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Abstract. Identifying the most influential spreaders is one of outstanding problems in physics of complex
systems. So far, many approaches have attempted to rank the influence of nodes but there is still the lack
of accuracy to single out influential spreaders. Here, we directly tackle the problem of finding important
spreaders by solving analytically the expected size of epidemic outbreaks when spreading originates from a
single seed. We derive and validate a theory for calculating the size of epidemic outbreaks with a single seed
using a message-passing approach. In addition, we find that the probability to occur epidemic outbreaks is
highly dependent on the location of the seed but the size of epidemic outbreaks once it occurs is insensitive
to the seed. We also show that our approach can be successfully adapted into weighted networks.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 89.65.-s Social and economic systems
– 89.75.Hc Networks and genealogical trees

1 Introduction

The topological location of the origin of spreading dy-
namics plays an important role in a final configuration of
spreading processes [1–8]. For example, an initial patient
from which an epidemic starts to spread influences criti-
cally the total number of infected patients [2,9,10]. In ad-
dition, influential spreaders are required to be targeted for
immunization with a high priority to halt epidemic out-
breaks or rumor spreading [11–15]. Searching for the most
influential nodes in complex networks has attracted much
attention from many disciplines such as physics, complex
network science, sociology, and computer science due to its
practical application in real-world spreading processes in-
cluding emerging epidemics and information diffusion [2–
5,8–10,16–23].

Several centralities in terms of network topology from
degree [24] that is the number of neighbors to k-core [25],
betweenness centrality [26], and PageRank [27] have been
tested for identifying influential spreaders. Even though
many methods so far have been proposed to single out
influential spreaders, however there are still limitations
in their accuracy and applicability because most of them
were based on intuition rather than on mathematical back-
ground. In addition, while the ranking of nodes’ influence
would rely on the details of spreading processes such as
the probability of transmission, most previous methods do
not take into account the processes of spreading dynamics
explicitly [2,9,10,18,19].

In order to overcome these limitations, we directly de-
rive a theory for finding influential spreaders based on

a message-passing approach. We compute the expected
size of epidemic outbreaks on locally tree-like networks,
when an epidemic starts from a single node. We validate
our theory with extensive numerical simulations on syn-
thetic and empirical networks with various transmission
probabilities. We confirm that our theory can predict ac-
curately the influence of spreaders in complex networks.
We also find that the location of an initial spreader affects
the probability of epidemic outbreaks but not the average
size of epidemic outbreaks once it occurs. In addition, we
show that our approach based on message-passing equa-
tions can be applied to weighted networks.

2 Theory

We consider the susceptible-infected-recovered (SIR) model
as a typical epidemic model [28]. The SIR model is re-
garded as one of the most simple yet successful models
describing irreversible spreading processes. The SIR model
consists of three states: susceptible (S), infected (I), and
recovered or removed (R). Each infected node is infectious
to spread disease to its neighbors on a network with the in-
fection rate β. Independently, each infected node becomes
recovered after the recovery time τ . Once recovered, it is
not infectious anymore, leading to an irreversible process.
Thus, an infected node is able to spread a disease to its
neighbors during the recovery time from the moment of
infection. For the sake of simplicity, we assume that the
recovery time is sharply distributed, and so its probability
distribution P (τ) is well described by the delta function.
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We implement the SIR model on complex networks
with a single seed. To be specific, all nodes are initially sus-
ceptible except a single infected node i which corresponds
to the first patient. An infected node transmits disease
to its neighbors with the infection probability β and au-
tonomously recovers with the recovery time τ . Without
loss of generality, we set 〈τ〉 = 1 in our study. These pro-
cesses proceed until there are no more infected nodes in a
system. In the stationary state (t → ∞), we measure the
fraction of recovered nodes ρi when epidemic starts with a
single seed i, called the prevalence of epidemic outbreaks.
The higher prevalence ρi is the higher influence of node i
is, because higher ρi implies that an epidemic initiated by
node i brings out larger epidemics in average.

Once we obtain the prevalence of each node ρi, we can
directly identify influential spreaders based on sorting of
ρi. However, it is a time-consuming process to obtain ρi
for every node in a system by numerical simulations be-
cause many realizations for every different seed are needed.
Thus, we derive a theory for estimating the prevalence
for a seed via a message-passing approach. A message-
passing approach has also been applied for percolation
[29], inferring the origin of spreading [30], optimal im-
munization [15], optimal deployment of resource [31], and
optimal percolation [19,32]. We use mapping between the
epidemic model with the static bond percolation, which
is well known for a long time [33–35]. Then, we reinter-
pret the message-passing approach for bond percolation
as a theory for identifying superspreaders in the epidemic
model [9]. In this section, we present the message-passing
equations and its interpretation for the SIR model.

We first consider a classical bond percolation problem
on complex networks with a size N and link occupation
probability TB . In a percolation process, there can be one
giant component G that is a connected cluster that covers
a non-vanishing fraction of a network in the limit N →∞
and multiple small components. The giant component ap-
pears only if TB is sufficiently high, i.e., TB is larger than
the percolation threshold. If TB is less than the thresh-
old, there exist only small components. At the percolation
threshold, the giant component appears, showing a typi-
cal second-order phase transition between non-percolating
and percolating phases.

For the mapping between the bond percolation with
SIR model, let us imagine a final configuration of the
SIR model in the steady state. In the limit t → ∞, all
nodes in a network are either susceptible or recovered.
Note that all infected nodes become eventually recovered.
We then define links on which infection occurs as infec-
tion links whose probability is given by transmissibility
T . The transmissibility is then the probability that an in-
fected node infects its neighbors before it recovers, and
therefore T = 1 − e−βτ [35]. The relation between the
SIR model and bond percolation is established by cor-
respondence between the transmissibility T in the SIR
model and the probability of link occupation in bond per-
colation TB . Then, the size of epidemic outbreaks in the
steady state corresponds to the size of connected compo-
nent by infection links which is fully determined by the

structural property of a final configuration. In the steady
state, the epidemic size at a given T corresponds to the
size of G with the same occupation probability TB in the
bond percolation jargon. Thus, a continuous transition
between disease-free phase and global epidemic phase at
the epidemic threshold is observed, similar with the bond
percolation. Based on this mapping, we derive a theory
for finding influential nodes in the SIR model, using a
message-passing approach developed in percolation the-
ory.

In order to derive the theory for the SIR model, first
define Hij as the probability that node j by following
a link from node i does not bring out an epidemic out-
break with the transmissibility T . Assuming locally tree-
like structures, if neither the link between i and j is infec-
tion link nor all the neighbors of node j excluding node
i occur an epidemic outbreak, node j does not bring out
an epidemic outbreak. Thus, the probability Hij can be
obtained by following coupled self-consistency equations
[9,29,36–38],

Hij = 1− T + T
∏

k∈∂j\i

Hjk. (1)

where k ∈ ∂j \ i represents a set of neighbors of node j
excluding node i. Computing the above self-consistency
equations iteratively, Hij converges towards a fixed point.
We here concentrate only on locally tree-like structure,
but our framework can also be extended for networks with
triangles beyond locally tree-like structures [38].

When Hij is obtained, we can calculate the probability
Pi that a seed i triggers an epidemic outbreak in terms of
Hij as

Pi = 1−
∏
j∈∂i

Hij , (2)

where j ∈ ∂i indicates a set of neighbors of node i. When
T is less than the epidemic threshold, Pi is zero since there
is no global epidemic. In the bond percolation jargon, Pi
is the probability that a randomly chosen node i belongs
to the giant component G. Similarly, we can obtain the
size of epidemic when it occurs from a seed i by

Si =
1

N

1 +
N∑
j=1
j 6=i

Pj

 . (3)

Since a node i has to be included in the epidemic outbreak
as a seed, we differently treat node i in the summation.
After we obtain the probability and size of epidemic out-
breaks, we can simply calculate the average prevalence
when the epidemic is initiated by a seed i as

ρi = PiSi. (4)

In summary, (i) we obtain Hij by calculating iteratively
Eq. 1 with a given T , (ii) compute Pi by Eq. 2, Si by
Eq. 3, and ρi by Eq. 4 for different seed selection, and (iii)
identify superspreaders based on sorting the prevalence of
each node ρi.
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Fig. 1. Scatter plot of (a) prevalence ρi, (b) probability Pi, and (c) size Si of epidemics initiated from node i obtained by
theory and numerical simulations for ER and SF networks with N = 105 with different transmissibility. The same plot for the
empirical networks, CW and SC, are shown in (d-f). Dashed lines in (c) and (f) represent average epidemic size obtained by
theory as S = 1

N

∑N
i Pi. The theory is in perfect agreement with the numerical simulations for both random and empirical

networks.

Our theory provides not only the ranking of influen-
tial spreaders but also intriguing perspectives on finding
superspreaders. First, the size of epidemic outbreaks is in-
sensitive to the location of an initial seed once the spread
reaches global epidemics. Thus the difference in the influ-
ence for different seeds is mainly caused by the epidemic
probability of each seed. Second, the ranking of influential
spreaders is not fully determined by only the topological
location of seed but can vary depending on the parame-
ters of spreading processes and details of spreading mod-
els [39]. Therefore, it would be misleading if one attempts
to find a universal ranking of influential spreaders solely
relying on network structures ignoring dynamical proper-
ties of spreading processes as reported in [39].

3 Results

We first test our theory with numerical simulations on
Erdös-Rényi (ER) and scale-free (SF) networks with N =
105 which respectively represent random graphs with a
homogeneous and heterogeneous degree distribution. For
building ER networks, we randomly choose a pair of nodes
and connect them unless they are already connected. We
repeat this step until the mean degree 〈k〉 reaches the
desired value. In our study, we set 〈k〉 = 4.

For building SF networks, we use static scale-free net-
work model [40]. In the model, each node i has its inherent

weight ωi given by ωi = i−µ/
∑N
j=1 j

−µ, where µ is a con-

stant, 0 < µ < 1, which determines the degree exponent.
We choose a pair of nodes, say i and j independently fol-
lowing the probability wi and wj respectively, and connect
them unless they are already connected. We repeat this
step until the mean degree 〈k〉 reaches the desired value
which is 〈k〉 = 2 in our study. The degree distribution of
the resulting network is asymptotically scale-free with the
decaying tail k−γ with the degree exponent γ = (µ+1)/µ,
i.e., γ = 2.5 in our study.

On the resulting network, we perform the SIR pro-
cess with every single seed i. The prevalence with seed
i is obtained, averaged over 104 independent runs. The
prevalence obtained by the theory ρti and numerical simu-
lation ρsi are shown together in Fig. 1(a). Our theory ex-
hibits perfect agreement with the numerical results. Pear-
son correlation coefficient between ρi for the theory and
simulation is larger than 0.99 for all tested infection rate
and network structures. Note that non-backtracking cen-
trality corresponds to the limit Hij → 1 where T is at an
epidemic threshold. Thus, non-backtracking centrality can
predict the influence of spreaders reliably at the epidemic
threshold as a special case of our theory near the epidemic
threshold [9,41].

We also validate our theory for the SIR model on
top of empirical contact networks. In order to reconstruct
real-world networks, we use contacts in a workplace net-
work (CW) from face-to-face contact patterns between in-
dividuals in an office building in France [42] and a sexual
contact network (SC) containing the information of sex-
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Fig. 2. (a) Scatter plot of size Si of epidemics initiated from node i with respect to probability of epidemics Pi obtained by the
numerical simulations for ER (T = 0.3) and SF (T = 0.4) networks with N = 105 and different threshold θ = 0.01, 0.5, 0.1. (b)
The same plot for the empirical networks, CW (T = 0.1) and SC (T = 0.3), with θ = 0.01, 0.5, 0.1. For the CW network, the
result with θ = 0.01 is discarded since the network size is less than 100. Dashed lines represent average epidemic size obtained
by theory.

ual activity gathered from a web community of internet-
mediated prostitution in Brazil [43]. Both networks con-
tain the moment of contacts between individuals. Note
that both networks are far different from random net-
works because the CW has a strong modular structure
based on the organization of the offices in departments
and the SC is a completely bipartite network. Therefore,
these networks are suitable examples to evaluate how well
the theory works beyond random networks. As shown in
Fig. 1(d), the theory predicts the final fraction of epidemic
outbreaks accurately for the empirical networks. Correla-
tion coefficient between the theory and numerical simula-
tion reaches more than 0.99, indicating perfect agreement
between them.

Beyond the agreement in the prevalence between the
theory and numerical results, we decompose ρi into the
probability Pi and size Si of epidemics. In numerical sim-
ulation, we define global epidemics when more than 10 %
of nodes in a network ultimately are infected. We com-
pute numerically the probability Pi of epidemic outbreaks
as the frequency of global epidemics out of all trials and
the size Si of outbreaks when global epidemic occurs. We
compare the probability and size obtained by the theory
and numerical results for ER, SF, CW, and SC networks
in Fig. 1. We find that our theory reliably predicts the
probability and size of epidemic outbreaks. We also find
that while the probability Pi shows different values for
different initial seeds, the size Si is almost constant and
insensitive to seed location. Thus, the epidemic size once
global epidemic occurs Si is independent to ρi. This result
implies that the location of seed affects the probability to
bring out a global epidemic but not the size of an epidemic
once it occurs.

We also confirm that the numerical results are highly
robust for the different definition of the global epidemic.
Specifically, we check the size of epidemics Si when the

fraction of infected nodes exceeds a threshold value θ, 1,
5, and 10 % out of all nodes (Fig. 2). We find that the
different threshold values θ do not produce notable dif-
ference at all. The irrelevance of the seed location to Si
can be understood if we recall the mapping between the
bond percolation and the SIR model. The epidemic size
Si from a single seed can be regarded as the average size
of giant component including node i in the perspective on
the bond percolation. Therefore, Si is rather insensitive to
the topological location of a seed i. In contrast, Pi strongly
relies on the location of a seed since it can be interpreted
as the probability that a randomly chosen node belongs
to the giant component in the bond percolation.

Next, we generalize our theory for weighted networks,
assigned different transmissibility for each link. Despite
ubiquity of heterogeneity in link weights, most central-
ities of complex networks have aimed to single out in-
fluential spreaders on unweighted networks except a few
studies [44,45]. We here modify the theory for unweighted
networks by introducing a different transmissibility Tij for
each link. Substituting Tij into T in Eq. 1, we can obtain
the probabilityHij that node j arrived through a link from
node i does not bring out epidemic outbreaks on weighted
networks by

Hij = 1− Tij + Tij
∏
k∈j\i

Hjk. (5)

After getting Hij , the probability that a seed node i pro-
duces epidemics and the average size of epidemics when
a global epidemic occurs can be computed by using the
same equations for unweighted networks.

We test the theory for weighted networks with CW
and SC networks. Both datasets contain the number of
contacts between two individuals, νij . We define the trans-
missibility between individuals as Tij = 1 − e−βνijτ . The
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Fig. 3. Scatter plot of the prevalence for theory ρti and numer-
ical simulations ρsi on top of weighted networks obtained from
CW and SC networks. The theory is in good agreement with
the numerical simulations.

transmissibility increases with increasing νij , and Tij be-
comes unity in the limit νij →∞. When all νij = 1, it is
reduced into an unweighted network. Taking into account
the weights of each link, we calculate the prevalence of epi-
demic outbreaks for each seed on CW and SC networks.
As shown in Fig. 3, we find that our theory for weighted
networks is in well agreement with the numerical simu-
lations for the prevalence of outbreaks. Thus, we confirm
that our method based on message-passing equations can
also predict reliably the influential spreaders in weighted
networks.

While our theory is reliable for the identification of
an influential spreader on locally tree-like networks, it
has some limitations. First, the theory might break down
for networks with many short loops such as spatial net-
works [46] since they violate the assumption of locally tree-
like structures. Second, our method does not guarantee its
validity for finding a set of multiple influential seeds that
can spread disease or information to the largest part of
a network. Note that the problem of identifying multiple
influential spreaders is far different and difficult than that
of a single spreader because infected nodes by different
seeds can be largely overlapped [8,47].

4 Discussion

In this study, we propose an accurate method for identify-
ing the most influential spreaders for both unweighted and
weighted networks via message-passing equations. Our the-
ory is based on the exact mapping between the SIR model
and bond percolation, and exact for sparse networks with
a locally tree-like structure. We show that the theory is
in perfect agreement with numerical calculations, and can
outperform previous approaches in terms of accuracy. Fur-
thermore, we find that the location of seed affects the
probability of epidemic outbreaks but not the size of out-
breaks, which is not well reported in previous study. Our

study can shed light on the identification of the most im-
portant spreaders with a single seed in complex networks
theoretically and practically, for instance for viral market-
ing, efficient immunization strategy, and identifying the
most influential agents in society.
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30. A. Y. Lokhov, M. Mézard, H. Ohta, and L. Zdeborová,
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