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Abstract

Many web-search queries serve as the beginning of an exploration of an unknown space
of information, rather than looking for a specific web page. To answer such queries effec-
tively, the search engine should attempt to organize the space of relevant information in a
way that facilitates exploration.

We describe the ASPECTOR system that computes aspects for a given query. Each
aspect is a set of search queries that together represent a distinct information need relevant
to the original search query. To serve as an effective means to explore the space, ASPECTOR
computes aspects that are orthogonal to each other and to have high combined coverage.

ASPECTOR combines two sources of information to compute aspects. We discover
candidate aspects by analyzing query logs, and cluster them to eliminate redundancies.
We then use a mass-collaboration knowledge base (e.g., Wikipedia) to compute candidate
aspects for queries that occur less frequently and to group together aspects that are likely
to be “semantically” related. We present a user study that indicates that the aspects
we compute are rated favorably against three competing alternatives — related searches
proposed by Google, cluster labels assigned by the Clusty search engine, and navigational
searches proposed by Bing.

1. Introduction

Web-search engines today predominantly answer queries with a simple ranked list of results.
‘While this method has been successful, it relies on the assumption that the user’s informa-
tion need can be satisfied with a single page on the Web. However, several studies (Broder,
2002; Rose & Levinson, 2004) have alluded to the fact that many user queries are merely
the beginning of an exploration of an unknown space of information. Such queries are likely
to be better served if users were provided with a summary of the relevant information space
and the means for conveniently exploring it. To paraphrase, rather than finding the needle
in the haystack, some queries would benefit from summarizing the haystack (Rajaraman,
2008). Several commercial attempts have recently been made to provide better answers to
such queries, including systmes like CARROT2, CLUSTY, KOsMIX, and YAHOO!GLUE.
This paper describes the ASPECTOR system that addresses the following problem: given
an exploratory search query ¢, compute a set of aspects that enables convenient exploration
of all the Web content that is relevant to q. We define each aspect as a set of search
queries that together represent a distinct information need relevant to the original search
query, similar to Wang’s definition of Latent Query Aspect (Wang, Chakrabarti, & Punera,
2009). For example, consider the queries in Table 1 and their potential aspects. Each
aspect covers a different kind of information and together they span a large amount of the
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vietnam travel kobe bryant
travel guides statistics
packages / agencies pictures / photos
visa videos / youtube
blogs / forums shoes

travel advisories injury reports
weather girlfriend

cities (Hanoi / Saigon /...) | trade rumors

Table 1: Potential aspects for the queries vietnam travel and kobe bryant.

relevant information that search engine users might be interested in. Two simple ways a
search engine can utilize aspects is to offer them as related searches or to categorize search
results by the aspects they are most relevant to. Aspects can also form the basis for various
mashup-like interfaces, e.g., the aspect pictures can trigger the inclusion of images, while
weather can trigger a weather report gadget. Computing aspects for queries can be seen as a
first step towards mining a knowledge base, called the database of user intentions (Battelle,
2005). This knowledge base is a timely and culture-sensitive expression of peoples’ interests.
Inferring such a knowledge base for entities can serve as a basis for an effective presentation
of information, and can therefore have significant ramifications on search, advertising and
information dissemination.

ASPECTOR computes aspects for a query g using a search-engine query log, augmented
with information from a knowledge base created by mass-collaboration (Wikipedia). Given
a query ¢, related queries are extracted from the query log as candidate aspects. While the
logs are an excellent mirror of users’ interests, they can also result in noisy and redundant
aspects, e.g., top related queries for vietnam travel include vietnam visa and vietnam travel
visa. Furthermore, query logs are of limited utility for generating aspects for less popular
queries, e.g., there are much fewer related queries for laos travel than vietnam travel. We
describe the following algorithmic innovations that address these challenges. First, we show
how redundant candidate aspects can be removed using search results. Second, we apply
class-based label propagation in a bipartite graph to compute high-quality aspects even for
a long tail of less popular queries. Finally, we show that knowledge bases can be used to
group candidate aspects into categories that represent a single information need. We believe
that our solution demonstrates an interesting interplay between query logs and knowledge
bases that has not as yet been investigated in the research literature.

We describe a detailed experimental evaluation of ASPECTOR. We compare the aspects
generated by ASPECTOR against three possible competing approaches — related searches
proposed by Google.com, cluster labels proposed by Clusty.com, and navigational searches
proposed by Bing.com. Related searches and navigational searches are typically also gen-
erated by the analysis of query logs. Cluster labels are generated by grouping the search
results of the original query and extracting labels from the documents within each cluster.
We show that our aspects are more diverse than all other three systems. We also show that
our aspects span a larger space of information — not only do they expose more results than
the original query, but the additional results are considered highly relevant by users. Our
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user study finds that the results of ASPECTOR are preferred over related searches, cluster
labels and navigational searches as a means for further exploration.

Section 2 defines the problem of computing aspects, Section 3 considers potential alter-
native approaches. Section 4 describes the generation of candidate aspects, and Section 5
describes how ASPECTOR selects aspects from the candidates. Section 6 describes our ex-
perimental evaluation,and Section 7 describes related work. Section 8 concludes.

2. Problem Definition

‘We begin by defining the scope of the problem we address.

Queries: We assume that queries are a sequence of keywords, as is typical for search-
engine interfaces. Our techniques are not meant to apply to arbitrary queries. We focus on
exploratory queries, and specifically, we assume that they either are entity names (e.g., the
country Vietnam) or have an entity and a property name (e.g., Vietnam travel). Thus, we
are interested in computing aspects for entities in general or in the context of a particular
property.

In this paper we do not handle the problem of segmenting entity and property names in
queries (previous work, such as Bergsma & Wang, 2007; Tan & Peng, 2008, have addressed
the problem). The question of identifying exploratory queries in a query stream is also
beyond the scope of this paper.

Aspects: An aspect of a query ¢ is meant to describe a particular sense of ¢ corre-
sponding to an information need. Specifically, each aspect is represented by a collection of
search queries related to ¢q. Given ¢, we compute a set of aspects ay,...,a,, along with
scores p(a;|q) that can then be used to rank them.

Since aspects are collections of search queries, we compare aspects based on the search
results retrieved by the queries that constitute them. Aspects are meant to capture diverse
dimensions along which we can organize the exploration of the entire space of information
relevant to query. Hence, the set of aspects computed for each query should have the
following properties:

Orthogonality: given two aspects, a; and aso, the search results for a; and ay should
be very different from each other.

Coverage: the search results provided for the aspects should offer a good overview of
the relevant space of information.

Thus, two sets of aspects computed for the same query can be compared based on the
pairwise orthogonality of their constituent aspects and the combined coverage of all their
aspects. The evaluation of aspects is inherently subjective, as is typical in the area of web
search. Hence, we present user studies where the aspects computed by different approaches
are qualitatively rated by a large number of independent users. We note that while we
compare different approaches to computing aspects, we do not focus on the different ways
they can be presented to users.

3. Alternative Approaches

Before we describe how ASPECTOR generates aspects, we briefly mention two strawman
approaches to the problem and explain why they are insufficient for our needs.
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Class Wikipedia Query Log
birth date position injury pictures
birth place college nba wallpaper

NBA Player || nationality height(ft) bio salary
draft year draft shoes girlfriend
career start height(in) stats biography
name city library  basketball
established  website football  athletics
University country type alumni  admissions
campus state tuition baseball
undergrad motto jobs bookstore

Table 2: Two classes that have attributes in Wikipedia that are very different from class-
level aspects computed from the query log.

3.1 Community-Created Knowledge Bases

Knowledge bases, especially those created by a large community of contributors, are a
rich source of information about popular entities. They cover a wide spectrum of user
interests and can potentially be used to organize information relevant to search queries.
In particular, the properties in Infoboxes of Wikipedia articles can potentially be used as
candidate aspects. Wikipedia contains more than 3,500 classes with over 1 million entities
and each class on average has about 10 attributes. The Wikipedia column in Table 2 shows
the attributes for two example classes. Freebase is another community-created KB with
over 1,500 classes.

Binary relationships recorded in a knowledge base fall significantly short of providing
a good set of aspects for a query. For example, consider the properties associated with
Cambodia in the Wikipedia Infobox — capital, flag, population, GDP, etc. None of these
words appear in the top-10 frequent queries that contain the word cambodia. In addition, a
knowledge base is limited to describing well defined entities. For example, Cambodia is an
entity in a knowledge base, but Cambodia Travel is not. However, queries on the Web cover
much more than well defined entities.

The underlying reason that knowledge bases fall short is that their constructors choose
attributes based on traditional design principles, but good aspects do not follow from these
principles. For example, it turns out that cambodia travel is a good aspect for vietnam travel,
because many people consider a side trip to Cambodia when visiting Vietnam. However,
when designing a knowledge base, Cambodia would never be an attribute of Vietnam.
Instead, the knowledge base would assert that Vietnam and Cambodia are neighbors, and
include a rule that states that if X is next to Y, and then X travel may be an aspect of Y
travel. Unfortunately, coming up with such rules and specifying their precise preconditions
is a formidable task and highly dependent on the instances it applies to. For example,
pakistan travel is not an aspect of india travel, even though the two countries are neighbors.
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3.2 Web Documents

Another approach to finding aspects is to cluster the documents on the Web that are relevant
to a query ¢, and assign or extract labels for each cluster (Blei, Ng, & Jordan, 2003; Zeng,
He, Chen, Ma, & Ma, 2004). As we show in our experiments, the main disadvantage is
that the coverage of the resulting aspects may be low because this approach only considers
documents that were returned in response to the original query. In practice, users conduct
data exploration in sessions of queries, and the other queries in those sessions can also lead
to interesting aspects which might not be found among the results of the original query.
Furthermore, it can be very challenging to generate succinct names for aspects from each
cluster.

4. Generating Candidate Aspects

ASPECTOR generates candidate aspects from query logs. Query logs are very reflective of a
broad range of user interests, but they are less effective in generating aspects for infrequent
queries. We first describe how we generate instance-level aspects, and then how we augment
them with class-based aspect propagation using a knowledge base.

4.1 Instance-Level Candidate Aspects

Given query ¢, we start by considering each of its query refinements and super-strings as a
candidate aspect.

4.1.1 QUERY REFINEMENTS

A query g; is a refinement of ¢, if a user poses ¢; after ¢ while performing a single search
task. Query logs can be mined to identify popular refinements for individual queries. Search
engines typically use popular refinements as a basis for proposing related searches.

We process refinements as follows: first, the query log is segmented into sessions repre-
senting sequences of queries issued by a user for a single search task. Suppose fs(q,q;) is
the number of sessions in which the query g; occurs after ¢, we then estimate the refinement
score p, for each ¢; by normalizing fs(q,q;) over all possible refinements, i.e.,

fs(a,95)
Pl = 5 g

Observe that proposing related searches based on query refinements is, in principle, only
optimized towards the goal of helping users find a single page containing a specific answer
(rather than helping the user explore the space). For example, the top 10 refinements for
the query on the NBA player yao ming includes 6 other NBA players such as kobe bryant
and michael jordan. Though related, these refinements are not necessarily the best aspects
for the query.

4.1.2 QUERY SUPER-STRINGS

The query g¢; is a super-string of ¢ if it includes ¢ as a sub-string. For example, vietnam
travel package is a super-string of vietnam travel. Unlike a refinement, a super-string ¢; need
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not belong to the same session as ¢g. In fact, for a random selection of 10 popular queries,
we found that on average there is only an overlap of 1.7 between the top 10 refinements
and the top 10 super-strings. In a sense, super-strings are explicitly related queries while
refinements are more implicitly related.

Super-strings can be assigned scores similar to p, above, by mimicking each super-string
as a pseudo-refinement, i.e., we assume an imaginary session in which ¢ preceded super-
string g;. Suppose f(g;) was the number of occurrences of g; in the query logs, we estimate
the super-string score pss(g;j|q) as below 1

e T
pss(q]|Q) - f(q) + Zz f(QZ)

ASPECTOR considers all the refinements and super-strings of ¢ as candidate aspects and
assigns them a single instance-level aspect score. For each candidate aspect ¢;, we assign
the score pins: as follows:

Pinst(qj|q) = max(pr(g519), pss(g5lq))

For given ¢, we normalize all iy (gj]g)s to add up to 1.

4.2 Class-Based Aspect Propagation

Query-log analysis is ineffective in generating instance-level candidate aspects for less fre-
quent queries. For example, we generate good candidate aspects for vietnam travel, but
not for laos travel. However, we can recommend aspects that are common to travel to
many countries for Laos. We use a variation of the label-propagation algorithm named
Adsorption (Baluja, Seth, Sivakumar, Jing, Yagnik, Kumar, Ravichandran, & Aly, 2008).

We first apply query segmentation to extract the entity e (laos in our example) and
the property p (travel) from the query g. Next, we use a knowledge base (e.g., Wikipedia
Infobox) to identify the class, or classes, C of e (e.g., country and south-east asian country
for laos). Then we construct a directed bipartite graph G = (V, E,w) as shown in Figure 1.
The nodes on the left are instance-level query nodes such as “laos travel”, and on the right
are class-level nodes like “country travel”. E denotes the set of edges, and w : E — R
denotes the nonnegative weight function. We set the weights of edges from instance nodes
to class nodes as 1, and the weights of edges from class nodes to instance nodes as K,
a design parameter controlling the relative-importance of the two factors. Our goal is to
compute p(g;|g), which is the aspect distribution on node g.

Following the work of Baluja et al. (2008), each node’s aspect distribution is iteratively
updated as the linear combination of its neighbors, until we converge (this algorithm is
shown to be equivalent to performing a random walk in the graph). Since we use Wikipedia
Infobox as our knowledge base, where each instance belongs to a single class, two iterations
are guaranteed to achieve convergence. The first iteration computes the class-level aspects
as follows:

Petass(45]q) = 0l Cl > pinst(a;]a)
qeC

fla5)
f(a)

1. We use a conservative lower bound estimate. The corresponding upper bound pss(gjlg) =
exceed 1.

can
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Instances Classes

vietnam travel O
D southeast asia travel
laos travel O

D country travel
canada travel O

Figure 1: The bipartite graph for class-based aspect propagation.

The second iteration smoothes the aspect distribution on instance node g with peiqss(g;lq)
as follows,

Pinst(¢519) + K X Petass(4;19)
o) = 1
p(gjla) T K (1)
In Section 6 we tested the effect of K on the performance of ASPECTOR. In our ex-
periments we found that the following variation on computing class-level aspects leads to

slightly better results:

pclass(Qj|Q) = ﬁ Z ](pinst(Qj|q) > O))
qeC
where, I(pinst(gjlg) > 0)) = 1 when pinst(gjlg) > 0, and 0 otherwise.

Table 2 shows examples of top class-level aspects derived for two classes and compares
them with their corresponding top attributes in the Wikipedia infobox. We can see that
the two sets of aspects have little overlap, which illustrates again that community created
schemata fall significantly short of providing a good set of aspects for search queries.

5. Selecting Aspects

This section describes how ASPECTOR prunes the set of candidate aspects, groups them,
and eventually ranks them in an ordered list from which a subset can be selected.

5.1 Eliminating Duplicate Aspects

It is often the case that the generated aspect list contains very similar candidates that may
be considered redundant. For example, top candidate aspects for the query vietnam travel
include vietnam travel package, vietnam travel packages and vietnam travel deal, each of which
represent either identical or very similar user intents. In particular, note that the set of
web documents returned for each of the aspects from any search engine are likely to be very
similar.

To remove redundant aspects, we compute a similarity matrix, {sim(a;, a;)}, between
every pair of candidate aspects and then cluster them based on their similarity.

5.1.1 COMPUTING ASPECT SIMILARITY

Since most aspects only contain few words, estimating similarity based on a simple com-
parison of words is unlikely to be accurate. Therefore, we enrich the representation of each
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aspect by considering the top m? search results returned when posing the aspect as a search
query. This is consistent with our goal of enabling orthogonal exploration — aspects with
similar top results are unlikely to be orthogonal.

Let D; be the top web pages retrieved for the aspect a;. We estimate the similarity of a;
and a; to be the similarity of the corresponding sets D; and D;. To compute sim(D;, D;),
we first compute the similarity dsim for any given pair of web pages {d; € D;, d; € D;}.
For this we use the standard cosine distance between the TF /IDF word-vectors for the two
documents. For computational efficiency, we only consider the head and snippet for each
web page instead of their entire text contents3.

While sim(D;, D;) can potentially be estimated by averaging similarities dsim(d;, d;) for
all pairs of web pages, on our experiment dataset, we found it better instead to compute the
average of the highest similarity for each web page. For each d; € D;, we assign the score:
sim(d;, Dj) = maxidsim(d;, dy). Likewise, we assign sim(D;,d;) = maxgpdsim(dy,d;).
The final aspect similarity is computed as:

. . Zszm(dz,D]) Z] (S‘Z'Wl(dj,Di)
sim(a;, a;) = sim(D;, D;) = ==
( J) ( 7 j) Z‘Dl‘ 2‘Dj|

We could alternatively treat each D; as one single document by concatenating all {d; €
D;} and estimate sim(g;, ¢;) to be the corresponding dsim(D;, D;). While computationally
more efficient, the quality of aspects was poorer.

5.1.2 CLUSTERING ASPECTS

In principle, we can apply any clustering algorithm, such as K-means or spectral clustering,
to the resulting aspect similarity matrix. However, these algorithms often require pre-setting
the number of desired clusters, which is difficult in our context. In addition, the number
of clusters also varies significantly from one query to another. Note that the appropriate
number of clusters is not necessarily the number of resulting aspects that we will show the
user.

We instead apply a graph-partition algorithm for clustering. The algorithm proceeds by
creating a graph where the nodes are aspects, a;, and there is an edge connecting the nodes
a; and aj if sim(a;,a;) > o, where o is a pre-defined threshold. Each of the connected sub
graphs is treated as a cluster. We choose the label of the cluster to be the aspect a; with
the highest p(ak|q) in the cluster (Formula 1).

The only design parameter o is easier to set and pretty stable for different queries, as
shown in our experiments. We note that similar algorithms such as star-clustering (Aslam,
Pelekov, & Rus, 2004) can also be used.

5.2 Grouping Aspects by Vertical Category

In many cases, even after eliminating redundant aspects, we find that we are left with
aspects that are seemingly different, but can be semantically grouped into a single category.
For example, for the query vietnam travel, some of the top non-redundant candidate aspects

2. We use m = 8 in our experiments which performs well. Larger m might achieve slightly better perfor-
mance at the cost of heavier computation.
3. We also tired using the whole document for each web page, which has only slightly better performance.
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as ho chi minh city, hanoi and da nang. While these are different cities, in principle they are
likely to represent a single information need — that of finding more information about cities
in Vietnam. Further, given a budget of a fixed number of aspects that can be presented to
a user, it might not make sense to overwhelm them with a list of aspects all denoting cities
in Vietnam. Instead, a single aspect named Cities can be presented.

Here is where the community-created knowledge bases can be leveraged — ASPECTOR
tries to identify sets of related aspects by consulting the Wikipedia Infobox system?. If it
finds that multiple aspects contain different entities that belong to a class in Wikipedia, it
creates an aggregate aspect (with the label of the class) and groups them together.

We encounter two challenges while looking up Wikipedia for the classes of entities.
First, the same entity can appear as different synonymous tokens. For example, nyu is the
common acronym for new york university. Currently we use the redirect pages on Wikipedia
to infer synonyms. Redirect pages in Wikipedia point synonym terms to the same principal
article. As a result, the aspect nyu for the query yale university is grouped with harvard
university and oxford university®. Second, the same token can refer to multiple entities that
belong to different classes and it can lead to bad grouping decisions. For example, HIStory
and FOOD are the names of music albums in Wikipedia, but history and food are also
aspects for the query vietnam. A simple lookup of the tokens in Wikipedia might lead to
erroneously grouping them into a single album group. ASPECTOR uses the disambiguation
pages in Wikipedia to identify tokens that are likely to have multiple senses. The Infobox
class is only retrieved for entities that do not have disambiguation pages. This conservative
method can be further improved via collaborative classification (Meesookho, Narayanan, &
Raghavendra, 2002). For example, earth, moon and venus are all aspects for mars. Since all
of them are ambiguous based on Wikipedia, our current ASPECTOR would treat them as
individual aspects. However, it is possible to group them together as a single planet aspect,
given all three candidates have planet as one possible type.

5.3 Selecting Aspects

The final step in ASPECTOR is selecting the aspects. We note that absolute ranking of
aspects is not so important in our context, because we expect that search results from
aspects will be spread out on the screen rather than being presented as a single list. However,
we still need to select the top-k aspects to present. Our selection of top-k aspects is based
on our original goals of increasing coverage and guaranteeing orthogonality.

ASPECTOR uses the score of an aspect, p(a;|q), as a measure of coverage. To achieve
a balance between coverage and orthogonality, ASPECTOR uses a greedy algorithm that
selects aspects in the ratio of their score p(a;|q) and the similarity of the aspects to already
selected aspects. The algorithm below produces a ranked list of aspects, G.

4. Other ontologies like Freebase and Yago can also be used.
5. This trick is used when constructing the bipartite graph in Section 4.2 as well.
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Input: Set S = {a;} // Label aspects of clusters after de-duplication.
Output: Set G // Ranked list of aspects.

Initialization: G = ¢;

ag = argmazaesp(ailq);
move ag from S to G;
while (S # ¢) do
for a; € S do
set sim(a;, G) = mazq;eqsim(a;, a;);

— plailg) .
Qnext = ATgMaTa;eS Si'n(z(:zi,G)’

MOvVe Gpezt from S to G;
Algorithm 1: ASPECTOR selects top-k aspects by balancing coverage and orthogo-
nality.

Observe we set the similarity sim(a;, G) to be the maximum similarity of a; to the
aspects already in G. On termination, ASPECTOR returns the top n aspects in ranked order
(in our experiments we used n = 8). Our experiments indicate that balancing coverage and
orthoganality leads to better selection of aspects than simply using coverage.

6. Experiments

In this section we evaluate our system ASPECTOR and in particular, answer the following
questions.

Quality of aspects: We compare the results of ASPECTOR against three potential
competing systems — related searches proposed by Google (henceforth GRs), cluster labels
assigned by the Clusty search engine (CcL), and navigational searches proposed by Bing
(BNs). To better support exploration of different parts of the space of relevant information,
the aspects of a query have to be orthogonal to each other. Aspects should also increase the
coverage, i.e., reveal information that is not already available through the original query,
but is still very relevant to it. Using a combination of search result analysis and a user
study, we show that our aspects are less similar to each other (and hence more orthogonal)
(Section 6.3), that aspects are able to increase coverage (Section 6.4), and that aspects are
overall rated more favorably than Grs, CcCL, and BNS (Section 6.5).

Contributions of the different components: ASPECTOR generates instance-level
aspects and performs class-based aspect propagation, eliminates duplicates, and groups the
remaining ones using a knowledge base. We show that instance-level and class-level aspects
tend to be very different, and that the best results are obtained by judiciously combining
them (Section 6.6). We also show that our clustering algorithm is able to stably eliminate
duplicate aspects crossing different domains, and the grouping of aspects has a positive
impact on the quality of aspects (Section 6.7).

6.1 Experimental Setting

To compute candidate aspects from query logs, we used three months worth of anonymized
search logs from Google.com. We used a snapshot of the English version (2008.07.24) of the
Wikipedia Infobox to serve as our knowledge base. Unless otherwise mentioned, we used

686



IDENTIFYING ASPECTS FOR WEB-SEARCH QUERIES

K = 0.1 for class-based aspect propagation (Equation 1). We now describe our test suite
and our user study.

Test Queries: We focus on queries that are entity names or have an entity name and
a property name. We construct a test suite that contains 6 sets of queries: five with entity
names from the Wikipedia classes Country, NBA player, Company, Mountain, and University,
and one with entity-property queries of the form Country travel. To construct a mix of
popular and rare queries, in each of the six sets we select 5 queries that occur frequently in
the query stream, 5 that are relatively uncommon, and 5 are chosen randomly for the class
(as long as they appear in the query logs). Thus, in total we have 90 test queries. For each
experiment we used a random subset of these test queries.

User Study: As part of our experimental analysis, we performed user studies using the
Amazon Mechanical Turk (AMT) system. On AMT, requesters (like us) post tasks and pay
for anonymous registered workers to respond to them. Tasks are structured as a sequence
of questions that workers are expected to respond as per the instructions provided by the
requester. For example, to compare two algorithms that compute aspects, we can design
a sequence of tasks such that in each a query and two lists of aspects (computed by each
algorithm) are shown. The worker has to rate whether one list is better than the other
or they are very similar. AMT ensures that each worker can only respond to a task once.
Since, the workers in the user study are completely unknown to the requester, there is less
of chance of bias. AMT has been shown to be an effective and efficient way to collect data
for various research purposes (Snow, O’Connor, Jurafsky, & Ng, 2008; Su, Pavlov, Chow, &
Baker, 2007). In our experiments, we used the default qualification requirement for workers
that requires each worker to have a HIT approval rate (%) greater than or equal to 95.

6.2 Points of Comparison

GRS can be considered as a representative of current approaches that are based on mining
refinements and super-strings from query logs. It is likely that GRS only performs an
instance-level analysis and it does not attempt to identify distinct user information needs.

CcL clusters result pages and assigns human-understandable labels to each cluster. Most
notably, the clusters are determined purely from results of the original query, and there is
no attempt to enable exploration of results that were not retrieved by the query. Further,
it is likely that cluster labels are extracted by an analysis of the contents of the result pages
(web documents). We note that while the clustering is hierarchical, for our experiments we
only considered the top-level labels.

BNs provides navigation searches (right above the “Related searches” in the result pages)
to help users better explore the information space. Bing’s goal is closest to ours in spirit,
but their technique only applies in a narrow set of domains. We note that BNS sometimes
provides generic aspects (e.g., videos, images), but we do not consider those.

We note that neither GRS nor CCL were designed with the explicit goal of computing
aspects that help explore the information space relevant to a query. However, they can be
viewed as close alternatives in terms of the results they may produce, and therefore offer
two points of comparison.

Table 3 shows the aspects, related searches, cluster labels, and navigational searches
obtained by the four systems on some example queries. In the rest of this section, we will
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Query GRS CcoL BNs ASPECTOR

volcano photos image resort
national park hotels weather weather
climbing real estate real estate high school

Mount Shasta | vortex weed hotels real estate
camping wilderness, california | lodging hiking
hotels climbing rentals pictures (photos)
attractions weather, forecast reference/wikipedia | map
lodging ski ski area
harvard university | school admissions press
athletics department jobs art gallery
press library bookstore athletics

Yale University | brown university images alumni harvard (oxford, stanford,...
stanford university | publications library jobs
columbia university | admissions reference/wikipedia | bookstore
cornell university laboratory images admissions
duke university alumni tuition

Table 3: Sample output from Grs, CCL, BNS, and ASPECTOR.

first show that aspects from ASPECTOR are on average more orthogonal, increase coverage,
and are rated better overall than GRS, CcL and BNs.

6.3 Orthogonality of Aspects

To establish the orthogonality of aspects, we measure the inter-aspect similarity — the less
similar the aspects are, the more orthogonal they are. We first describe how we compute
inter-aspect similarity, and then report its values over the query set for ASPECTOR, GRS,
CcL, and BNs.

In Section 5, we used TF/IDF-based word vectors to estimate aspect similarity. Using
the same measure to establish orthogonality will bias the evaluation in favor of ASPECTOR.
Hence, we use an alternate measure for aspect similarity that employs a topic model (Blei
et al., 2003). Briefly, topic models are built by learning a probability distribution between
words in documents and the topics that might underlie a document. Given a text fragment,
a topic model can be used to predict the probability distribution of the topics relevant to
the fragment. For example, the text on the company page for Google Inc., might result
in the topic distribution ((search engine, 0.15), (online business, 0.08),...). We use a topic
model developed internally at Google (henceforth TMG). Given two text fragments ¢; and
ta, we can compute their topic similarity tsim(t1,t2) as the cosine distance between their
topic distribution vectors fl and fg,

Since aspects contain only a few words, we extend augmenting each aspect with its
corresponding top search results (as in Section 5). Given aspects a; and ag, let D; and
D5 be their respective top m web search results. We compare D; and Ds using TMG to
estimate aspect similarity. Specifically, we compute the average inter-document similarity.

sim(a1, a2) = % Z tslm(d“ d]) (2)

d;€D1,d;€Ds

688



IDENTIFYING ASPECTS FOR WEB-SEARCH QUERIES

Aspect Similarity Comparison
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Figure 2: The results of ASPECTOR are more orthogonal than those of GRS, CCL, and BNs.

Given A, a set of n aspects, we determine its inter-aspect similarity (asim) as the average
pair-wise aspect similarity.

) 2 .
asim(A) = win=1) .ZeA sim(a;, a;)
a;,a;

In order to make sense of the magnitude of asim, we normalize it using the average intra-
aspect similarity isim(A) obtained by comparing each aspect against itself.

isim(A) = ﬁ Z sim(a;, a;)

a; €A

Note, sim(a;, a;) is ususally not equal to 1 based on equation 2. The result is the normalized
inter-aspect similarity nsim.

) asim(A)
nsim(A) = Tsim(A)
Thus, if all the aspects in A are identical, nsim(A) = 1, and if they are entirely orthogonal
nsim(A) = 0.

For each query, we retrieved the same number of aspects (at most 8) from each system,
and Figure 2 shows the average normalized inter-aspect similarity for the results output by
each system.

As can be clearly seen, ASPECTOR has the least normalized inter-aspect similarity and
hence the most orthogonal aspects. The improvement over BNS (45%) is most likely due to
the grouping of related aspects by vertical category. The improvement over GRrs (90%) is
most likely due to inclusion of class-based aspects and the grouping of related aspects by
vertical category. The improvement over CCL (60%) is likely because their space of labels
is restricted to only the results returned by the original query.
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Figure 3: Fraction of top web pages retrieved by aspects that are also in the top 500 pages
retrieved by the original search query.

6.4 Increase in Coverage

To validate the increase in coverage we are interested in answering two questions: (1) do
the aspects enable users to reach more information than the original query? (2) is the
additional information relevant to the user query?

6.4.1 MORE INFORMATION

To show that aspects can reach more information, we compare the web pages retrieved
using the aspects computed by ASPECTOR against those retrieved by the original search
query. Given, a query ¢ and its computed aspects A, let Dy be the set of top N web pages
retrieved by Google for the query g. Let Di be the collection of top k web pages retrieved
by Google for an aspect a; in A, and let D{ be the union of all the Dzs. We measure the
fractional overlap between Dy and Dg, i.e., %.

Figure 3 shows the average fractional overlap between Df and Dy for k =1 and k =8
against different values of N (x-axis). The results are averaged over two sets of queries:
(1) all 90 queries, and (2) a subset of 30 popular queries, with 10 aspects being computed
for each query. As the results clearly indicate, even when considering the top 500 search
engine results, for k = 1, only about 45% of the web pages in D{ are retrieved. In other
words, 55% web pages retrieved using the aspects are not even in the top 500 (note that
| D} is only 10). The overlap is an even lower 33% when considering k = 8. This shows
that aspects are clearly able to retrieve more new information.

In order to isolate the potential effects due to rare queries for which search engines do
not typically propose related searches, we separately consider the subset of popular queries.
Interestingly, here we find that the overlaps are even smaller and hence aspects are able
to retrieve even more information. This is likely because there is potentially more diverse
information on the Web about popular entities.
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Cumulative Resp. Url Ratings

Not Cov. | Covered | Not Cov. | Covered
Domain Y N Y N Y | N Y |N
country 274 | 26 274 | 26 28 | 2 28 | 2
country_travel || 238 | 8 258 | 8 25 0 27 10
nba player 269 | 53 223 | 43 3310 27 1 0
company 280 | 48 228 | 40 31 | 2 26 | 1
university 309 | 31 235 | 25 3410 26 |0
mountain 242 | 38 282 | 38 26 | 2 30 | 2
Total 1612 204 | 1500, 180 || 177| 6 164| 5

Table 4: User responses indicating whether the pages retrieved by aspects are relevant to
the query.

6.4.2 RELEVANT INFORMATION

To establish that the more information retrieved by aspects are in fact relevant to the user’s
information needs, we conducted an AMT user study. For each query ¢, we considered the
top 10 aspects and for each aspect we consider the top retrieved web page, i.e., Df. We
constructed a list of aspect-based results L4 which contained 4 results (selected at random
from DY), such that 2 overlapped with D59 and 2 that did not overlap with Dsgg. Users
were asked to evaluate if each of the results were (a) relevant, or (b) irrelevant to the original
query ¢g. In order to place the results in context, we also showed L 4 alongside Lg, the top
5 regular search engine results (these were not to be rated, but only for context).

We considered all 90 test queries with responses from 10 users in each case. The detailed
results are shown in Table 4. The columns Y and N indicate whether the web pages were
deemed relevant or not. The Covered and Not Covered columns separately consider the
web pages in L4 that were covered in Dsgp and those that were not. The Cumulative
Responses columns aggregate the responses for all users, while the Url Ratings columns
aggregate the ratings of all users separately for each web page in L4. As can be seen,
in total there were 177 web pages that were not covered, but were deemed relevant by a
majority of users.

The results indicate that overall, the vast majority of additional web pages retrieved
by aspects were deemed relevant by a majority of users. In addition, the ratio of relevant
to not-relevant results is about the same for the covered and not-covered web pages. This
indicates that not only is the additional information relevant, but it is likely to be as relevant
as the covered information.

Note that our coverage results also establish that our aspects are likely to span much
more of an information space than alternate schemes that rely only on analyzing the results
of the original query, e.g., the cluster labels in Clusty.

6.5 Comprehensive Performance Comparison

We compare the overall performance of ASPECTOR to GRS, CCL, and BNS by conducting
a user study using AMT. We separately compared ASPECTOR against each of the other
systems. In each case, we selected a random subset of around 30 queries from our original
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set of 90 queries. We filtered the queries which don’t return aspects from both systems.
For each query, two lists of (at most) 8 aspects were generated, one using ASPECTOR and
the other using GrS, CCL or BNS, which were then presented to an AMT rater with the
following instructions:

FEach query represents the start of a session to explore more information on some topic
(presumably related to the query). For each user query, we display two lists of other related
queries and/or properties. We want you to compare the two lists for each query and identify
which of the two lists enables a better subsequent exploration of information.

The lists for each query were presented side-by-side, and the user could rate one to be better
than the other, or simply rate them to be about the same. The raters were not informed of
the source of each list and the side-by-side positioning of the lists was randomly selected.
We collected responses from 15 raters for each query.

Tables 5, 6 and 7 summarize the results of the user study. The Cumulative Responses
columns aggregate the responses for all raters for all queries. The F, E, and A columns
indicate ratings in favor of ASPECTOR, even ratings, and against ASPECTOR (and in favor
of GRrs or CcL) respectively. The Query Ratings columns aggregate the ratings of all the
raters for each query, with an F indicating that more raters rated ASPECTOR in favor of
the other systems (respectively E and A).

As can be seen in Table 5, ASPECTOR clearly outperforms GRS. The improvements
are most likely due to its increased orthogonality and the grouping of aspects by vertical
category. As is also clear in Table 6, ASPECTOR also significantly outperforms CcCL, most
likely due to its increased coverage.

To ascertain the statistical significance of the evaluation, for each comparison, we per-
formed the standard paired t-test. For each individual query, we considered the total number
of F responses against the A responses. For the comparison against GRS, the mean per-
query difference (F-A) was 10.7, i.e., on average 10.7 out of the total 15 evaluators rated
ASPECTOR to be better. The difference was statistically significant with a two-tailed p-
value less than 0.0001. For the comparison with CcL, the mean difference was 13.1 and
again significant with a p-value less than 0.0001.

BNS produces aspects for a small number of domains. To set the context for our com-
parison we measured the breadth of BNS. We chose the top 100 Wikipedia Infobox classes,
and selected 15 entities (5 popular, 5 less common, and 5 randomly) from each class as in
section 5.3. BNs provided aspects for 17.6% of the entities. In particular, BNS provided
aspects for 29.4% of the popular entities and 9.8% for those less common entities. BNS
provided no aspects for entities of 48 of the classes, including “scientist”, “magazine” and
“airport”. The second limitation of BNS is that it only provides aspects for entity queries.
Hence, BNS does not provide aspects for queries such as “vietnam travel”, “seattle coffee”
or “boston rentals”. The third limitation of BNS is that it provides only class-level as-
pects, though the aspects may differ slightly from one instance to another. For example,
BNS misses the aspect “starbucks” for “seattle”, “turkey slap” for “turkey”, and “number
change” for “kobe bryant”.

Of our 90 queries, only 41 of them obtain aspects from BNS. Table 7 shows that
ASPECTOR and BNS are rated comparably w.r.t. this limited set of queries. The advantages
of ASPECTOR come from the fact that it judiciously balances instance-level and class-level
aspects. It is interesting to point out that when raters are not familiar with a particular
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Domain Cumulative Resp. | Query Ratings
F E A F E A
country 60 7 8 4 0 1
country_travel || 54 17 3 5 0 0
nba player 68 5 2 5 0 0
company 51 14 10 4 0 1
university 59 11 5 5 0 0
mountain 58 15 1 5 0 0
Total 350 | 69 29 28 | 0 2

Table 5: User responses comparing ASPECTOR against GRS.

Domain Cumulative Resp. || Query Ratings
F E A F E A
country 57 8 9 4 1 0
country_travel || 62 5 0 5 0 0
nba player 69 3 2 5 0 0
company 56 1 12 5 0 0
university 62 3 8 5 0 0
mountain 53 7 7 5 0 0
Total 359 | 27 38 29 |1 0

Table 6: User responses comparing ASPECTOR against CCL.

instance, they tend to prefer the class-level aspects. In our experiment, this observation
sometimes gives BNS an advantage.

6.6 Instance-Level Versus Class-Level Aspects

Recall that ASPECTOR balances between class-level and instance-level aspects for a given
query. Consider, for example, the class of NBA players. There are 1365 players identified
on Wikipedia. We were able to identify 8 or more candidate instance-level aspects for only
126 of them (9.2%). For 953 (69.8%) players, we were unable to infer any instance-level
aspects. However there are 54 class-level aspects that appear with at least 5 instances,

Domain || Cumulative Resp. | Query Ratings
F E A F E A
country 65 29 56 5 1 4
nba player || 52 12 71 3 0 6
company 20 2 53 0 0 5
university | 92 9 19 8 0 0
mountain || 6 6 18 1 0 1
Total 235 | 58 217 17 |1 16

Table 7: User responses comparing ASPECTOR against BNS. Note this is the result after
filtering 54% testing queries when BNs provides no aspects, in which case users
always rate ASPECTOR better.
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Domain Cumulative Resp. | Query Ratings
F E A F E A
country 12 17 46 0 0 5
country_travel || 12 11 52 0 0 5
nba player 10 14 51 0 0 5
company 12 13 50 0 0 5
university 17 9 49 1 0 4
mountain 10 14 51 0 0 5

Total 73 78 299 1 0 29

Table 8: User responses when comparing ASPECTOR with K =0 and K = 1.

thus giving us a potentially larger pool of good candidate aspects. By balancing these two
sources of aspects, ASPECTOR is able to successfully compute reasonable aspects even for
less frequent queries.

We compared the extent to which class-based aspect propagation contributes to the
quality of aspects generated. For this, we again performed an AMT user study. We con-
sidered different values for the parameter K in Formula 1: 0, 0.1, 1, 10, and 100, each
indicating progressively higher contribution of class-level aspects. Aspect lists were gener-
ated for a subset of 30 queries (5 from each set) for each value of K. We compared two
aspect lists at a time, and performed three sets of experiments comparing (1) K = 0 with
K =1 (Table 8), (2) K = 0.1 with K =10 (Table 9), and K = 1 with K = 100 (Table 10).
Each experiment used the same set of 30 queries and users were asked to pick which of the
two sets of aspects they preferred for each query (same task description as in Section 5).
Responses were collected from 15 users in each case. Note that to ensure significant differ-
ences in the aspect lists being compared, our experiments did not consider consecutive K
values (e.g., 0 and 0.1). In an earlier experiment where consecutive K values were used, we
found many queries have only a subtle difference and hence large numbers of users rated the
lists to be comparable. The number of queries are fewer in Table 9 and Table 10, since the
remaining ones resulted in the same aspect lists for both K values — this is not surprising
since, larger K values result in the increased influence of the same set of class-based aspects.

We find that the aspect lists for K = 1 are rated significantly better than for K = 0
(the mean per-query difference (F-A) was 7.53 and significant with a two-sided p-value less
than 1E-9). The lists for K = 10 were preferred to those with K = 0.1 (though by a
smaller (F-A) of 2.4 with p value about 0.008), while the lists for K = 100 and K = 1 were
rated about the same (the mean (F-A) was 0.3 and insignificant with p value about 0.8).
Each of these seem to indicate clearly that class-based aspects are helpful in improving user
experience.

However, we note that our results might marginally over-state the importance of class-
based aspects. This is because a user’s perception of aspects is dependent upon the user’s
interest and familiarity with the entity in question — if an entity, though popular, is not
too familiar to a participant in the study, they are likely to select the class-based aspects.
On the other hand, we found that for universally well known entities, such as the company
microsoft, the lists with more instance-based aspects were always preferred.
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Domain Cumulative Resp. | Query Ratings
F E A F E A
country 11 15 34 0 0 4
country_travel || 21 23 16 2 1 1
nba player 19 21 35 1 0 4
company 17 24 34 1 0 4
university 22 26 27 2 0 3
mountain 13 11 21 1 0 2

Total 103 | 120 | 167 7 1 18

Table 9: User responses when comparing ASPECTOR with K = 0.1 and K = 10.

Domain Cumulative Resp. || Query Ratings
F E A F E A
country 3 8 4 0 0 1
country_travel || 16 18 11 2 0 1
nba player 5 12 28 0 0 3
company 33 29 13 4 0 1
university 14 20 11 1 1 1
mountain 21 23 31 2 0 3
Total 92 110 | 98 9 1 10

Table 10: User responses when comparing ASPECTOR with K =1 and K = 100.

6.7 Eliminating and Grouping Aspects

We now consider the impact of the content-based clustering that is used to identify duplicate
aspects, and the vertical-category-based clustering that groups aspects belonging to the
same category.

6.7.1 DUPLICATE ELIMINATION

When computing candidate aspects from query logs, it is possible to find multiple aspects
that have different names, but are semantically the same. Such aspects have to be elimi-
nated in order for the summary to cover more distinct axes. As explained in Section 5.1,
ASPECTOR applies a graph partitioning algorithm that only has a single parameter, the
similarity threshold 0. We conjecture that this similarity threshold is more intuitive to set
and is stable across different domains.

To test our hypothesis, we randomly selected 5 queries each from 5 domains. For each
query, we took the top 30 aspects candidates and manually created a gold-standard with
the correct aspect clustering results. We computed aspect lists for the queries with different
values for the threshold o and compared the results against the gold-standard.

We use the F-Measure (F') to evaluate the clustering results. In particular, we view
clustering as a series of decisions, one for each of the N(NN — 1)/2 pairs of aspects.

Figure 4 plots the F' values for different values of the threshold o for the five test
domains. We found that in each case the best performance is between threshold values 0.25
and 0.4. The results indicate that clustering performance with respect to o is pretty stable
across domains. Hence, in all our experiments, we set a single value o = 0.35.
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Figure 4: F-Measure of aspect clustering for different values of the similarity threshold o.
In each domain, the best performance is around 0.35.

Domain || Cumulative Resp. | Query Ratings
F E A F E A
company | 25 14 6 3 0 0
university || 18 7 5 2 0 0
mountain || 6 3 6 0 1 0
Total 49 24 17 5 1 0

Table 11: User responses comparing ASPECTOR with vertical-category grouping and with-
out. F, E, and A are responses in favor, even, and against grouping.

6.7.2 VERTICAL-CATEGORY BASED GROUPING

In addition to duplicates, we observed that often multiple aspects might belong to the same
vertical category. Rather than represent each as a separate aspect, we can summarize the
aspects by presenting them as a single group. Note that grouping does not eliminate the
aspects, but simply lists all of them as a single aspect. For 6 out of the 90 queries in our
dataset, ASPECTOR was able to group aspects by vertical category.

As before, we deployed an AMT user study for the 6 test queries and the results are
shown in Table 11, with F indicating the number of responses in favor of vertical grouping
(with E and A defined accordingly). As can be seen, the aspect lists with grouping were
favored in comparison to the ones without grouping.

Currently, ASPECTOR groups aspects of the same vertical category only if there is no
corresponding disambiguation pages in Wikipedia. This conservative solution avoids po-
tential errors when ambiguity exists, but also misses opportunities. For example, for the
query mount bachelor, mount hood and mount baker appear as separate aspects since there
are disambiguation pages for both entities. Refining the grouping condition is a rich topic
for future work.
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7. Related Work

We discuss work related to ours in the area of search-result organization and of query-log
mining.

7.1 Search Result Organization

Several works have considered how to better organize search results. Agrawal, Gollapudi,
Halverson, and Teong (2009) classify queries and documents into categories and return search
results by considering both document relevance and diversity of results. In contrast, As-
PECTOR computes more fine grained aspects instead of abstract categories for exploratory
queries which are not necessary to be ambiguous. Some commercial systems like KOs-
MiX and YAHOO!GLUE categorize information based on type or format (e.g. photo, video,
news and map) and retrieve top results for each category. Though the different types often
approximate aspects, they do not represent a rich set of semantically different groups of
information and are not sensitive to instance-specific aspects. The CARROT2 search engine
applies text clustering techniques over returned search pages and extracts keywords to sum-
marize each cluster. Similar works were done by Bekkerman, Zilberstein, and Allan (2007),
Blei et al. (2003), Crabtree, Andreae, and Gao (2006), and Wang, Blei, and Heckerman
(2008). Multi-faceted search (Yee, Swearingen, Li, & Hearst, 2003) organizes collections
based on a set of category hierarchies each of which corresponds to a different facet. How-
ever the category hierarchies requires heavy human effort for construction and maintenance.
The CORRELATOR system from Yahoo! performs semantic tagging of documents to enable
mining of related entities for a query. These algorithms don’t necessary discover clusters
which correspond to Web users’ search interests, and it is difficult to generate informative
cluster labels from documents. Our use of query logs complements such document-based
approaches, but reflects searchers intentions rather the intentions of the publishers.

Wang and Zhai (2007) proposed to organize search results based on query logs. They
represent each query as a pseudo-document enriched with clickthrough information and
pick the top-k that are similar to the current query, and cluster them into aspects. Then,
they classify each resulting page into corresponding aspect by similarity. In contrast, we
generate aspects based on the idea of query refinements which don’t require the aspect and
current query to have similar clickthrough. For example, the query vietnam travel visa is an
important aspect for vietnam travel, but won’t have the same click-through properties.

7.2 Query-Log Mining

There have been several efforts to mine query logs for interesting artifacts. Pasca and Durme
(2007) extract relevant attributes for classes of entities from query logs rather than from
Web documents as done by Bellare et al. (2006). The main goal of these works is to create
a knowledge base of entities, and hence their results are most appropriately compared with
Wikipedia or Freebase.

Query refinement and suggestion analyze query logs to predict the next most probable
query following the current query (Cucerzan & White, 2007; Jones, Rey, Madani, & Greiner,
2006; Kraft & Zien, 2004; Velez, Wiess, Sheldon, & Gifford, 1997). Hence, their goal
is to help users find a single result page rather than help navigating a body of relevant
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information. Bonchi, Castillo, Donato, and Gionis (2008) proposed to decompose a query
into a small set of queries whose union corresponds approximately to that of the original
query. However, as our experiments illustrated, the constraint that the union of the resulting
pages correspond approximately to that of the original query significantly limits the available
body of information we expose to the user.

Wang et al. (2009) mine a set of global latent query aspects, and dynamically select
top k aspects for a given query ¢ to help better navigate the information space. While in
some ways this is similar to ASPECTOR, there are two key differences. First, they discover
the set of global latent query aspect via maximizing a target function, where the aspect
set aims to apply to many classes of (important) queries. In contrast, ASPECTOR applies
class-based label propagation to identify the aspects. Therefore, the aspects tend to be
more fine-grained and more query(class)-specific. Second, when selecting the k aspects for
a query g, Wang et al. apply another optimization function which tries to cover as many
original (frequent) query refinements of ¢. This works fine for popular queries but not for
less popular queries which have few query refinements. Our experiments show that for most
classes, there is a long tail of such less popular queries.

8. Conclusions

We described the ASPECTOR system for computing aspects of web-search queries. Aspects
are intended to offer axes along which the space of information relevant to a query can be
organized, and therefore enable search engines to assist the user in exploring the space.

ASPECTOR generates candidate aspects from query logs and balances aspects that are
common to classes of entities vs. those that are specific to particular instances. ASPECTOR
also eliminates duplicate aspects and groups related aspects using a reference ontology. In
contrast with a purely knowledge-based approach, ASPECTOR’s results are much broader
and include aspects of interest to specific instances. In contrast with an approach based
solely on clustering the results of the query, ASPECTOR can include aspects that are not
represented directly in the query’s answer.

We set the weights of all edges from instances to classes uniformly when computing
class-based aspects. A future direction is to compute better informed weighting functions
based on available temporal, spatial and contextual constraints. Another future work is to
allow multi-class memberships based on other ontologies besides Wikipedia Infobox.

To incorporate aspects into a mainstream search engine we need to address two chal-
lenges. First, we need to reliably identify from the query stream which queries benefit from
a summarization approach. Some works (Miwa & Kando, 2007; White & Roth, 2009) have
been conducted in this area, but much more needs to be investigated. Second, as done in
KosMmix, we need to dynamically generate effective visualizations for aspects.
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