Identifying an automaton model for timed data

Sicco Verwer!
Mathijs de Weerdt
Cees Witteveen

S.E.VERWER@TUDELFT.NL
M.M.DEWEERDT@TUDELFT.NL
C.WITTEVEEN@TUDELFT.NL

Delft University of Technology, P.O. Box 5031, 2600 GA, Delft, the Netherlands

Abstract

A model for discrete event systems (DES)
can be learned from observations. We pro-
pose a simple type of timed automaton to
model DES where the timing of the events
is important. Learning such an automaton
is proven to be NP-complete by a reduction
from the problem of learning deterministic
finite state automata (DFA) without time.
Based on this reduction, we show how the
currently best learning algorithm for DFAs
(state merging) can be adapted to deal with
time information.

1. Introduction

Many systems we encounter in nature or in our so-
ciety, we do not fully understand. Nonetheless, we
like to have a model of such systems. If there is no
explicit model available, we might try to construct it
from observations of the behavior of the system. Such
a model can then, for example, be used to give more
insight in how the system works (maybe even lead-
ing to improvements of the system itself). Moreover,
a model can be used to simulate such a system, to pre-
dict future behavior, or to monitor the system on-line
to be able to act when the system gets into an unde-
sired state.

In this paper we focus on systems of which the exe-
cution is determined by a finite set of discrete events.
Such a system is known as a discrete event system
(DES) (Cassandras & Lafortune, 1999). Sometimes no
model is known for these systems. Therefore, we are
interested in learning a model for these kinds of sys-
tem from observations.

IThis research has been supported and funded by the
Dutch Ministry of Economical Affairs under the SENTER
program. Project IS041022 Real-Time Optimalisatie Motor
Management.

A common way to model discrete event systems is by
using deterministic finite state automata (DFA). The
problem we study in this paper can be stated very
succinctly as follows: Given a data sample of observa-
tions, how to identify the correct DFA for a specific DES.

When observing a real-world system, however, there
often is information in addition to the system events,
namely, their times of occurrence. If this time infor-
mation is important, a DFA is too limited. For ex-
ample, it is impossible to distinguish between events
that occur quickly after each other, and events that oc-
cur after each other with a significant delay between
them.

Consequently, we would like a model that can also
deal with time delays. We call this type of automa-
ton a delay automaton (DA). Our goal is to find an
algorithm that can use sampled data (i.e., events in-
cluding time information) to identify a DA describing
the underlying system. As far as we know, currently
no other learning algorithm exists to identify a timed
automaton from a timed sample.

The paper is structured as follows: first we define a
DFA and this model of a DA, and then we briefly
discuss an established method for identifying an au-
tomaton, called state-merging. Next, in Section 3, we
study the complexity of the learning problem of iden-
tifying a DA. We prove that learning the time con-
straints (guards) in our model on itself already is an
NP-complete learning problem. This proof relies on
a reduction from the (ordinary) DFA learning prob-
lem. We then observe that this proof in fact neatly
describes a relation between learning a DA and learn-
ing an ordinary DFA. From this observation we pro-
pose an adaptation of the state merging algorithm for
DFAs to deal with DAs. This algorithm is described in
Section 4. For this we first discuss some background
on identifying DFAs. We end with stating some con-
clusions and future work.

2. Background on Automata and
Identification

Many different systems we encounter in practice can
be modeled using a finite set of discrete states that are
associated with a set of discrete events. These systems
are known as discrete event systems (DES) (Cassandras
& Lafortune, 1999). A DES has the following proper-
ties:

e Itisin one state at each moment in time.

e An event can occur instantaneously, which
causes a transition from one state to another state
(possibly the same).

e It is completely event-driven, which means that
its state evolution depends entirely on the occur-
rence of discrete events.

The study of DESs is mainly concerned with the se-
quence (ordering) of events that can occur in a given
system. These sequences are called strings. The set of
all possible strings is known as the language of a DES.
There are several ways to represent a DES language.
The most common DES model is the deterministic finite
automaton (DFA).

2.1. Deterministic finite state automata

A DFA is a directed graph consisting of a set of
states (nodes) and transitions (directed arcs), see for
example the introduction by Sipser (1997). Transi-
tions point from source to target states, and are la-
beled with events (denoted by symbols). When an
event occurs, it activates the transition labeled with
that event. This changes the current state of the DFA
to the target state of the transition (the next state).
There is an important distinction between a DFA and
a non-deterministic finite automaton (NFA). In the non-
deterministic case, two (or more) transitions can be
activated by the same label.

An example of a DFA is shown in Figure 1. This DFA
models an automatic bike light. The states of the DFA
are given names for convenience. Execution of the
DFA starts in the state off. This is indicated by an
arc pointing to this state from nowhere. The execu-
tion can end when the DFA is back in its starting po-
sition, indicated by the double circle. The bike light is
turned on when it is both dark and someone is riding
the bike. Formally, a DFA is defined as follows:

Definition 2.1 A deterministic finite state automaton
Aisatuple A= (Q,%,9,q0, F), where

Figure 1. This DFA models the execution of an automatic
bike light. The events consist of: start and stop (cycling), (it
getting) dark and light (outside), and (turning the) light on
and light off.

Q is a finite set of states,

Y is a finite set of symbols to label the transitions,
known as the alphabet,

6 is a partial mapping from ¥ x Q into Q that repre-
sents all transitions,

qo € Q is the start state, and

F C Qs the set of final states.

The mapping J defines the transitions of the automa-
ton, and is therefore known as the transition function.
In an NFA the transition function is a function from
a source state and a symbol to a set of possible tar-
get states: from ¥ x Q into 29. The automaton uses
the transition function to accept strings. How this is
done by the automaton is defined in the definition of
a computation of a DFA.

Definition 2.2 A (finite) computation of a DFA
(Q,%,9,q0,F) over a string sgs1 .. SF1 is a sequence

C:% E 7 A qz...quofstates

and transitions, such that for all 0 < i < f —1, it holds
that 6(s;,q;) = qiz1, i € Q, and s; € X. A finite
computation is called accepting when qs € F.

The language L(A) of a DFA A is the set of strings s
for which the computation of A over s is accepting. A
language is a subset of the set of all strings, denoted
by Z*.

We are interested in learning a DES, modeled by a
DFA, from the observations of a real-world system.
These observations are elements of the language of
the system (positive examples). The DFA learning
framework also requires a set of strings that is dis-
junct from the language of the DFA (negative exam-
ples). These examples can, for example, be obtained

by monitoring other systems. Learning a DFA from
both positive and negative example strings is known
as DFA identification.

The task of DFA identification is to find the smallest
DFA A (in terms of the number of states) such that
L(A) is consistent with the given input data. This
data, known as an input sample, consists of two sets of
strings: positive strings, which are elements of L(.A),
and negative strings, which are elements of 2* — L(.A).

A language is consistent with an input sample S when
it contains all positive examples, and none of the neg-
ative examples. From an input sample a consistent
DFA can be identified using an algorithm called state
merging.

2.2. State merging

In DFA learning practice a technique known as
state merging is regarded as being the most succes-
ful (Bugalho & Oliveira, 2005). There are two kinds
of state merging algorithms: exact and polynomial.
The original state merging (Oncina & Garcia, 1992) al-
gorithm is a polynomial time algorithm that correctly
infers a DFA when the input set contains a so called
characteristic set (de la Higuera, 1997). The set is a sub-
set of the input sample such that the polynomial state
merging algorithm has to return the correct solution.
When no such characteristic set is available an exact
algorithm can be used to find the correct DFA. Exact
algorithms use techniques such as backtracking in or-
der to find the minimal DFA. In this paper we focus
on the exact algorithm, but the algorithm in Section 4
can also be applied as a polynomial time algorithm.
For example as a form of evidence driven state merg-
ing (Lang et al., 1998).

State merging starts with the construction of a prefix
tree acceptor (PTA) from the input data. Such a PTA is
the automaton in the form of a tree where each string
is represented by a path from start state to a leaf. Such
a leaf (state) is labeled final in the PTA when the input
string reaching that state is positive. In order to detect
inconsistencies, the states in which negative examples
end are labeled negative (or unfinal). The labels of
the remaining states are (as of yet) undefined. When
strings have the same prefix, they share the first part
of their path in the tree, hence the name prefix tree ac-
ceptor. Figure 2 shows an example of an input sample
and the corresponding PTA.

The process of combining identical prefixes of the in-
put sample in a PTA reduces the complexity of the
input. All that state merging algorithms try to do is
to combine identical suffixes. This is done by merging

o
) O
Figure 2. This prefix tree acceptor is constructed from the

input sample Sy = {b, abb, abaa},S_ = {a, bb}. Final
states are labeled with an F, unfinal states with a U.

Figure 3. The left automaton is the result of a merge of the
initial state and the state reachable by ab of the PTA from
Figure 2. The right automaton shows the result of the deter-
minization of the left automaton.

states from the PTA.

A merge of two states g1 and g is an operation that
combines the states g; and ¢, into one new state ¢’
All transitions of the DFA which have either g; or g
as their target state, then get ¢’ as their target state.
The same holds for the source states. Note that the
result of this operation can be an NFA, because the
original states may have an outgoing transition with
the same label. Therefore, when learning a DFA, a
second function is used to make the automaton deter-
ministic. This is the determinization function.

Given an NFA, the determinization function continu-
ously merges the target states of a nondeterministic
choice in the NFA. In other words, if the transition
function ¢ is such that §(q,s) = {q1,92,-..,qn}, for
some g € Q,n > 2and s € L, then a merge of the
states g1 and g, is performed. This determinization
is repeated until the result is a DFA. Figure 3 shows
the result of a merge and determinization applied to
the PTA of Figure 2. In this case, the resulting DFA is
consistent, i.e., it still accepts all positive input strings
and rejects all negative input strings. What happens
when the resulting DFA is inconsistent is defined by
the main procedure of the state merging algorithm.

Using i) the PTA, ii) the merge operation, and iii) the
determinization function, a state merging algorithm
can be constructed that learns a minimal DFA from
an input sample. The algorithm starts by construct-
ing a PTA from the input sample, and then it merges

states of the PTA (using the determinization function
whenever necessary) until no smaller consistent DFA
can be found. When no two states can be merged such
that the resulting automaton is consistent, the process
backtracks on its last merge(s).

Unfortunately DFAs do not make use of the time
information that is sometimes associated with the
events in the strings of the input sample. For this,
variants of a DFA exist, called timed automata.

2.3. Delay Automata

An automaton that accepts (or generates) strings with
a timestamp associated with each event is called a
timed automaton (Alur, 1999). These strings consist-
ing of event-timestamp pairs are called timed strings.
Since the symbols in a string represent an ordered se-
quence of events, we require that the time labels are
non-decreasing.

In timed automata, timing conditions are added using
a finite number of clocks and a clock guard for each
transition. In this section, we introduce a simple type
of timed automaton, which we use in this paper. This
type of timed automaton has only one clock that rep-
resents the time delay between two events. The clock
guards for the transitions are then constraints on this
time delay. Therefore, we represent a delay guard (con-
straint) by an interval in R*. We say that such a delay
guard G is satisfied by a time delay d € R" if d € G.
We call the simple type of timed automaton using this
delay guards a delay automaton (DA). A DA is defined
as follows:

Definition 2.3 A delay automaton (DA) is a tuple A =
<Q/ % T, qo, P>, where

o (Q is a finite set of states,

X is a finite set of symbols,

T is a finite set of transitions,

qo is the start state, and

o F C Qs a subset of final states.

A transition t € T in this automaton is a tuple (q,9’, s, ¢),
where q,q" € Q are the source and target states, s € X is
a symbol, and ¢ is a delay quard defined by an interval in
R*.

Furthermore, we would like a delay automaton to be
deterministic, just as a DFA. Therefore, no two tran-
sitions with the same label and the same source state
should have overlapping delay guards.

light off
[60,60]

Figure 4. This DA models a ‘smart’ bike light that leaves the
light on when the bike stops for less than 60 seconds.

In a DA it is not only possible to activate a transition
to another state, but it is also allowed to remain in
the same state for some time (delay). Such a time de-
lay is possible in every state and increases the current
delay. A transition to another state is possible only
if its delay guard is satisfied by the current delay. A
transition (g,4’,s, ¢) of a DA is thus interpreted as fol-
lows: whenever the automaton is in state g, reading s,
and the delay guard ¢ is satisfied by the current delay,
then the machine will move to state ¢’

The DA in Figure 4 models a ‘smart” bike light that
does not turn the light off when the bike stops for a
traffic light. Such a stop should not last longer than
one minute. This is modeled by a light off event only
occurring at time 60. A start event before 60 seconds
will make the automaton return to the on state.

Some transitions in this example have a time inter-
val associated with them. These are the delay guards.
The definition of a computation (Definition 2.2) needs
to be adapted to deal with these guards. Moreover,
also the new transition rule discussed above is in-
cluded in the following definition of a computation of
a DA.

Definition 2.4 A computation of a DA (Q,%, T, qo, F)
over a timed string (s1,t1) ... (Su, tn) is a finite sequence of

iti (s1.41) (5n,n)
states and transitions 0 g1 Gn-1 —% qu’

such that for all 1 < i < n, (q;_1,9;,5;,¢i) € T, where
¢; is satisfied by delay d; = t; —t;_1, ie. d; € ¢;. A
computation of a DA over a timed string of length n such
that g, € F is called an accepting computation.

The example shows that the timed automaton intro-
duced in this section can model systems that have ob-
servations with their observed times (timed strings)
as input, and have different results depending on this
time information. Our goal is to identify such a de-
lay automaton given such a set of timed strings. In

the next section we study this problem of learning a
delay automaton in more detail.

3. The Complexity of Learning Delay
Guards

The main reason we had to formalize a DA is to be
able to learn timed relations of reactive systems. A
DA is one of the simplest ways to include timed re-
lations into the framework of automata. Thus an im-
portant question to ask is how we would be able to
learn a DA from data. The data our learning algo-
rithm would get as input consists of both positive and
negative examples of timed strings. This is the same
as the input sample for learning DFA, but now each
symbol is paired with its time of occurrence.

For designing a learning algorithm, it is interesting to
know the complexity of learning a DA, and of the sub-
problem of inferring the optimal delay guards. For
example, if the delay guard learning problem is in P,
we might be able to use a delay guard learning al-
gorithm as a subroutine of an existing DFA learning
algorithm. In this section, however, we prove that the
delay guard learning problem is NP-complete by a re-
duction from the problem of learning a DFA. After
that, we discuss the complexity of the complete prob-
lem of learning a DA.

Let us start by giving the definitions of the (ordinary)
DFA learning problem and the delay guard learning
problem.

Definition 3.1 Given an alphabet %, an integer k, and an
input sample S, the DFA learning problem is the prob-
lem of finding a DFA of k states, with alphabet X, that is
consistent with S.

Definition 3.2 Given an NFA A, and a timed input sam-
ple S, the delay guard learning problem is the problem
of adding delay guards to the transitions of A, such that
the resulting DA is consistent with S.

The DFA learning problem has been proven to be NP-
complete (Gold, 1978). We now show that:

Theorem 1 The delay guard learning problem is NP-
complete.

In the following proof of this theorem we show that
any instance of the NP-complete problem of DFA
learning can be translated to an instance of the de-
lay guard learning problem in polynomial time. From
this and the fact that the delay guard learning prob-
lem can be verified in polynomial time, it follows

that the delay guard learning problem is also NP-
complete. In this reduction the main idea is that the
delay guards can be used to identify the transitions
to use in the DFA learning problem. Note that this
choice is the only choice which needs to be made in
the problem of learning a DFA. The choice of which
states are final is then easily solved by computing the
ending state of each string in the input sample.

Proof Suppose we are given a DFA learning problem
instance consisting of an alphabet ¥, an integer k, and
an input sample S. From this we have to find a DFA
with k states that is consistent with S. We transform
this instance to an instance of the delay guard prob-
lem as follows:

First we construct a (universal) NFA A with a set Q
of k states, and for each state g and for each symbol
a € ¥ a transition (g,4,q’) to each state ¢’ € Q.

Next, we transform each example string s € S into a
timed string in the following way:

$157...55 — (81,1.0)(s2,2.0) ... (s, 1)

Thus there always is a delay of exactly 1.0 between
successive symbols in an example string.

Now suppose that we have found a set of delay
guards for the NFA resulting in a deterministic delay
automaton that is consistent with 5. Without loss of
generality, we may assume that in processing sample
strings from S every state g € Q is used. Since the
resulting DA is deterministic, for every state 4 and in-
put symbol a, exactly one of the guards will be satis-
fied and this guard (interval) is uniquely determined
by having the property that 1.0 is contained in the in-
terval. This is illustrated in Figure 5.

In order to find the DFA consistent with S we can
select the right transitions from the resulting DA as
follows. For each state g and each input symbol g,
we select (from the set of all transitions) the unique
transition (g,4,q’,¢) for which 1.0 € ¢. From this
we can easily find the DFA consistent with S solving
the DFA-learning problem: for every such a transi-
tion (q,a,q’, ¢) selected, let (g,a,4") be a transition in
the DFA.

Because DFA learning is NP-complete, we can now
conclude that delay guard learning is NP-hard. Fur-
thermore, a solution to the delay guard learning prob-
lem can be verified by checking that each positive
timed input string ends up in a final state, and that
each negative input string does not. This can be done
in polynomial time (i.e. the sum of the lengths of all
input strings). This makes the problem of learning

Figure 5. In the reduction the choice of which transition to
add is mapped to the choice of which delay guard to give
to which transition. Since the delay time is always 1.0, the
timed strings that at some point reach the state in the fig-
ure with s as their next event, will all activate the transition
pointing downwards.

delay guards NP-complete. 0

The correspondence between delay guards and tran-
sitions can also be used to prove that the problem of
learning a consistent DA of k states from a timed in-
put sample is NP-hard. Also for this problem, mem-
bership of NP holds, because verifying that a DA is
consistent with an input sample set can be done in
polynomial time. This proves the following corollary.

Corollary 2 The problem of learning a consistent DA of k
states from a timed input sample is NP-complete.

This result is not restricted to DAs. It applies also to,
for example, event clock automata (Alur et al., 1999).
In event clock automata there are two clock values for
every event: one for the future and one for the past. In
fact, the reduction can be reconstructed for any timed
automata in which we can force the clocks to have the
same value at each input symbol, i.e. implementing a
delay of 1.0.

4. A DA Learning Algorithm

The reduction we presented in the previous sec-
tion describes the correspondence between the delay
guards of a DA and the transitions of a DFA. Our idea
is to use this correspondence to design a DA learning
algorithm based on the DFA learning algorithm, state
merging, described in Section 2.2. In this section we
elaborate on this idea and, eventually, present a state
merging algorithm for learning delay automata.

In the state merging algorithm the transitions are de-
rived by merging the states of a prefix tree acceptor
(PTA)(see Section 2.2). From the reduction we can
conclude that learning a delay guard is similar to de-
riving a transition. Therefore, it should be possible to
use the same state merging technique for learning the
delay guards. This requires a timed version of a PTA,
which is constructed in the same way as the standard

b b

<) [4.6, 4.6] <) [1.2,1.2] @
b a

< > [2.0,2.0] <) [0.1,0.1] @

Figure 6. Because timed strings rarely have exactly the same
prefixes, a timed PTA usually looks more like a list of
strings.

PTA, but with the following modification.

In a timed PTA, each transition is given as delay
guard the degenerate interval (of length zero) of ex-
actly the delay value of the timed sample string used
to create the transition. For example, suppose that the
pair (s;, t;) of a timed example string is used to cre-
ate a transition . In this case, the value of the delay
guard of f is set to be the ‘interval’ [t; — f;_1,f; — t;_1]
(where t;_; is the time value of the previous symbol-
time value pair).

The fact that we set these intervals to include only one
real number implies that there is almost no overlap in
the prefixes of the timed strings. Consequently, the
timed PTA in fact is a list of timed strings instead of a
tree. This, however, is no big issue for the algorithm,
apart from that the starting size of the PTA is a lot
bigger than the PTA of the DFA learning algorithm.
Figure 6 shows an example of such a timed PTA.

Starting with a timed PTA, states are merged in the
same way as described in Section 2.2. The only differ-
ence from a DFA state merging algorithm is the deter-
minization step. In this step the delay guards of sev-
eral transitions with the same symbol can be merged
into one, merging the transitions and the target states.
The way in which this is done is determined by the
following rules:

e Whenever there are two transitions with the
same symbol as label and with the same tar-
get state, these transitions are merged into one.
Given the delay guards of the original transitions
[l1, h1] and [Ip, hy], the delay guard of the merged
transition becomes [min(ly, l»), max(hy, hy)].

e Whenever there are two transitions with the
same symbol as label and with overlapping delay
guards, these transitions and their target states
are merged in the standard way, and the guards

Figure 7. The determinization function merges i) transitions
with the same label and the same target state, and ii) transi-
tions with the same label and an overlapping interval.

are combined into one as above.

These rules are depicted in Figure 7. Note that by
using these rules we actually learn a restricted type
of DA. This type consists of DAs where two transi-
tions t; and t, cannot have the same target state s if
they originate from the same source state, and have
the same symbol as label. These transitions, however,
can be modeled by using an additional state s’. This
state s” is a copy of s (including incoming and outgo-
ing transitions). By letting #; and t; have s and s’ as
their target states respectively, the behavior of the DA
is identical to the DA which was disallowed. Since
we require additional states to model more complex
delay guards, a consequence of this restriction is that
minimizing the amount of states of a DA also min-
imizes the complexity of its delay guards. Since in
learning it is customary to minimize the amount of
states, this restricted DA is a natural type of DA for
learning purposes.

With the two simple determinization rules our learn-
ing algorithm for DAs is nearly complete. Our al-
gorithm is capable of merging states, starting from a
timed PTA, such that the result is a deterministic DA.
This resulting DA, however, is only defined (in every
state, and for each symbol) for a subset of R*. To use
this model for new inputs, however, we would like to
generalize this to the whole of R*. A simple routine,
which we call finalize, realizes this generalization by
extending the intervals of all delay guards until they
meet. This can be done in several ways, for example:

Let D,s be the set of delay guards of the transitions
from state g with symbol s as its label. The finalize
routine applies the following rules to each set Dy s:

e The delay guard [/,h] with the highest upper
bound h of all delay guards in D, is given the
value [/,).

e The delay guard [I,h] with the lowest lower
bound ! of all delay guards in Dy is given the
value [0, K].

e For each pair of delay guards [I1, /1] and [Ip, hp],
with hy < I, such that there is no delay guard
in Dy s in the interval [hy, [;], are given the values
(I, (h1 +12) /2] and ((hy + 12) /2, hy].

When the finalize routine is finished, the result is a
complete DA consistent with the timed input sample.
Note that the third rule (which just takes the average
between the upper and lower bound of the two in-
tervals) is a very simple way to generalize. While it
does not matter for the consistency of the DA, an im-
plementation of this algorithm could use a more so-
phisticated method, using for example the size and
density of both guards. Algorithm 1 shows the main
routine of the algorithm in pseudo code.

Algorithm 1 State merging delay automata

Require: A timed input sample S. A required size of
the target DA k.

Ensure: A is a DA of size k, that is consistent with
the input sample S, when no such DA exists false is
returned.

Construct PTA A from S.
Call the find_da function.
Function find_da():
for All pairs of states {q1,42} in A do
A = determinize(merge(q1,42))
if A constains no inconsistent state then
if size(A) equals k then
return A
end if
if find dfa() # false then
return find_dfa()
end if
end if
undo determinize(A).
undo merge(q1,q2)-
end for
return false

5. Discussion and Current Work

Our research goal is to find an algorithm to learn a
model for systems that can be described by discrete
events and the time at which they occur. More specifi-
cally, we would like to be able to identify a finite state
automaton with time information from the observa-
tions of the events and their starting time. To this end,
we defined a simple type of timed automaton, which
we called a delay automaton (DA).

In this paper we showed that learning the guards
alone is already NP-complete. We also showed that
learning both the automaton and the time labels is
NP-complete. This is a bit unexpected, since one
would think that adding time information to a learn-
ing problem makes it more expressive, and hence
more difficult. We may, however, conclude that learn-
ing (certain types of) timed automata is not signifi-
cantly harder than learning DFAs. From this we de-
rived an alternative to the straightforward approach
of first mapping the timed input sample to an un-
timed input sample, and then to learn the DFA from
the untimed data. In future work we would like to
find out whether the solutions found by this approach
and our alternative algorithm are identical.

We derived the idea for our learning algorithm from
the reduction proof: we discovered how to adapt
the state merging algorithm for DFAs to our DAs.
To the best of our knowledge, this is the first pro-
posal for an algorithm that can identify a timed fi-
nite state automaton from a timed input sample.
Closely related work deals with the problem of learn-
ing an event recording automaton (an event clock
automaton without clocks for future events) from
a timed teacher for membership and equivalence
queries (Grinchtein et al., 2004). A problem of this
approach is that it requires a polynomial amount of
queries in the size of the zone graph, and the size of
this graph can be doubly exponential in the size of the
minimal automaton.

Current work is to implement and test this DA learn-
ing algorithm on observations with time informa-
tion. Furthermore, we would like to generalize both
this algorithm and the complexity results to proba-
bilistic timed automata. Probabilistic automata are
equivalent to commonly used hidden Markov mod-
els (Dupont et al., 2005). Since a probabilistic DFA de-
fines a distribution over strings, it is possible to learn
a probabilistic DFA solely from positive examples. An
adaptation of the state merging algorithm to the prob-
lem of learning probabilistic DFAs from just positive
examples is given in (Carrasco & Oncina, 1994). In
the probabilistic setting there is also some work on
learning timed systems. In (Sen et al., 2004), for exam-
ple, the state merging algorithm is adapted in order
to learn continuous-time Markov chains in the limit
with probability one. We would like to adapt our state
merging algorithm in a similar way to the problem of
learning a probabilistic delay automaton.

References

Alur, R. (1999). Timed automata. International Con-
ference on Computer-Aided Verification (pp. 8-22).
Springer-Verlag.

Alur, R, Fix, L., & Henzinger, T. A. (1999). Event-
clock automata: a determinizable class of timed au-
tomata. Theoretical Computer Science, 211, 253-273.

Bugalho, M., & Oliveira, A. L. (2005). Inference of
regular languages using state merging algorithms
with search. Pattern Recognition, 38, 1457-1467.

Carrasco, R., & Oncina, J. (1994). Learning stochas-
tic regular grammars by means of a state merging
method. Proceedings of the 2nd International Collo-
qium on Grammatical Inference (pp. 139-150).

Cassandras, C. G., & Lafortune, S. (1999). Introduc-
tion to discrete event systems, vol. 11 of The Kluwer In-
ternational Series on Discrete Event Dynamic Systems.
Springer Verlag.

de la Higuera, C. (1997). Characteristic sets for poly-
nomial grammatical inference. Machine Learning,
27.

Dupont, P, Denis, F, & Esposito, Y. (2005). Links be-
tween probabilistic automata and hidden Markov
models: probability distributions, learning models
and induction algorithms. Pattern Recognition.

Gold, E. M. (1978). Complexity of automaton identifi-
cation from given data. Information and Control, 37,
302-320.

Grinchtein, O., Jonsson, B., & Leucker, M. (2004).
Learning of event-recording automata. Lecture
Notes In Computer Science, 3253, 379-395.

Lang, K. J., Pearlmutter, B. A., & Price, R. A. (1998).
Results of the abbadingo one DFA learning com-
petition and a new evidence-driven state merging
algorithm. ICGI (pp. 1-12).

Oncina, J., & Garcia, P. (1992). Inferring regular lan-
guages in polynomial update time. In Pattern recog-
nition and image analysis, vol. 1 of Series in Machine
Perception and Artificial Intelligence, 49-61. World
Scientific.

Sen, K., Viswanathan, M., & Agha, G. (2004). Learn-
ing continuous time Markov chains from sample
executions. Proceedings of The Quantitative Evalua-
tion of Systems (pp. 146-155).

Sipser, M. (1997). Introduction to the theory of computa-
tion. PWS Publishing.

