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ABSTRACT

Detection and diagnosis of cancer are especially important for early prevention 

and effective treatments. Traditional methods of cancer detection are usually time-

consuming and expensive. Liquid biopsy, a newly proposed noninvasive detection 

approach, can promote the accuracy and decrease the cost of detection according 

to a personalized expression profile. However, few studies have been performed to 

analyze this type of data, which can promote more effective methods for detection of 

different cancer subtypes. In this study, we applied some reliable machine learning 

algorithms to analyze data retrieved from patients who had one of six cancer subtypes 

(breast cancer, colorectal cancer, glioblastoma, hepatobiliary cancer, lung cancer 

and pancreatic cancer) as well as healthy persons. Quantitative gene expression 

profiles were used to encode each sample. Then, they were analyzed by the maximum 

relevance minimum redundancy method. Two feature lists were obtained in which 

genes were ranked rigorously. The incremental feature selection method was applied 

to the mRMR feature list to extract the optimal feature subset, which can be used 

in the support vector machine algorithm to determine the best performance for the 

detection of cancer subtypes and healthy controls. The ten-fold cross-validation for 

the constructed optimal classification model yielded an overall accuracy of 0.751. 

On the other hand, we extracted the top eighteen features (genes), including TTN, 

RHOH, RPS20, TRBC2, in another feature list, the MaxRel feature list, and performed 

a detailed analysis of them. The results indicated that these genes could be important 

biomarkers for discriminating different cancer subtypes and healthy controls.
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INTRODUCTION

Cancer has generally been regarded as a general term 

to describe a group of diseases associated with abnormal 

cell growth with invasive and metastatic characteristics [1-

3]. Based on statistics from the WHO, every year, more 

than 8.2 million people die from cancer, accounting for 

approximately 13% of deaths worldwide, indicating that 

cancer is one of the most threatening diseases in the world 

[4, 5]. According to a prediction of the WHO, in the next 

two decades, the incidence of cancer may be elevated by 

more than 70% [5]. Therefore, it is urgent to study the 

biological foundations of cancer and modify clinical 

treatment strategies [6]. However, more than 100 types 

of cancer have been identified, each of which need to be 

diagnosed and treated specifically [5]. Considering the 

complexity of cancer diagnosis and treatment, it is quite 

important to establish a convenient and effective method 

for the early detection and identification of various cancer 

subtypes.

Traditionally, detection and identification of cancers 

relied on three basic groups of testing methods: lab tests, 

imaging procedures and biopsies [7, 8]. Lab tests mainly 

pay attention to specific substances in the body and 

generally involve the detection of body fluids, including 

blood, urine, cerebrospinal fluid (CSF), and so on [9-

11]. However, lab tests reflect the overall conditions of 

the body with the use of only a few markers for tumor 

screening, such as carcino-embryonic antigen, CEA and 

alpha fetoprotein, AFP [10]. Doctors cannot diagnose 

cancer only based on lab tests. For further detection, 

imaging procedures, including CT scan, nuclear scan, 

ultrasound, MRI and X-rays, are used [12-14]. With the 

help of such medical apparatuses, doctors can see deeper 

into the body, which may simplify the diagnosis of cancer. 

However, most screening is expensive and has potential 

pathogenic effects, though screening may be quite safe at 

normal doses. Such characteristics may impose restrictions 

on large-scale screening of cancer patients. Medical 

imaging can only be applied to patients with certain 

clinical symptoms or tumor markers identified by lab 

tests for further identification and classification. Biopsies 

have been widely regarded as the gold standard for tumor 

diagnosis. With a needle, an endoscope, or during surgery, 

doctors directly withdraw tissue or fluid from patients 

for further pathological diagnosis [15-17]. Although 

such testing methods can obtain accurate pathological 

information from the patients or the tumor itself for correct 

diagnosis, as an invasive detection method, it not only can 

be quite expensive and time-consuming but can also have 

a risk of infection [18-20]. Tumor patients with certain 

infections may not be suitable for such detection.

Recently, gene detection has been introduced for the 

detection and diagnosis of tumors. Based on the genetic 

characteristics of tumor cells, people can precisely classify 

tumors (even those with similar clinical symptoms) into 

different molecular subtypes, which can be treated by 

appropriate therapeutic strategies [21]. However, detection 

relies on tumor tissues, which can only be obtained by 

invasive methods, such as biopsies, which are unsuitable 

for large-scale detection and early screening. To solve this 

problem, a new concept, liquid biopsy, has been presented 

[16, 22-24]. Liquid biopsy is a specific detection method 

that relies on the sampling and analysis of non-solid 

tissues, including blood, lymphatic fluid and CSF [25]. 

Unlike traditional biopsy, such a detection system is nearly 

non-invasive, with comparable accuracy [22, 24]. The 

combination of gene detection and liquid biopsies provides 

us with a new effective tool for accurate and non-invasive 

detection of tumors. In addition, it is suitable for large-

scale detection and early screening. However, to apply 

such effective methods for tumor diagnosis, identification 

of effective markers turn out to be the premise problem for 

further development of liquid biopsy.

Based on multi-omics data, various approaches 

have been presented to identify and distinguish different 

tumor subtypes. In 2015, Zhang et al. reported an effective 

computational method to classify ten types of major 

cancer subtypes that threaten human health by reverse 

phase protein array profiles, implying the availability and 

feasibility of tumor detection by protein profiling [26]. 

Further, late in 2016, Zhang et al. presented a systematic 

analysis algorithm that contributes to the classification 

of cancers based on the copy number variation (CNV) 

landscape, confirming that the CNV landscape may also 

be an effective detection index for tumor classification 

[27]. Apart from such an analysis at the genomic and 

proteomic level, Best et al. reported an effective method 

to distinguish cancer subtypes solely based on RNA-seq 

results of tumor-educated platelets, a functional blood 

component that can be easily obtained by liquid biopsy 

[28]. Tumor-educated platelets contain specific pre-

mRNAs of the bone marrow, spliced circulating mRNAs 

of primary and metastatic tumors, and specific spliced 

mRNAs of the platelets themselves induced by the tumor 

microenvironment, making tumor-educated platelets 

a perfect source for liquid biopsy. Such fundamental 

research achievements confirmed that the combination 

of genetic characteristics (either DNA-seq or RNA-

seq results) and liquid biopsy might accomplish non-

invasive, early detection and identification of different 

tumor subtypes. However, many markers and genes are 

redundant, and the genes that can be detected for diagnosis 

in liquid biopsy are limited [28]. Therefore, it is urgent 

to provide a computational method to analyze such data, 

thereby screening core and aberrantly expressed genes for 

further detection.

In this study, based on the RNA-seq results of tumor-

educated platelets, we applied computational methods to 

screen core mRNA markers that can distinguish cancer 

subtypes from healthy controls. The gene expression 

profiles of blood from patients who had one of six cancer 
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subtypes and healthy persons were analyzed by maximum 

relevance minimum redundancy (mRMR) [29]. Upon 

further analysis of the feature lists yielded by the mRMR 

method, eighteen important genes were extracted that may 

be essential biomarkers for the classification of cancer 

subtypes and healthy controls. In addition, an optimal 

classification model using a support vector machine 

(SVM) algorithm [30, 31] as the classifier was built, which 

provided good performance with an overall accuracy of 

0.751 for diagnosing different cancer types and healthy 

controls.

RESULTS

Results of the mRMR method

In this study, each patient or healthy sample was 

represented by 13,445 features as described in Section 

“Dataset and feature construction”, each of which 

indicates the expression level of some gene. To analyze 

them, the mRMR method was employed. According to 

the relevance between features and targets, all features 

were ordered in the MaxRel feature list, in which features 

with high relevance to targets obtained high ranks. In 

addition, another feature list, mRMR feature list, was 

also yielded by the mRMR method by further considering 

the redundancies between features. These two lists are 

provided in Supplementary Table 1 and 2, respectively.

Results of the IFS method

The IFS method was applied to the mRMR feature 

list yielded by the mRMR method to identify optimal 

features for classification. In this method, several feature 

sets were constructed, which consisted of some first 

features in the mRMR feature list. Then, for each feature 

set, the SVM was executed on the dataset, in which 

samples were represented by feature in the set. However, 

testing all of the possible feature subsets would take much 

time due to our limited computational power because 

13,445 features were used in this study. In view of this, 

we designed an IFS method that contained two stages. In 

the first stage, we only tested some special feature subsets 

to determine the possible range of optimal features. In 

the second stage, all of the feature subsets in the possible 

range were tested to identify the optimal feature subset.

In the first stage, we tested the feature subsets F
i
, 

where i is a multiple of ten, i.e., the numbers of features 

in these subsets were multiples of ten. For each of these 

feature subsets, the SVM was executed on all samples 

that were represented by features in this subset, with 

its performance evaluated by ten-fold cross-validation. 

The predicted results were counted as accuracies and 

specificity, as mentioned in Section “Measurements”. 

After all of these feature subsets had been tested, several 

accuracies and specificities were obtained, which are 

provided in Supplementary Table 3 and 4. Because 

the overall accuracy TACC was selected as the major 

measurement, we plotted a curve, namely, an IFS-curve, 

with TACC as the Y-axis and the number of features as 

the X-axis, which is shown in Figure 1, to extract the 

feature subset that can yield the best performance for the 

SVM. It can be observed that the IFS-curve first follows a 

sharp increasing trend and reaches the maximum overall 

accuracy (0.747) when 2030 features were used before 

becoming stable and following a slow decreasing trend.  

Figure 1: IFS-curves for the results yielded in the first stage of the IFS method. The Y-axis represents the overall accuracy, 

and the X-axis represents the number of features used for classification. The high overall accuracies (no less than 0.740) all cluster between 

2000 and 2200.
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The high overall accuracies (no less than 0.740) all 

clustered at approximately 2100. Thus, we believed that 

the possible range of optimal features was between 2000 

and 2200.

In the second stage, we further tested the feature 

subsets F
i
 with 2000≤i≤2200. The obtained accuracies 

and specificities mentioned in Section “Measurements” 

are provided in Supplementary Table 5 and 6. For ease 

of observation, we plotted a curve with the overall 

accuracy (TACC) as the Y-axis the number of features 

as the X-axis, as shown in Figure 2. We can see that the 

highest TACC was 0.751 when the top 2,047 features in 

the mRMR feature list were used for classification. Thus, 

these features were deemed to be optimal features and 

comprised the optimal feature subset. By using these 

optimal features, an optimal classification model was 

built. The detailed performance of this model is shown in 

Figure 3. It can be seen that the specificity for each class is 

quite high (more than 0.920) and the prediction accuracy 

for each class (i.e., sensitivity) is quite high, except for the 

accuracy for hepatobiliary cancer. The possible reason for 

the low accuracy of hepatobiliary cancer may be the small 

size of this class, which only contained fourteen samples, 

while the other classes contained at least 35 samples 

(more than twice as many samples than those available 

for hepatobiliary cancer).

Comparison with commercial cancer detection 

panels

There are already some commercial cancer detection 

panels. Here, we collected cancer panel genes from the 

following seven commercial cancer detection panels: (I) 

CancerNext (http://www.ambrygen.com/tests/cancernext), 

(II) CancerNextExpanded (http://www.ambrygen.com/

tests/cancernext-expanded), (III) CloudHealth (http://

en.chgenomics.com/products/hereditary), (IV) GeneDx 

(https://www.genedx.com/test-catalog/available-tests/

comprehensive-cancer-panel/), (V) Illumina (https://

www.illumina.com.cn/products/by-type/clinical-research-

products/trusight-rna-pan-cancer.html), (VI) NanoString 

(https://www.nanostring.com/products/gene-expression-

panels/hallmarks-cancer-gene-expression-panel-

collection/pancancer-pathways-panel), (VII) xGen (https://

www.idtdna.com/pages/products/nextgen/target-capture/

xgen-lockdown-panels/xgen-pan-cancer-panel). The 

retrieved genes from these seven panels were provided in 

Supplementary Table 7.

Using the same procedures for building the optimal 

classification model mentioned in Section “Results of the 

IFS method”, genes retrieved from each panels can yield 

an optimal classification model. The performance of these 

classification models are listed in Table 1, from which we 

can see that the performance of these models were much 

inferior to the proposed model.

Important genes

For the MaxRel feature list yielded by the mRMR 

method, extensive investigation of some of the top 

features may lead to novel biomarkers for distinguishing 

different cancer patients. In the MaxRel feature list, each 

feature was measured by an MI value. A feature with a 

high MI value indicates that it is quite important. Thus, 

we set a threshold of 0.360 to select important features, 

i.e., features with MI values larger than 0.360 were 

Figure 2: IFS-curves for the results yielded in the second stage of the IFS method. The Y-axis represents the overall accuracy, 

and the X-axis represents the number of features used for classification. The highest overall accuracy was 0.751 when 2047 features were 

used.
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extracted, corresponding to the eighteen genes listed 

in Table 2. We also investigated ranks of these eighteen 

genes in the mRMR feature list and listed them in the last 

column of Table 2. It can be seen that the maximum rank 

was 122, indicating that these important eighteen genes 

were all in the optimal feature subset that consisted of the 

top 2,047 features in the mRMR feature list. It can partly 

prove that these eighteen genes were quite essential for 

classification of six cancer subtypes and healthy samples. 

In the following section, these features were extensively 

analyzed to uncover the differences of the biological 

processes and molecular functions between the six cancer 

subtypes and healthy samples.

DISCUSSION

In Section “Important genes”, eighteen important 

genes, listed in Table 2, were extracted. These 18 genes 

are deemed to be important for distinguishing six cancer 

subtypes and healthy samples. Figure 4 shows the heat map 

of all samples using the important eighteen genes. It can be 

seen that the healthy samples were clearly clustered together 

and among the cancer samples, the Glioblastoma samples 

were most similar with healthy samples. Generally based 

on our results, we summarized two specific biological and 

functional characteristics of various functional genes have 

been predicted. First, various immune associated genes 

like CD3G have been predicted, indicating the distinctive 

expression pattern in tumor and normal tissues. During the 

tumorigenesis of various cancer subtypes, like breast cancer, 

colorectal cancer, glioblastoma, the immune system of 

patients have been confirmed to be systemically suppressed, 

especially in the tumor microenvironment (cancer adjacent 

tissues) [32-34]. Therefore, it is quite reasonable to predict 

genes that contributing to immune reaction as potential 

differentially expressed genes and biomarkers. Another 

specific characteristic turns out to be that glioblastoma as 

a brain cancer has the most similar expression pattern with 

normal patients based on liquid biopsy of blood platelet. 

Recent publications confirmed that during the initiation and 

progression of brain cancer like glioblastoma, the Blood 

Brain Barrier (BBB) acts as an effective protective screen, 

preventing the spread of characteristic biomarkers from the 

brain to the circulating system, resulting in the major liquid 

biopsy biomarkers that have been identified are mostly based 

on cerebrospinal fluid detection [35, 36]. Therefore, the 

expression profile of blood platelet from brain cancer patients 

and normal controls may appear to be the most similar, 

comparing to other cancer subtypes. Here, in our study, 

based on detailed expression profiling data, we successfully 

validated the similarity between the blood biopsy result 

of brain cancer patients and normal controls and further 

identified the potential biomarkers that can recognize brain 

Figure 3: The performance of the optimal classification model evaluated by ten-fold cross-validation.

Table 1: The performance of the optimal classification 

models using different reference gene sets

Reference gene set TACC

This study 0.751

Genes in CancerNext 0.407

Genes in CancerNextExpanded 0.463

Genes in CloudHealth 0.421

Genes in GeneDx 0.400

Genes in Illumina 0.656

Genes in NanoString 0.618

Genes in xGen 0.519
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cancer patients, confirming that similar as blood expression 

pattern of brain cancer patients with normal controls, there 

still remain potential biomarkers to reflect the tumorigenesis 

processes. As for elaborating biological processes that the 

important gene may participate in, the detailed analysis of 

each functional gene can be seen below.

Based on recent publications, the specific functions 

of these genes and the specific biological processes that 

these genes participate in, it can be confirmed that these 

genes may form grouping standards for cancer subtype 

identification and differential diagnosis. For clarity, these 

eighteen genes were clustered into three groups, as shown 

in Figure 5. The following sections analyze the genes we 

extracted and divided into different groups one by one.

Confirmed tumor associated genes

Among the eighteen genes, a specific oncogene, 

TTN (ENSG00000155657), has been regarded as a 

crucial marker for the distinction of six cancer subtypes 

and healthy controls. Encoding the protein Titin, this gene 

has been confirmed to contribute to platelet activation 

and cardiac conduction [37, 38]. This gene has also been 

reported to be a specific cancer-associated gene that can 

distinguish healthy controls from the other six subgroup 

of cancers, which all have been confirmed by recent 

publications [39-41]. Recent publications also confirmed 

that TTN might affect the composition of serum proteins, 

as it is expressed in hematopoietic cells, thus implying that 

TTN can be used as a potential marker in liquid biopsies 

[42]. Another gene, ENSG00000168421, is the tumor 

suppressor RHOH, a member of the Ras superfamily. 

Considering that this gene is expressed in hematopoietic 

cells, it is quite suitable for it to act as a liquid biopsy 

marker for the differential diagnosis of tumor [43, 44]. 

Although this gene has been confirmed to contribute to 

tumorigenesis, there are few reports on it. This implies 

that, currently, RHOH can only be used to differentiate 

between tumor samples and normal controls. ATM, 

Ataxia Telangiectasia Mutated serine/threonine kinase 

Table 2: The top 18 features in the MaxRel feature list

Order Feature name Gene name Description MI 

value

Rank in the mRMR 

feature list

1 ENSG00000155657 TTN Titin 0.416 1

2 ENSG00000008988 RPS20 Ribosomal Protein S20 0.407 13

3 ENSG00000177600 RPLP2 Ribosomal Protein Lateral 

Stalk Subunit P2

0.405 6

4 ENSG00000211772 TRBC2 T Cell Receptor Beta 

Constant 2

0.396 19

5 ENSG00000168028 RPSA Ribosomal Protein SA 0.393 35

6 ENSG00000142534 RPS11 Ribosomal Protein S11 0.384 64

7 ENSG00000142676 RPL11 Ribosomal Protein L11 0.381 48

8 ENSG00000105193 RPS16 Ribosomal Protein S16 0.380 57

9 ENSG00000160654 CD3G CD3g Molecule 0.379 25

10 ENSG00000168421 RHOH Ras Homolog Family 

Member H

0.373 3

11 ENSG00000139193 CD27 CD27 Molecule 0.369 8

12 ENSG00000131469 RPL27 Ribosomal Protein L27 0.368 106

13 ENSG00000163682 RPL9 Ribosomal Protein L9 0.368 86

14 ENSG00000071082 RPL31 Ribosomal Protein L31 0.367 78

15 ENSG00000149311 ATM ATM Serine/Threonine 

Kinase

0.367 17

16 ENSG00000149806 FAU FAU, Ubiquitin Like And 

Ribosomal Protein S30 

Fusion

0.366 31

17 ENSG00000109475 RPL34 Ribosomal Protein L34 0.366 122

18 ENSG00000089009 RPL6 Ribosomal Protein L6 0.366 117
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(ENSG00000149311), has been widely reported to 

contribute to the regulation of the cell cycle as a member 

of the PI3/PI4-kinase family [45, 46]. Based on recent 

publications, this tumor-associated gene contributes 

to abnormal proliferation and invasion of tumor cells 

in multiple tumor subtypes [47, 48]. Furthermore, a 

2013 Blood report showed that ATM might participate 

in the secretion of exosomes during tumorigenesis and 

angiogenesis, confirming the possibility of its early 

detection by liquid biopsy [49]. Among our candidate 

subtypes, this gene has been confirmed to contribute to 

all six cancer subtypes, implying that this gene may be 

a functional marker to distinguish healthy samples from 

specific cancer subtypes [50-55].

Ribosome associated genes

For a long time, ribosome associated genes which 

contribute to ribosome biogenesis have been confirmed 

to be a group of functional tumor associated genes 

regulating the proliferation rate of tumor cells [56, 57]. 

Among the important eighteen genes, some were ribosome 

associated genes. RPS20 (ENSG00000008988) has also 

been predicted to be a candidate biomarker. This gene has 

been reported to encode a ribosomal protein component 

of the 40S subunit [58, 59]. Different from genes that 

contribute to all six cancer subtypes, RPS20 has only been 

identified in limited cancer subtypes, including colorectal 

cancer and glioblastoma [60, 61]. Therefore, in our seven 

types of samples, this gene can distinguish colorectal 

cancer and glioblastoma from the other four cancer 

subtypes and healthy controls. Further research on this 

gene also confirmed that it can be identified in exosomes 

of colorectal carcinoma, which can be further detected by 

liquid biopsy, validating our prediction [62]. As another 

ribosome associated gene, RPSA (ENSG00000168028) 

may also be differentially expressed in our candidate 

seven groups. Based on recent publications, this gene 

has only been identified in colorectal cancer, lung cancer, 

esophageal squamous cancer and acute leukemia [63]. 

As for the six candidate cancer subtypes and healthy 

controls in our study, RPSA can distinguish colorectal 

cancer and lung cancer from the other subtypes [63, 64]. 

Similarly, another ribosome-associated gene, RPS11 

(ENSG00000142534), has also been found to be a 

candidate biomarker. This gene also encodes a specific 

component of the 40S subunit. Recent publications have 

identified it in breast cancer, glioblastoma, lung cancer and 

colorectal cancer, allowing us to distinguish samples of 

those four cancers from hepatobiliary cancer samples and 

normal controls [60, 65, 66]. Similarly, as a homologue 

of RPS11 analyzed above, RPS16 (ENSG00000105193) 

was also listed as a candidate biomarker in our study. 

Like RPS11, this gene encodes a ribosomal protein 

that is a component of the 40S subunit. According to 

recent publications, various systematic diseases have 

been attributed to RPS16, including Diamond-Blackfan 

Anemia and cancer [67-69]. Furthermore, based on recent 

publications, only hepatobiliary cancer has been reported 

to be associated with abnormal functions of this gene, as 

detected in blood samples, implying that this gene can be 

a candidate liquid biopsy marker for hepatobiliary cancer 

[68]. Similar to RPS20, as analyzed above, all of the 

homologues of RPS20 can also be functional components 

of exosomes, implying the differentiated role of RPS20 

and its homologues for the detection of cancer by liquid 

biopsy [70, 71].

ENSG00000177600, RPLP2, also has ribosome-

associated functions. This gene encodes a component 

of the 60S subunit [72]. Based on recent publications, 

this gene has been identified in the blood component 

of only three tumor subtypes in our study: colorectal 

cancer, breast cancer and hepatobiliary cancer, indicating 

its potential contribution to pathological typing [73-

Figure 4: The heat map of all samples using the important eighteen genes.
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75]. As another component of the 40S subunit, RPL11 

(ENSG00000142676) encodes another sub-component of 

the ribosome 40S subunit. Based on recent publications, 

this gene has been confirmed to contribute to the RPL11-

HDM2-p53 nucleolar stress response pathway, which is 

coupled with the Akt/mTORC1 signaling axis, implying 

its function during tumorigenesis [76]. However, based 

on recent findings, there is no direct evidence for RPL11 

to contribute to one or a few specific cancer subtypes, 

implying that it can only differentiate between the normal 

control and the other six subtypes of cancers. Combined 

with its specific expression in exosomes, RPL11 may be an 

effective biomarker for tumor liquid biopsy, validating our 

prediction [77]. Similarly, RPL31 (ENSG00000071082), 

as a functional component of the 60S ribosome, has also 

been confirmed to be a candidate biomarker [78]. Until 

now, this gene has only been identified in four cancer 

subtypes: breast cancer, prostate cancer, pancreatic cancer 

and gastric carcinoma [69, 79-83]. Therefore, considering 

the specific expression profile of RPL31 in exosomes, it 

is quite reasonable to use this gene as a crucial standard 

for the further classification of different tumor subtypes, 

distinguishing breast cancer and pancreatic cancer from 

the other four specific cancer subtypes and healthy 

controls.

FAU, as a ubiquitin-like and ribosomal protein 

S30 fusion (ENSG00000149806), has been wildly 

reported to contribute to the biological processes related 

to Finkel-Biskis-Reilly (FBR)-murine sarcoma virus as a 

potential secretory protein [84, 85]. This gene has been 

confirmed to contribute to the initiation of breast cancer, 

implying that it may be a functional biomarker for the 

identification and differential diagnosis of breast cancer 

[86]. ENSG00000109475, RPL34, has also been predicted 

to be a candidate gene to distinguish between the six 

cancer subtypes and healthy control. As another ribosomal 

protein, this gene has only been identified in lung cancer 

and gastric cancer. Furthermore, this gene has also been 

Figure 5: The eighteen important genes found in the MaxRel feature list were clustered into three groups.
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identified in the extracellular environment in a mouse 

model [87]. Thus, it may act as a potential liquid biopsy 

biomarker for the further classification of candidate tumor 

subtypes [88, 89]. RPL6 (ENSG00000089009) is also a 

component of the 60S ribosome. Based on the existing 

literature, this gene has been identified in colorectal 

cancer, lung cancer, breast cancer and gastric cancer, 

implying its potential as a typing marker for distinguishing 

colorectal cancer, breast cancer and lung cancer from 

the other three cancer subtypes and healthy control [90-

92]. Similar to other ribosomal protein ligands, RPL6 

has also been identified in the exosome as a functional 

ribosome associated component, implying that RPL6 may 

Table 3: Breakdown of 285 RNA-seq samples

Cancer subtype Number of samples

Breast cancer 39

Colorectal cancer 42

Glioblastoma 40

Hepatobiliary cancer 14

Lung cancer 60

Pancreatic cancer 35

Healthy control 55

Figure 6: The flow chart of constructing the mRMR feature list in the mRMR method.
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be a potential biomarker. RPL27 (ENSG00000131469) 

is a crucial component of the 60S subunit [93, 94]. In 

gastric cancer, head and neck squamous cell carcinoma, 

oral squamous cell carcinoma, hepatobiliary cancer and 

breast cancer, this gene has been confirmed to contribute 

to the initiation and progression of tumors, with specific 

expression in bodily fluids, including blood [95-99].

Cell surface proteins (receptors and antigens)

Cell surface proteins can be generally divided into 

receptors and antigens based on their specific biological 

functions. Based on recent publications, such two group 

of proteins have been confirmed to be differentially 

expressed in tumor comparing to normal cells, which 

can be attributed to the different biological function 

and recognition mechanism of tumor cells. Differential 

expressed proteins not only act as potential biomarkers 

for tumor identification and classification but also reflect 

the diverse potential oncogenic mechanisms of different 

tumor subtypes. TRBC2, ENSG00000211772, encodes a 

specific region of the T-cell receptor beta-2 chain [100]. 

Based on recent publications, this gene has also been 

identified in multiple cancer subtypes, including the six 

cancer subtypes used in this study, implying that this gene 

is a crucial marker for the distinction of cancer patients 

and healthy controls. ENSG00000160654, CD3G, has 

also been extracted as a candidate biomarker. CD3G has 

been widely reported to participate in antigen recognition 

associated biological processes, coupling antigen 

recognition to specific intracellular signal transduction 

pathways [101, 102]. Encoding a specific protein that 

can be easily detected by liquid biopsy, CD3G has been 

confirmed to be differentially expressed, and may be 

a direct target of different functional microRNA targets 

different subtypes [103]. In breast cancer and colorectal 

cancer, this gene has been confirmed to be differentially 

expressed compared to normal controls, implying that 

CD3G can distinguish breast cancer and colorectal cancer 

samples from other tumor subtypes and normal controls 

[103]. Considering that CD3G and its regulatory miRNAs 

have already been detected in peripheral blood, it may be 

reasonable to use CD3G as a potential biomarker for liquid 

biopsy, validating our prediction [103]. Another cluster of 

differentiation (CD) protein, CD27 (ENSG00000139193), 

was also found in this study. As a member of the TNF-

receptor superfamily, this gene has been identified 

in various cancer subtypes, including glioblastoma, 

breast cancer and colorectal cancer, but not lung cancer, 

pancreatic cancer or hepatobiliary cancer, by blood 

detection [104, 105]. Other studies have also confirmed 

that during tumorigenesis, CD27-containing exosomes can 

be identified in the peripheral blood of patients suffering 

from various cancer subtypes, validating the applicability 

and practicability of our predicted biomarkers [106]. 

Considering the differential expression of this gene in 

different cancer subtypes, it is quite reasonable to regard 

this gene as a potential biomarker for differential diagnosis. 

RPL9, or ribosomal protein L (ENSG00000163682), may 

also contribute to the classification of cancer subtypes and 

normal control based on the liquid biopsy results. As a 

ribosome-associated gene of the 60S subunit, this gene 

has been reported to contribute to various cancer subtypes, 

including lung cancer, hepatobiliary cancer, breast cancer 

and colorectal cancer, but not glioblastoma or pancreatic 

cancer [107]. Therefore, this gene can be a useful marker 

to distinguish glioblastoma, pancreatic cancer and healthy 

samples.

This study attempted to identify novel biomarkers 

(genes) that contribute to the classification of different 

cancer subtypes by analyzing gene expression data 

from RNA-seq results through computational methods. 

Eighteen identified genes were found to be differentially 

expressed in six cancer subtypes and healthy controls. 

All of these biomarkers were further classified into three 

groups, implying their crucial roles for tumorigenesis. 

In addition, we also propose an optimal classification 

method for the identification of six cancer subtypes and 

healthy controls, which can be a novel tool for diagnosing 

different cancer subtypes.

MATERIALS AND METHODS

Dataset and feature construction

We downloaded gene expression profiles of blood 

from 285 samples from the Gene Expression Omnibus 

(GEO) under the accession number GSE68086 [28]. These 

285 samples were collected from patients who had one 

of the following cancer subtypes: breast cancer, colorectal 

cancer, glioblastoma, hepatobiliary cancer, lung cancer, or 

pancreatic cancer or from healthy controls. The detailed 

number of samples in each cancer subtype or healthy 

samples is listed in Table 3.

Because the expression levels of some genes from 

the 285 samples are quite weak, we discarded genes 

whose expression level in more than 90% of samples was 

zero, leaving 13,445 genes. Thus, each sample can be 

represented by 13,445 features, each of which indicates 

the expression level of a gene in the sample. Furthermore, 

the gene expression profiles were processed with quantile 

normalization and log2 transformed. The purpose of 

this study was to find optimal blood biomarkers for 

distinguishing various cancer patients.

Feature selection method

As mentioned in Section “Dataset and feature 

construction”, all samples were represented by the 

expression levels of 13,445 genes. By extensively 

analyzing the samples, we can extract the genes that may 

be important biomarkers for different cancer subtypes. In 
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this study, we employed a widely used and reliable feature 

selection method, the mRMR method [29], which has been 

applied to address different complicated biological and 

medical problems [108-121].

The mRMR method is a mutual information (MI) 

based feature selection method. The correlations between 

features and targets are evaluated by the following MI 

equation:

 ∫∫=I x y p x y
p x y

p x p y
dx dy( , ) ( , ) log

( , )

( ) ( )
  (1)

where p(x, y) is the joint probabilistic density and 

p(x) and p(y) are the marginal probabilistic densities. A 

large MI value means that two variables have a strong 

correlation. The mRMR method evaluates each feature 

based on its relevance to targets and its redundancy to 

other features. Thus, two excellent criteria are used in the 

mRMR method: Max-Relevance and Min-Redundancy. 

The former indicates the importance of each feature 

based on its relevance to targets, while the latter assesses 

the importance of each feature using its redundancy to 

other features. By these two criteria, the mRMR method 

can produce two feature lists, the MaxRel feature list 

and mRMR feature list, in which all features are ranked 

rigorously. The MaxRel feature list ranks features 

according to their relevance to targets, i.e., features are 

ranked in this list by the decreasing order of their MI 

values to targets. Production of the mRMR feature list is 

listed below and shown in Figure 6.

Given a dataset with N features, let Ω be a set 
consisting of all N features, Ω

s
 be a set containing selected 

features and Ω
t
 be the set consisting of the remaining 

features, i.e., Ω
t
=Ω-Ω

t
s. Initially, Ω 

s
 is set to be an empty 

set and all features are in Ω
t
. Then, a loop procedure 

is executed to move the features in Ω
t
 one by one to 

Ω
s
. For each feature f in Ω

t
, its relevance to targets c is 

calculated by D = I(f, c) and its redundancy to features 

in Ω
s
 is calculated by ( ∑=

Ω ∈Ω

R I f f
1

( , ')
s f '

s

). Because both 

the criteria of Max-Relevance and Min-Redundancy are 

considered when producing the mRMR feature list, we 

further calculate D-R for each feature in Ω
t
. The feature 

with the maximum D-R is selected and moved from Ω
t
 to 

Ω
s
. When all of the features are in Ω

s
, the loop procedure 

stops. Accordingly, the mRMR feature list can be ordered 

according to the selection orders of features, i.e., the first 

selected feature occupies the first place, followed by the 

second selected feature, the third selected feature, and 

so forth. For formulation, the mRMR feature list was 

formulated as

 =F f f f[ , , , ]
N1 2   (2)

The mRMR method only provides two feature lists for 

a given dataset. Clearly, the mRMR feature list can be used to 

extract the optimal subset of features for building an optimal 

classification model. Furthermore, a feature with a high rank 

in the mRMR feature list is more important for classification. 

However, we do not know how many top features in this list 

should be selected. To determine how many top features in 

this list should be selected, the incremental feature selection 

(IFS) method was employed in this study. This method 

evaluates the importance of several feature sets that contain 

some of the top features in F by testing their discriminating 

power in a classification algorithm.

In detail, for a feature set, say F
i
 = {f

1
,f

2
,…,f

i
}, 

containing the top i features in F, all samples are 

represented by the features in F
i
. Then, a classification 

algorithm is executed on these samples with its 

performance evaluated by one of the cross-validation 

methods [122-128]. After all of the possible feature 

sets have been tested, the feature set yielding the best 

performance can be found. This feature subset is deemed 

to be the optimal feature subset, and the features in this 

subset are called optimal features. At the same time, an 

optimal classification model can be built, which adopts 

the optimal features to represent samples. However, in 

many cases, it is quite time-consuming to test all possible 

feature subsets because there are too many possible 

feature subsets. In this case, only a part of possible feature 

subsets were tested. The obtained feature subset in this 

case is still called the optimal feature subset and the 

constructed classification model is still termed the optimal 

classification model for convenience.

Classification algorithm

In the aforementioned IFS method, a classification 

algorithm is necessary. Here, we selected the classic 

machine learning algorithm, support vector machine (SVM) 

algorithm [30, 31]. This algorithm maps all samples into a 

higher dimensional space, in which these samples can be 

perfectly classified by a hyper-plane. Until now, several 

types of SVM algorithms have been proposed to tackle 

different types of classification problems. In this study, we 

chose to use the SVM algorithm trained by the sequential 

minimal optimization (SMO) algorithm [129] proposed by 

Platt. To train the SVM, a large quadratic program (QP) 

must be solved. The SMO algorithm breaks the large QP 

problem into several smallest QP problems and solves these 

QP sub-problems analytically. This procedure can avoid the 

storage of matrix and using the time-consuming numerical 

QP optimization as an inner loop. To quickly implement this 

type of SVM, we directly employed the classifier, SMO, in 

Weka [130] using its default parameters.

Measurements

As mentioned in Section “Classification algorithm”, 

the SVM was adopted as the prediction engine. Ten-fold 

cross-validation [122] was employed to evaluate the 
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performance of the SVM on different feature subsets. 

In this cross-validation method, the original dataset is 

randomly and equally divided into ten parts. Samples 

in each part are singled out as testing samples, and the 

remaining samples are used to train the classification 

model. Thus, each sample is tested exactly once. 

Compared with another cross-validation method, jackknife 

test [124, 131], ten-fold cross-validation needs much less 

time and yields similar results in most cases. Because our 

computational power was limited, we selected ten-fold 

cross-validation rather than jackknife test to evaluate the 

performance of the SVM in this study.

As listed in Table 1, all samples were classified into 

seven classes. To assess the predicted results yielded by a 

classification model, the prediction accuracy for the j-th 

class, denoted as ACC
j
, can be calculated as

 =ACC
x

X
j

j

j

  (3)

where x
j
 represents the number of samples that are 

predicted correctly in the j-th class and X
j
 represents the 

total number of samples in the j-th class. In addition, we 

can calculate the overall accuracy, denoted as TACC, to 

assess the performance of the classification model on the 

whole, which can be computed by

  
∑

∑
=TACC

x

X

jj

jj

 (4)

Clearly, the overall accuracy can be appropriately 

used as the major measurement to evaluate the 

performance of each classification model. The prediction 

accuracy of each class was also provided in this study as 

references.

Besides, to further analyze the predicted results 

yielded by each classification model, we calculated the 

sensitivity (SN) and specificity (SP) for the j-th class, 

which were defined as follows:

 

=
+

=
+













SN
TP

TP FN

SP
TN

TN FP

j

j

j j

j

j

j j

  (5)

where TP
j
 represented the number of correctly 

predicted samples in the j-th class, FN
j
 represented 

the number of incorrectly predicted samples in the j-th 

class, FP
j
 represented the number of samples in other 

classes that were predicted to be in the j-th class, and TN
j
 

represented the number of samples in other classes that 

were not predicted to be in the j-th class. It is easy to see 

that the sensitivity of one class is same as the prediction 

accuracy of that class.
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