Paton et al., 2006; Morrison and Salzman, 2009; Shabel
and Janak, 2009).

Like with reward, there may be subregional and neuronal dif-
ferentiations which correspond to other processing and/or behav-
ioral aspects of aversion such as fear, anxiety, and pain. While
the exclusion of studies looking at these specific aversion-related
concepts in the present study have allowed for the control of com-
plex behavioral and cognitive factors, it is nonetheless clear that
future investigations should include these studies in comparison to
the present core aversion-related network. Although studies from
these respective fields have largely implicated the involvement of
brain areas which are in general agreement with the present study
(for example, see the discussion of work by Seymour et al., 2007
above), these findings should be confirmed in future analyses.

In turn, these open questions lead to another question: How
is the anticipation/expectation of aversive stimuli coded by the
aversion-related network? To what degree are these processes sep-
arate? (For a discussion of the latter question, see Bermpohl et al.,
2006) While not a major finding in this study (resulting from
only nine available contrasts), anticipation > reception of the aver-
sive stimulus resulted in one small cluster of activation in the
DS (−16, 6, 2; 10 voxels), compared to the dominant activation
of the amygdalae (particularly the left side) resulting from recep-
tion ( anticipation (as noted above). Although this result must be
considered with caution, this is a potentially interesting finding
which should be investigated further as suggestions from other
animal (Salchner et al., 2006) and human (Lutcke et al., 2009)
studies have identified dorsal striatal activation in anticipation.
Another related issue for future studies to consider is the role of
temporal coding. For instance, some researchers have shown that
we prefer predictable (over unpredictable) aversive outcomes – as
reflected behaviorally and by reduced activations in areas of the
aversion-related network (Carlsson et al., 2006; Sarinopoulos et al.,
2009).
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A related consideration involves the potential role of intrinsic
brain activity, or the so-called resting state, on aversion-related
processing. Though nearly all of the studies included in the meta-
analysis contrasted known aversive stimuli to their neutral equiv-
alent (e.g., aversive vs. neutral pictures), only a few used what
could be considered true resting state conditions (e.g., viewing a
static image of a fixation-cross; e.g., Liberzon et al., 2002; Phan
et al., 2003). As such, it was not possible to investigate the poten-
tial impact of different baselines in general and the resting state
in particular. As noted above, given recent evidence of intrinsic
functional connectivity between, for example, the PAG and ACC
(Kong et al., 2010), which appear to be key components of the
aversion-related circuit, it is possible that resting state activity is
fundamentally involved in aversion-related processing. As such, it

is recommended that future studies on aversion aim to include
some resting state information in their designs (Northoff et al.,
2010).

Finally, future studies (especially in humans) should further
investigate the possible neurochemical mechanisms of aversion-
related processing. Glutamate, GABA, dopamine, and serotonin
have all been implicated (as have other neurotransmitters), but
given the complexity of possible interactions much more work
is needed. For instance, numerous animal studies have demon-
strated a role for glutamate and GABA (particularly the NMDA
and GABAA receptors, respectively) in the ACC (Lei et al., 2004a;
Wang et al., 2005) and for NMDA receptors in the insula (Fer-
reira et al., 2005). These findings have been supported by a few
studies in humans using magnetic resonance spectroscopy to

Box 1 Altered aversion processing in psychiatric disorders. Examples of studies that have implicated aversion-related processing as
being dysfunctional in some psychiatric disorders.

Psychiatric disorder Evidence of altered aversion-related processing References

Depression Compared with healthy controls, patients with major depressive disorder (MDD) show
increased activation in the right amygdala, and decreased activations in PAG, ACC, pre-
frontal cortex to the reception of painful > non-painful stimuli; they also show increased
activation in the right anterior insula, dorsal ACC, and right amygdala during the antici-
pation of painful > non-painful stimuli. Also, recovered patients with a history of MDD
showed decreased ventral striatal activity to rewarding stimuli and increased dorsal
striatal (i.e., caudate nucleus) activity to aversive stimuli. In addition, anticipation of
aversive stimuli in patients with depression results in greater activations within the
sublenticular extended dorsal amygdala compared to controls, with no differences in
the expectation of positive stimuli.

Abler et al. (2007), Strigo
et al. (2008), McCabe
et al. (2009)

Addiction Although little research has been done specifically regarding aversion-related process-
ing and addiction, there is an abundance of research in both humans and animals
regarding how stressful/aversive stimuli and drug-associated cues (which are often
reported to be highly aversive) can trigger drug seeking and relapse. For instance, one
study by Wheeler et al. (2008) showed that saccharin (a rewarding taste for rats) can
become an aversive cue when signaling cocaine availability; the switch in affective
state from positive to negative in reflected by the activity of NAc cells. In this context,
a recent review highlighted the approach of using extinction learning of these aversive
cues in addicts to prevent or attenuate future relapse and craving.

Weiss et al. (2001),
Wheeler et al. (2008),
Kaplan et al. (2010)

Schizophrenia Compared with healthy controls, patients show inappropriately strong ventral striatal
activations to neutral stimuli in an aversive learning paradigm. Behaviorally, they also
show an inability to properly identify neutral stimuli (reporting them as aversive) which
is also consistent with their abnormal autonomic reactivity to these stimuli (e.g., gal-
vanic skin responses).This abnormal aversion-related processing may also be reflected
behaviorally by their lack of loss aversion (i.e., the typical behavior of assigning greater
value to that which can be lost over that which can be gained).

Jensen et al. (2008),
Tremeau et al. (2008)

Borderline personality Few imaging studies have been performed in this group, however, altered aversion-
related processing may be involved in the pathophysiology as behaviorally these
patients show increased pain thresholds and often engage in self-mutilation. However,
one fMRI study by Herpertz et al. (2001) showed increased amygdalae and prefrontal
(medial and inferolateral) activation in these patiets compared to controls.

Herpertz et al. (2001),
Ludascher et al. (2007)

Anxiety disorders Converging evidence in humans and animals suggests that some anxiety disorders
(particularly post-traumatic stress disorder; PTSD) may be related to an inability to
inhibit aversion-related signaling. A functional neuroimaging meta-analysis by Etkin
and Wager (2007) of PTSD, social phobia, and social anxiety showed that patients in
all three groups have hyperactive amygdala and insula function. In addition, patients
with PTSD showed hypoactivity in the ACC and ventromedial prefrontal cortex. Neu-
roendocrinological studies have suggested that the amygdala hyperactivity may be
related to hypothalamic–pituitary–adrenal axis dysfunction.

Etkin and Wager (2007),
Jovanovic et al. (2010),
Norrholm et al. (2010)
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show enhanced ACC (Mullins et al., 2005) and anterior insular
(Gussew et al., 2010) glutamate levels following painful stim-
ulation of the hands and feet. Dopamine transmission in the
amygdala, NAc, DS, and dorsal ACC (Scott et al., 2006; Menon
et al., 2007; Kienast et al., 2008) may also be involved in various
aspects of aversion-related processing in humans. Although its
role in animals has been studied extensively, it is still unclear pre-
cisely how this neurotransmitter mediates aversive signals (e.g.,
Liu et al., 2008; but see Mirenowicz and Schultz, 1996). Sero-
tonin may also play an important role in aversive processing, for
example by modulating/opposing reward-related behaviors (e.g.,
Hayes et al., 2009), although there is still much discussion about
what mechanisms might be involved (Jhou, 2005; Dayan and Huys,
2009; Tops et al., 2009) – particularly as one recent human fMRI
study showed that increased serotonergic transmission resulted in
blunted aversion- and reward-related processing (McCabe et al.,
2010).

CONCLUSION
To our knowledge, this is the first report using a systematic
translational approach investigating aversion-related processing in
humans and other animals. It was demonstrated that humans and

animals have a common core aversion-related network, consisting
of similar cortical and subcortical regions, and that its activity
is largely independent of sensory modality and cognitive (e.g.,
task-related) effects. The identification of this core network helps
to explain the reported overlap of neural substrates noted across
aversion-related concepts (e.g., pain, fear, punishment). This per-
spective, in conjunction with future work to identify the precise
subregional and neurochemical mechanisms involved, will con-
tribute to a better understanding of how aversive stimuli are
processed in both animals and healthy individuals as well as
those subjects with psychiatric disorders (like addiction or depres-
sion) displaying dysfunctional aversion processing (see Box 1 for
examples).
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