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A bstroct -Continued increases in the cost of materials and labor make

it imperative for furniture manufacturers to control costs by improved

yield and increased productivity. This paper describes an Automated

Lumber Processing System (ALPS) that employs computer tomography,
optical scanning technology, the calculation of an optimum cutting
strategy, and I computer-driven laser cutting device. While certain
major hardware components of ALPS are already commercially avail.

able, a major mlasing element is the automatic inspection system needed

to locate and identify surface defecta on~. This paper reports
reaelrch aimed It developing such an inspection system. The basic
strategy I. to divide the digital image of a board into a number of dis.

joint rectangular regions and classify each independently.. This simple

procedure haa the advantage of allowing an obvious parallel proceas-
ing implementation. The study shows that measures of tonal and

pattrrn relltrd qualities are needed. The tonal measures are the mean,
vlrlancr, akewneas, and kurtosis of the gray levels. The pattern related
meaaurea are those based on cooccurrence matrices. In this initial

fealibillty atudy, these combined measures yielded an overaU 88.3 per-
cent correct claasification on the eight defects most commonly found

In lumber. To minimize the number of calculations needed to make

the required claaslfications a aequential classifier is proposed.

InMX Tt'rml-Automatic inspection system, sequential classifier,

texture analysis.
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I. INTRODUCTION

W HEN producing parts for furniture and other assembled

wood products, logs (mainly hardwoods) are first sawn

into different lumber grades with defects randomly located

throughout the board. The defective lumber is then remanu-

factured into smaller parts and the defects removed by ripping

and cross cutting. The process is labor intensive, and saw kerf

losses alone waste substantial volumes of valuable lumber.

Consider now an automated lumber processing syst~m (ALPS)

for producing the same parts. Hardwood logs enter the process

stream and are scanned by industrial photon tomography (IPT)

to nondestructively locate internal knots and establish log

geometry. A series of such tomographs results in a three-

dimensional image of knots within the entire log. Using this

information, an optimum log breakdown strategy is computed

to maximize grade or value yield. The computer-driven break-

down saw would automatically position and turn the log as
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F~. 1. Photograph of a continuous carbon dioxide laser cutting a 1 in
thick board in a direction across the grain. (photo courtesy of the

British Oxygen Company.)

needed, ~tivate the log dogs and (;arriage stroke, and set feed

speeds. Most boards, however, will still rontain visible surface
defects (i.e., knots, wane, stain, worm holes, checks), many of

which cannot be detected using tomography.
After drying and light surfacing, the boards are scanned on

both surfaces using optical imaging devices. The resulting
djgital images are analyzed by the romputer to identify types
of surface defects and provide coordinate data on their loca-
tion. The image-derived defect data are then used to compute
an optimum cutting pattern for each board, thus yielding the

maximum number of parts for a gi~n cutting bill.
In the envisioned AIPS process, parts are cut from the board
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process is the sm311 kerf (approximately 0.015 in) and the

ability to start and stop cutting at any location.

Lastly, parts are optically scanned for quality and sorted by

size. Residue material is chipped and used as fuel.

This paper reports research aimed at one portion of the

ALPS process-development of the automated inspection

system needed to identify and locate visible surface defects. It

was this system who~ technical feasibility was most in doubt.

The results indicate that both measures of tonal properties as

well as pattern properties of wood are required. The tonal

measures employed are the mean, variance, skewness, and

kurtosis of the gray levels. The pattern related measures are

those based on cooccurrence matrices [1] -[3].

The basic strategy employed is to divide the image of the

board into a number of disjoint rectangles and classify each

rectangle independently. The procedure has the advantage

of allowing a straightforward parallel processing implementa-

tion. To further accelerate the analysis process a sequential

classifier is devised; one which requires the evaluation of the

more computationally complex measures only in those in-

stances where absolutely needed.

II. PREVIOUS RESEARCH ON DEFECT DETECTION

SYSTEMS

The desire to optimize sawing decisions has lead many

investigators to study potential defect detection systems.

The difficulty in creating such sy~tems is the high degree of

inherent variability, both among and within a species, of

those characteristics which defme a defect.

A defect is considered to be any characteristic which makes

wood unsuitable for a given use. For purposes of this discus-

sion, lumber defects will be grouped into two classes: 1) bio-

logical defects which include natural defects and defects caused

by fungi; and 2) manufacturing defects which include defects

caused by sawing, seasoning, planing, and material handling

practices. A variety of different sensors have been investi-

gated to detect such defects. These iDclude ultrasound, micro-

wave, X-ray, neutron, and optical methods. A summary of the

known capabilities of these transducers is given in [4] .

Optical imaging devices can seemingly detect more surface

defects than any other method and thus appears the best

approach in applications where appearance is important, as in

furniture parts.

Defect detection systems based on optical scanners can best

be categorized by the type of scanner employed-laser scanners

and cameras. Two laser scanning systems have been developed

for detecting defects. The first is a laser scanner and automatic

cut-up system, developed by Bendix Research Laboratories

and Bendix Forest Products Co. (now the American Forest

Products Co.) [5], [6] - The second is the Plessey optical de-

fect detection apparatus, currently being developed by the

Messey Co., Ltd. in cooperation with Weyerhaeuser Co. [7],

{8].
The Bendix system consists of a laser scanner and minicom-

puter. The scanner is a double-sided laser unit which sequen-

tially illuminates both sides of the board. The laxr beam

passes through a beam-reducing telescope to provide a spot

Size approximately 1 mm in diameter. The beam is split and

passed onto a rotating mirror prism and several mirrors. The

scattered light from the lumber is detected by 4 photomulti-

plier type assemblies. These signals are processed by high-pass

and low-pass analog Gircuits to accentuate aU cracks and larger

defects, respectively. The analog signals are quantized and

digitally processed before being transmitted to the minicom-

puter. Be1:ause the motion of the board through the scanner

is continuous and at constant speed, the line scans on one side

of the board are interleaved with the scans on the other side.

Scanning rate is 20 lines/in for each side.

The minicomputer software proresses and fllters the incoming

data, calculates the size and location of defects, and determines

the optimum crosscut and ripcutting pattern. The computer

then commands two automatic saws to remove defects, one

fIXed and one movable.

The laser scanner can detect splits, checks, and red (tight)

and black (loose) knots of varying ,gzes. The lighter colored

flaws and certain types of edge grain, however, have proved

difficult to detect [5J, {6J and acceptable blemishes are some-

times detected as defects. Therefore, an Upstream Human In-

spection (UHI) station is used to compensate for the scanner

deficiency by either enhancing light color or indistinct flaws

and edge defects with a black felt tipped pen; or suppreuing

non flaws, such as handling marks, and acceptable flaws, such

as light stain, with a reflective marking paint. However, sys-

tem performance proved limited by the $kill of the UHI to

compensate for the idiosyncrasies of the automatic inspection

system. The process is no longer in service.

The other laser detection and cut-up system is described in

detail in the patents of Matthews and Beech [7J, [8J. The

system was originally designed for automatic grading oflumber.

The apparatus, which is still being developed, is reputedly

suitable for detecting defects in rough sawn and surfaced

lumber. Detection and limited differentiation of defects such

as knots, blue stain, and rertain kinds of rot are achieved by a

laser scanner and suitable photo detectors and filters. More

detailed information is not available at this time.

The 19gesund Opti-Edger is a defect detection system using

cameras to scan boards. It is used to determine both board

geometry and defects-wane, knots, and other characteristics

which may affect quality. The detected variations of board

quality are registered in a computer in whi1:h grading criteria

and prices of all sizes and grades can be entered via a key-

board. The computer operates an automatic control and feed

system which performs the edging procedure as determined by

the system.

Detection systems designed to date are not capable of detect-

ing small defects important in furniture rough mill operations

and other appearance-sensitive applications. Such maFginal

flaws require manual suppression or enhancement of their

detection capability. Also, present systems cannot differen-

tiate between defects exrept for the partial differentiation

offered by the PIessey scanner.

The AlPS system is similar in concept but is meant to be

,ggnificantly more sophisticated than existing lumber process-

ing systems. Uke the current systems, AlPS will automatically

inspect boards to detect defects, compute an optimal cutting

strategy based on the location of defects, and cut the boards



CONNERS naL: SURFACE DEFECTS IN WOOD 575
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Fig. 2. Clear wood and IOrne important defectl visible on the surface of lOuthern red oak. (a) Clear wood. (b) Knot.

(c) Incipient decay. (d) Stain. (e) Check. (f) Split. (J) Hole. (h) Wane. 6) Grub hole. (j) Worm hole. (k) Mineral
streak. (I) Bark pocket.

'nlu I he desired pieces. However, unlike the existing systems,
A LPS will not only be able to detect a wide range of surface
tkfects bul classify them. Thus, ALPS win provide the capa.
blilly 10 selectively choo~ which defects may appear in each
piece u" a cutting bill. This differentiation is important be.
cause il allows the manufacturer to leave certain defects in
PIIrls, such as those which do not reduce marketability or
adversely affect the mechanical strength or parts hidden from
view.

TABLE I
A LIST Of MANY OF THE POSSIBLE D~ IN WOOD

III. THE IMAGE ANALYSIS PROBLEM

A maj()r element in developing ALPS involves solving the

jma~e analysis problem. The difficulty is associated with the
natural variation in which defects manifest themselves. No
two knots are exactly the same size or shape. Even clear wood

varies, each piece having a uniq~ wood grain not appearing
in any other board. AdditionaIly,theappearanceofclearwood
IIlId the characteristics of defects vary between wood species.

The computer must be able to perform two tasks. First, it
must be able to k>cate the position and extent of each defect

prcsent. Secondly, it must be able to identify the type of de-
fect present at each location. The need for the latter results
from the variety of ~s for the parts. Some parts may be used

-- . table tops and are always visible. Such parts are usually

completely free of defects. Other parts may be used in the

frame of a mfa, completely out of sight. A major requirement

{or such a part is that it be free of defects which would redu~

its strength.

Fig. 2 shows mine typical patterns of clear wood and defects

that must be JeCOSnized by the oomputer. Table I gives a more
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extensive list of important defects. Examination of Fig. 2

shows that tonal properties of some defects show substantial

differences. For example, knots are significantly darker than

clear wood while decay is lighter. Consequently, measures

which gauge tonal properties would seem im~rtant in the

computerized analysis.
However, tonal measures alone do not seem sufficient. Con-

sider, for example, that both checks and splits appear darker

than clear wood just as knots do. The difference is that checks

and splits are "long and narrow" rather than "round." Hence

the pattern they present is also important. As another example,

there is an area around each knot which is about the same

shade as clear wood but which has a woodgrain that is unsuit-

able for visible furniture parts. This undesirable grain should

be removed with the knot; it is part of the "extent" of the knot

defect. Again the pattern is important. Therefore, measures

which gauge pattern would seem important ,especially in differ-

entiating the type of defect present at a particular location.

The goal of the image analysis problem is not only to devise

a set of measurements which can accurately perform the neces-

sary classifications but also to devise a scheme which requires

the minimal number of calculations to obtain the desired

classification. Consequently, the decision making logic should

be designed so as to minimize the number of calculations re-

quired in the examination of each board.

IV. IMAGE ANALYSIS AN£) PATTERN RECOGNITION

METHODS

A straightforward method for attacking this problem is to

subdivide an image of a board into a number of disjoint rec-

tangular regions and independently determine whether each

region contains only clear wood or a particular type defect.

Not only is this method simple, but it lends itself to a parallel

processing implementation. Consequently, this approach was
adopted in the feasibility study.

s(i,j,6, T)

L-I
p. ~ ~ IP(I); (f)

.. .. .. .. .. .."
6 {x\.i, x + 6Eo(T), g(x) = i, g(x + 6)= j}

~~!~,::!cr! ;' "c '!, =::!: !!' .
N

2) the variance

L-l
~ = L (1- Ilf P(l);

'-0
(2)

3) tbe skewness

.. ..
w,here N = ~ {x Ix, x + 6 e T} where ~ denotes the order of

the set, i.e., the number of elements.
In what follows it is frequently convenient to consider 6 =

(dxl' dx2) not in a Cartesian form but rather in a polar form
..
6 = (d, 8) where d = max (dXI' dX2] and 8 = arc tan (-dX2!

dXI). In this polar form d is called the intersample spacing
distance and 8 is called the angular orientation. (Fig. 3 illus-
trates these concepts.)

In this study six measures are computed from each matrix
S( 6, T). These are as follows:

I) inertia
(3)

4) the kurtosis
(5)

/.-1
k = L (/- Jl)4 P(/)/o2: (4)

1-0

where ]:1(/) is the estimated probability of gray level 1 occurring

within a partkular region and L is the total number of possible

gray levels in the image.

2) cluster shade

(6)

To make these measures meaningful the same lighting condi-
tions were used to scan all the boards. Further, a shading

corrector was used to remove any non uniformities in either

camera response or lighting across the scanner's face. Note

both controlled lighting conditions and the necessary input to

a shading corrector can be obtained by appropriately design-

ing ALPS.

B. Measures Gauging Pattern Qualities

The patterns presented by clear wood or defect are classic

example of texture patterns. Consequently, texture measures

were employed to gauge these qualities. The measures used

were based on <:ooccurrence ma"ri~s [1) -[3). Ttlis particular

texture analysis approach was chosen because it has proven

useful on .a variety of texture analysis problems [9) -[15),

comparison studies have shown it to be a superior method

(16), [17), and perceptual psychology studies have shown it

theoretically c'dpable of matching a level of human perceptual

performance [18), [19).
To describe the SGLDM two defmitions are required.

Definition 1: A tile T is a c.losed topoJogical disk.
Definition 2: A function a: £2 -to £2 is called an isometry

or congroence transformation if it maps the Euclidean plane

onto itself and if the function preserves distance. That is, if
x and j are points £2, then IIi - Y II = Ila(x) - o(y)1l.

A cooccurrence matrix S(~, T) = [s(i,;,~, T)) is a matrix

of estimated second-order probabilities where each element

s(i,;, 6, T) is the estimated probability of going from gray
level i to gray level; given the displacement vector 6 = (41x 1,

~2) and T, the region size and shape used to estimate the
..

probabilities. In this context T is a tile such that s(i,;, 6, T) is

estimated from the restriction of the picture fuoction g(x) to

a(T) where a is a translation isometry. Computationally

S(6, T) is determined using the equation

A. Measures Gauging Tonal Properties

Tonal property measures computed for each region were as
follows:

I) the mean
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Consequently, after the first-order measures are computed
an equal probability qua~tizer (EPQ) algorithm [20) is applied
to each rectangular region. The EPQ accomplishes both objec-
tives simultaneously. First it assigns new gray levels to the
image in such a way that P(i) = I If for i = 0, . . . , f - I where

f is the number of gray levels in the reduced image. Note
f<L, where L is the number of gray levels in the original
digital image. Since each image is transformed into one which
has a uniform probability distribution the second-order mea-

sures are no longer dependent on the original tonal properties.
Secondly, it has been shown that the EPQ provides a near
optimal way to reduce the number of gray levels so that the
reduced image contains all the important information con-

tained in the original image [21)-[26).

+Q-="'j'j"i s(;

5) cncrgy

DIGITAL IMAGE GRID
r"ig. 3. Given that thc gray Icvcl of the pixel at location ~ = (n, m) is i, C Pattern Recognition Methods

thc l'lemenl s(i,i. 6, T) of the matrix Sc6. T). 6 = (Axl. AXV = In the study two different pattern recognition procedures
<}. -}), ,is the cstimatcd p~bability th~t the pix~1 whose locatio~ is are used. One procedure is a pairwise multiclass classification
Xo + b WIll havc gray level J. Here the tile T specIfies that the regIon h U .. th O d th fi d .d ' t hi h, ," , . sc erne. sIng IS proce ure e process or ecI mg 0 w C

trom which S(6, T) was computed IS an 8 X 8 square. The specIal . . . .pillar form of 6 is given by d = 3, 8:::. 56.3°. of K possIble classes a regIon belongs IS broken up Into (K/2) =

K(K - I )/2 class-pair decisions. The result of each of these

class-pair decisions is tabulated and the region is considered a

.1) ~Iusler prominence member of the class into which it was placed the most times.

f- I f- I .. It is assumed that e8(:h class-conditional density function is

B( b. T) = L L (i + j - ~I - 1Jx2 f $(i,I, 6, T); (7) normal and the a pnori probabilities of the K classes are all
i-O j-O equal. Each class-pair decision is made using a Bayes method.

The measures used are chosen using a forward sequential

search measurement selection algorithm. This algorithm is

. t (8) use~. to select the "best" measures to make each pairwise

decIsIon.
The second classification procedure is used to determine

whether a region is entirely clear wood or whether it is not

Q Q entirely clear wood. Assuming that the density function of

~-I ~-I
1:'6. T)= L L [s(i,i,~, T)] 2 ~ (9) measures computed from samples which are entirely clear

'-0 j -0 wood is f( x) = N(I1, ~), a standard chi-squared test can be

used to make this determination (27]. Using this procedure

a region is considered to be clear wood if the measurement

( vector x com p uted from it is such that

; 10)
(x - 11)' ~-1 (x -11) ~ T. (11)

Otherwise the region is consider~d to contain a defect. This

,classification strategy will prove useful in formulating the

sequential classifier. . A forward sequential ~arch algorithm

is employed to pick the best measures to use in the chi-squared

test and to establish the best value of T to use. This measure-

ment selection procedure attempts to minimi1.e the probabil-

ity of misclassification.

b' entropy

wllcrc

f- If-I ..
lAx. = ~ i ~ ,,(i,i,6, T)

/-0 j-O

f- I of - I ..
IAx1 = ~ ~ js(i,j, 6, T)

/-0 ;-0

IInd whcrc f is the number of gray levels in the processed

ill1agc.
Nllic that the second-order measures defined in (5)-(10) are

ful1l:tionally related to the values of the first-order measures

dcfincd in (1)-(4) (20]. This is most undesirable. One should

wanl IIn indcpcndence among measures gauging tonal qualities

froll1 thosc gauging pattern qualities. Further, for computa-

tional purposes the dimensions of the matrices S(i, T) should

be kcpt as small as possible. This implies that the number of

gray Icvcls in the digital image must be reduced after compu-

tation of the first-order measures but before computation of

the ~cond-order measures. If this reduction is not done

pro~rly important picture information can be lost.

V. THE FEASIBILITY STUDY

The purpose of the feasibility study was to determine

whether the combination of tonal and textural quality mea-

sures could:
I) accurately differentiate defects from clear wood,

2) accurately identify the type of defe1:t present.
In performing the study it was decided to consider only sur-

faced lumber. The species seleoted for the study was southern

red oak.
A database of approximately ~OO boards was collecred. Each

board contained one or more of the defects given in Table I.

The data collected represent the variation and relative fre-

4) local homogeneity

,6, T);
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(a)

- -~

Fig. 4. An illuStration of the light and dark bark. A shows appearance
of dark bark. B shows appearance of light bark.

quenC'f of occurrence of each defect. Preliminary examina-

tion of the boards indicated that only a subset of the types of

defects could be considered as too few samples of some defects

were included in the database. The classes which could be

considered were: I) clear wood; 2) knots; 3) mineral streak;

4) decay; 5) stain; 6) wane; 7) splits and checks; 8) grub holes

and holes; 9) dark bark; and 10) light bark. Splits and checks

were combined to form one class since there were not enough

samples of each and also since they present very similar visual

patterns. Similarly, grub holes and holes were combined. On

the other hand, the defect bark pockets were split into two

classes, light and dark bark, so that more visually similar

pattern groupings could be obtained. Fig. 4 illustrates the

difference between ligJ1t and dark bark.

Boards containing the above defects were scanned to create

a digital image of each board. The images were 512 X 512

resolution black and white images containing 256 gray levels.

The spatial resolution was about 64 pixels to the inch. A

shading correction was performed on each image. This correc-

tion was based on the digitized values obtained from a gray

colored test pattern. The test pattern was scanned on a regular

basis (after every ten scans) to check for any drift in the light

sources. The shading correction employed removed any such

drift as well as any nonuniformities because of either lighting

conditions or because of nonuniformities in response across

the face of the camera tube.

Once the boards had been scanned and the shading correc-

tion performed a set of training data was selected. Each train-

ing sample was a square 64 X 64 pixel region containing one

type of defect or clear wood. The region size of 64 X 64 pixels

(approximately a square inch) was chosen heuristically. If

any defect was present in 64 X 64 region, regardless how small,

the region was assigned to that defect class. Fig. 5 illustrates

the possible extremes which can occur for two regions con-

taining a knot. In part (a) the knot comprises most of the

region while in part (b) the knot occupies only a small percent-

age of the area.

The first-order measures were extracted from each of the

training samples and the EPQ algorithm was applied to the

region to reduce the number of gray levels from 256 to 8. The

~cond-order measures were then computed from the reduced

"image." Both the first. and second-order measures are put

in the measurement vector for that region.

(b)

Fig. 5. The extremes which can occur for two regions both as~ to
the knot class. Note in- (a) the knot compri~s most of the region
while in (b) the knot occupies a smaD percentage of the region area.

The choice of eight gray levels in the reduced image was

based on examining the EPQ reduced image and the original

image. Typically, one wants to have the reduced image con-

tain as few gray levels as possible yet still retain all the impor-

tant pattern information contained in the original image.
..

Several 6 = (d, 8) values were used in computing the texture

measures. The 8 values were 0°, 45°, 90°, 135°. The d values
were 1,2,4,8, and 16. In addition, along the 8 = 0° direction

a d value of 32 was used.

VI. RESULTS

The classification accuracies obtained are summarized in

Tables II-N. Table II shows the classification results obtained

when only the first-order tonal measures defined in (1)-(4)

were used. Each row, say row k, of the table shows how ex-

amples of class (Uk were classified by the computer. For

example, the second row'shows that only 30.23 percent of the

knots were correctly classified using the first-order measures

with 11 of the 86 knot samples being called holes, 9 splits and

checks, 19 mineral streaks/ etc.

As is easily observed, first-order measures are not sufficient

to accurately classify the type of defect present, This is as one

would ex~t. However, if one examines the last row of the

table it can be seen that only 16 of the 192 samples of clear

wood were incorrectly classified as being a defect, giving a

91.67 percent accuracy. Further, the last column of the table

shows that only 13 of the 810 defect samples were incorrectly

labeled as clear wood by the computer, giving a 98.40 percent

accuracy.
The overall rorrect classification using only first-order mea-

sures was 63.13 percent. All four of the first-order measures

were shown to be useful by the measurement selection program.
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TABLE II
RESULTS OBTAINED USING ONLY THE FIBST-oaon TONAL MEASU.u

DEFINED IN (1)-(4)

TABLE IV
RESULTS OBTAINED USING BOTH TONAL AND TEXTURE MEASURES

1C*M.-~~

~~

TABLE HI
RaULl1 OaTAINED USING ONLy THE SlCONDoOmu TEXro.E

MBASVUI DIFINED IN (6)-(10)

:' . If"
~PUTER C\.ASSIFICATIOIt

wrM.~=

~~I
Ii. III '8 I~

0
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0

.I-I .~

d.
I 61

E

z
0

5
u

;:
a
..

d
a
w
&:
E

~

L- ~ ~Nf- ~CT CLA'8I~T1ON I
TEXT. ~e

The results shown in Table II are not surprising 8i~n the
capabilities of the Bendix system. This system employed
measures related to the tonal quaJities of the boud. While the
system could with human help separate clear wood from de.
fects it could not classify the type of defect present.

Table III shows the accuracy obtainable when only the
second-order texture measures dermed in (5}{IO) are con.
sidered. Note that while the ability to identify the type of
defect present is improved there is still room for sisniflcant
improvement. ConSider, for example, the stain class. Stain is
a general darkening of the wood; a darkening whk:h does not
affect the nature of the wood grain. Consequently, the can.
fusion between stain and clear wood when only the texture
measures are used is understandable.

Table IV shows the classification results obtainable when
both flrst-order tonal measures and ~nd-order texture
measures are used. Note the impro~ment in the o~ran per.

cent of correct classification from both Tables II and III.

Further obaerve that all but two of the defects were classified

with better than an 88 percent classification accuracy. Only
light bark and dark bark are low. Also notice that only 3 of

810 defect samples "were incorrectly labefed as being clear

wood, a 99.62 percent accuracy, while 93.7S percent of the

clear wood samples were correctly classified.

While these results may not be high enough for all industrial

applications (studies are only now being conducted to deter-

mine how well humans perform the task) they do suggest that

a commercially useful system can be c~ated. Such a system

only requires a marginal improvement o~r the results thus far

obtained. An obvious method for attempting to obtain this

marginal improvement is by incorporating color information in

the analysis process. Con~quently, obtaining the required

accuracy seems achievable.

The major problem remaining concerns the computational

burden impo~d in calculating the texture measures. Given

this complexity one is forced to consider methods which mini-

mize the computational load. A method invol\'es a two-stage

~quential classification scheme which first attempts to ~parate

.clear wood samples from tho~ samples containing a defect.

The second stage in the process is to classify the defect. The

first stage requires only the calculation of the first-order

measures. The ~nd stage uses the fmt-order measures but

also requires the calculation of the texture measures. The

~nd stage employs the pairwise classification procedure

~d in obtaining the results in Tables II-IV.
The motivation for this sequential classifier comes from two

sources. First, lumber grades used at a furniture mill are such

that they guaranteed 80 percent or better of each board surface

area is free of any defect. Secondly, Table II suggests that the

computation ally simple tonal measures can be used to separate

clear wood from areas containing a defect very accurately.

The first stage of this scheme employs the chi-squaJed test

defmed in (II). Table V shows the classification accuracies

obtained for two different values of T. Note these results

given in Part (A) indicate that if one is willing to tolerate 2
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percent of the defects being called clear wood then over 90
percent of the clear wood samples can be labeled using only
first-order measures. Given that over 80 peccnt of the board
surface is defect free this means that over 72 Jx:rcent of the
regions can be classified using only tonal measures while only
the remaining 28 percent require the calculation of the tex-
ture measures; a significant saving in computational complex-
ity. Part (B) shows that if more accuracy is required the

computational burden increases.

provide as much contrast as possible (given that only one
SC'dnner setting can be ~d) the system should have a large
dynamic range. Finally, the system should preferably be

commercially available; one not requiring any specialized

design.
All these requirements point to a solid-state imaging device.

The question becomes whether there exist commercially avail-
able solid-stat-e devices with sufficient resolution. To address
the resolution question one must consider the structure of
hardwood lumber. The organization of the cellular structure
of wood can best be understood from study of three surfaces-
tran'SYerse, tangential, and radial. Fig. 7 shows a scanning
electron micrograph of Shumard oak illustrating all three sur-

faces ~imultaneously in their proper spatial relationship {29].
The anatomical structure of interest in hardwoods are

vessels-structures that conduct water within the stem that
appear as large vertical tubes. Vessel openings in both early-
wood and latewood are clearly visible on the transverse sur-

fa~-e of Fig. 7, and vessel members may be seen on the tangen-
tial surface where vessels have been cut. Earlywood is that

part of the annual ring produced in the spring, while lat-ewood
is formed towards the end of the growing season.

Of all the possible wood defects a check, i.e., a small crack
in a board surface running parallel to the grain, has the small-
est dimension. Consequently, the requirements on detecting
checks dictate the resolution of the scanning system. The
tangential plane forms the surface of most boards. As shown
in Fig. 7 vessels appear as indentations in this surface, not
unlike a small crack or check. An argument can be made that
as the width of a check approaches the diameter of a vessel it
becomes harder for the unaided human eye to see, and hence
unimportant for the automatic system to detect. Vessels in
red oak have a diameter of about 0.010 in. While vessel diam-
e.ters vary considerably, 200 to 300 points/in would seemingly
be an upper bound on the resolution required for the scanning
system. Given that the boards entering the rough mill are
rarely over] 2 in wide a solid-state detector capable of obtain-

VII. DISCUSSION

The results of the feasibility study indicate that an automatic
surface defect inspection system can be created. Therefore
what remains is to demonstrate the technical feasibility of the
other system components as well as the e~onomic motivation

for ALPS.

A. Scanning System Technology and ALPS

The imaging system used in ALPS must be rugged and capable

of withstanding the vibrations typical in an industrial environ-

ment. It must have a long mean time between failures. To

meet production requirements, the system must be able to

scan as many boards as possible in a given unit of time. This

means the imaging device must have near zero lag. To preserve

the precise spatial arrangement of the surface structure of the

boards the device should have a small geometric distortion. To
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Fig. 7. Scanning electron miCfOlrlph of Shumard oak cube

ing 4096 points across the face of the board is adequate. There

are a number of linear detectors which are or soon will be

available with this resolution.

B. Computer Technology and ALPS

Computers are needed in the ALPS system to analy~ digital

image data, to compute an optimal strategy to cut the desired

parts, and to control the conveyors and lasers used to move

and cut the boards. Of these tasks, the most computationally

complex are the image analysis function and the determination

of the optimal sawing strategy.

A parallel processing approach seems the only viable compu-

tational method. The possibility of using it depends on the

research and development time needed to create such a system.

Seemingly, to make this approach practical requires that off.

the.shelf hardware be available which only requires a minimum

of system integration and that methods be available to program

the resulting system in a higher level language in order to reo

duce software development cost. Software costs could easily

comprise the majority of the total AlPS costs.

Given the ambiguity of the processing requirements, the

technological assessment of computers capable of meeting

ALPS requirements will be based on demonstrating a currently

available processor which seemingly has all the desired proper-

ties. A processor of considerable potential is the Intel iAPX-

432 microcomputer [31]-(35]. It represents the fil1t of 8

new generation of microcomputers and seems ideally suited

to processing requirements p>sed by an ALPS type system. It
is programmed in Ada and has a packet bus structure which
aJlows parallel pro~ssing to be employed in a user transparent
fashion. If the past is any indication, marked improvements in
pro~ssing power should become a reality within the next 4 to
S years. Hence it seems that even if the initiaJ iAPX.432 sys-
tems cannot meet the processing demands, improvements to
this processor or ones marketed by other companies should.

C. Laser Technobgy 41Id ALPS

For a I~r cutting system to be practicaJ it must be able to
cut at a rate of approximately 100 ftlmin of I in lumber. To
determine whether a commerciaHy available laser can cut lum-
ber at this speed, equations developed by Peters and Banas
[36) are helpful. Their study focused on factors affecting the
cutting speed of lasers. They found that speed varies with
species, board thickness, and laser power. For Douglas fir cut
with a S kW I_r, cutting speed could be expressed by the

equations

6.=KJT2. (12)

where 6 is the cutting speed in ft/min, Tis the wood thickness
in inches, and K 1 is a constant. Further they found that

6.=K2.Pl.35 (13)

where Pis luer p>wer in kW and K2. is a constant. Combining
(12) and (13) one obtains the expression
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were ignored in this initial study. With this conservative ap-

proach, calculated savings for a furniture plant using red oak

lumber were $1210 per day and $ 1198 per day when using

sap gum.
The net present value of the laser investment was $408024

and the internal rate of return after tax was 22.5 percent. Both

values would be considered an excellent investment opportunity

in the financial community. Clearly, if the other savings in

lumber, energy, and labor costs were included, the analysis

would be even more positive in favor of the laser system.,

1.) LUllber r- aaterial

a. Eli8ination or reduction of sav kerf loaa.

b. The posaibility of subatituting lower grades of lu8ber

to produce the saM products.

c. Higher yields due to "punch-press" instead of crosa-cut

and rip aava.

d. illprov_t of quality of the products.

2.) Machine

a. Eli.ination of several conventional llachines.

b. Reduction of 8aintenance due to tool wear.

3.) ~erlY

a. Reduced electrical coats with laaer cutting.

b. Reduction of wood vaste.

c. S8aller space requir_ta due to a single ..chine

substituted for -;ix to t-lve saws.

d. I-.r replac-nt air coat due to a 88&lier sawdust blower

4.) Labor

a. Effect of aut~tion on labor cost.

b. Effect of illproved yield.

c. Effect of eafety.

VIII. SUMMARY AND CONCLUSIONS

This study indicates the technical feasibility of an ALPS
system. The major hardware items needed in such a system
are either currently being produced or will be available in the
next 3 to 5 years. Further, there is a strong economic incen-

tive to develop such a system.
The major problem is to create the necessary image analysis

and pattern retognition methods to quickly and accurately
locate, identify, and ~etermine the extent of surface def~ts
in lumber. While the accuracies which were obtained are not
up to industrial requirements they do indicate that with con-
tinued research such accuracies should be obtainable. For
example the inrorporation of color information into the in-

spection process holds the potential for substantial improve-
ment in differential defect identification accuracies.

6.= KP'.35/T2 (14)

where K varies with species.

Using the values given in [32] for hickory, the wood found

to be the most difficult for a laser to cut, one can solve for K

in (14). The power required to cut 100 ft/min of] in lumber

can be estimated using this constant. The estimate obtained is

approximately 21 kW, a power just beyond the limits of what

is presently commercially available although a number of com.

panies have 20 plus kW lasers in their laboratories.
However, it is not clear the system should be designed to use

only one laser. Using a multiple laser system is attractive not

only from the point of view that existing technology can be

used but the speed at which boards must be moved under the

lasers can be reduced. This is important giving the right angle

punch press type of operation required to give maximum yield.

Secondly, having a system employing two or more lasers

allows for continued operation of the system given a failure

of one laser, albeit at reduced speed.
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