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Within the striatum are compartments, termed patches and matri-

ces, that have distinct neurochemical markers and receive projec-

tions from different cortical layers (Gerfen, 1989; Graybiel, 1990). 

Beyond basal ganglia nuclei that can be seen on structural MRI 

scans, more fine-grained divisions in human basal ganglia, though 

presumed to exist based on non-human primate and rodent studies, 

are difficult to identify with current neuroimaging methods.

While historically considered to be a motor structure, the basal 

ganglia receive cortical projections from all lobes of the cerebral 

cortex and contribute to both motor and non-motor processing 

(Mink, 1996). Anatomical tracer studies in non-human primates 

(Alexander et al., 1986; Middleton and Strick, 2000; Haber, 2003) 

have documented anatomical connections between the basal 

ganglia and many regions in the cerebral cortex, including lat-

eral prefrontal, orbitofrontal, anterior cingulate, lateral parietal, 

motor, premotor, oculomotor, somatosensory, auditory associa-

tion (superior temporal gyrus), and visual association (inferior 

temporal gyrus) cortex.

Resting-state functional connectivity MRI (rs-fcMRI) and diffu-

sion tensor imaging (DTI) provide a means to assess functional and 

anatomical connectivity non-invasively in humans. It is important 

to note at the outset that these methods yield distinct informa-

tion about brain connectivity. rs-fcMRI measures correlations in 
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The basal ganglia are subcortical brain structures important for 

motor, cognitive, and emotional processing (Mink, 1996). The 

consequences of basal ganglia pathology can be devastating, exem-

plified by the symptoms of degenerative basal ganglia disorders 

such as Parkinson’s and Huntington’s disease. Understanding the 

location and functional connectivity patterns of basal ganglia 

divisions would improve cognitive neuroscience investigations. 

Indeed, methods that could identify putative basal ganglia divi-

sions are needed to test hypotheses about cortical-basal ganglia 

circuitry in typical development (Rubia et al., 2006), healthy aging 

(Hedden and Gabrieli, 2004), and disorders (e.g., Parkinson’s dis-

ease, Huntington’s disease, Tourette’s syndrome) and are critical 

for region identification needed to develop more precise models 

of whole-brain connectivity (Butts, 2009).

There are multiple levels of organization in the basal ganglia. 

Anatomically, the basal ganglia comprise five gray matter nuclei: 

the caudate, putamen, globus pallidus, substantia nigra, and sub-

thalamic nucleus. The majority of projections from the cerebral 

cortex to the basal ganglia terminate in the caudate and putamen, 

collectively referred to as the striatum. Discrete cerebral cortical 

regions project to discrete striatal regions that then project, via the 

thalamus, back to those cortical regions (Alexander et al., 1986). 
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 low-frequency (i.e., <0.1 Hz) spontaneous blood oxygenation level-

dependent (BOLD) signal fluctuations (Fox et al., 2005) and may 

reflect a history of co-activation between regions (Fair et al., 2007; 

Dosenbach et al., 2008). DTI measures the diffusion of water mol-

ecules, which is constrained by the presence of axons, particularly 

myelinated axons, and provides indices of white matter coherence 

used to create visualizations of white matter tracts. While there can 

be overlap in connectivity patterns identified using rs-fcMRI and 

DTI, functional connectivity has been documented in the absence 

of anatomical connectivity. For example, seeds placed in voxels 

corresponding to left and right retinotopic eccentric representa-

tions in primary visual cortex exhibit strong functional connectiv-

ity with rs-fcMRI, but are not anatomically connected (Vincent 

et al., 2007). This observation suggests that functional connectivity 

should not be treated as a measure simply homologous to anatomi-

cal connectivity.

Despite fundamental differences in the types of information about 

brain connectivity that can be gleaned from rs-fcMRI and DTI, these 

methods converge with evidence from anatomical tracer studies 

examining cortical-basal ganglia connectivity, revealing significant 

connectivity between basal ganglia regions and frontal, parietal, and 

temporal regions. Using rs-fcMRI, dorsal and ventral caudate and 

putamen regions of interest (ROIs) were shown to have different pat-

terns of functional connectivity with the cerebral cortex (Di Martino 

et al., 2008; Harrison et al., 2009). Similarly, large-scale cortical ROIs 

(e.g., prefrontal cortex, parieto–occipital cortex) were shown to have 

different patterns of partial correlations with the basal ganglia (Zhang 

et al., 2008). DTI investigations have revealed different anatomical 

connectivity between basal ganglia divisions and large-scale frontal 

ROIs (e.g., prefrontal cortex, orbitomedial frontal cortex) (Lehericy 

et al., 2004; Leh et al., 2007; Draganski et al., 2008). Across these 

methods, convergent findings regarding patterns of cortical-basal 

ganglia connectivity have emerged. For example, both rs-fcMRI 

and DTI respectively reveal functional and anatomical connectivity 

between dorsal caudate and lateral prefrontal cortex, ventral striatum 

and orbitofrontal cortex, and dorsal caudal putamen and motor and 

premotor cortex (Lehericy et al., 2004; Leh et al., 2007; Di Martino 

et al., 2008; Draganski et al., 2008; Harrison et al., 2009).

Basal ganglia divisions have two properties that would facilitate 

identification with noninvasive neuroimaging methods: they have 

different patterns of connectivity with the cerebral cortex and they 

are spatially constrained (i.e., discrete) entities (Alexander et al., 

1986). Thus, it may be possible to identify basal ganglia divisions 

smaller than nuclei on the basis of their unique patterns of cortical-

basal ganglia functional connectivity using rs-fcMRI and commu-

nity detection algorithms, which are used to identify groupings in 

networks. rs-fcMRI is sensitive to changes in patterns of functional 

connectivity across adjacent, proximal (i.e., ∼2 cm apart) cortical 

regions. For example, rs-fcMRI data contained abrupt transitions, 

consistent with boundaries between putative cortical areas, in 

the measured similarity of functional connectivity maps gener-

ated from seeds placed along a line between supramarginal and 

angular gyrus regions (Cohen et al., 2008). Rather than simply 

measure along a single line, rs-fcMRI methods can also be used to 

sample from a larger structure (e.g., the basal ganglia). By calculat-

ing the similarity in whole-brain rs-fcMRI maps generated from 

each voxel in a structure, we can obtain a matrix of the pairwise 

similarity  relationships between voxels. Similarity matrices can be 

used to bring recent developments in graph theory, the mathemati-

cal description of networks, to bear on our question of identifying 

divisions in the basal ganglia.

In graph theory parlance, a graph is composed of two elements: 

nodes, which represent the units of observation in a graph, and 

edges, which represent the pairwise relationships between nodes. 

We can thus view our similarity matrix as a network, with voxels as 

nodes and eta2 values, a measure of similarity, as edges. Community 

detection algorithms (e.g., modularity optimization [Newman, 

2006] used here) can be applied to cluster the nodes into highly 

interconnected communities, with relatively few edges between 

communities. In other words, these algorithms can be viewed as 

grouping voxels with similar correlation maps. Returning to our 

question of interest, these groupings can be examined to determine 

whether they reflect expected divisions within the basal ganglia. If 

(1) the anatomical loci of modularity optimization groupings is 

consistent with basal ganglia divisions identified from anatomical 

studies in non-human primates and rodents and (2) functional 

connectivity maps generated from the modularity optimization 

groupings are consistent with presumed patterns of cortical-basal 

ganglia connectivity, then we will consider these groupings to be 

putative basal ganglia divisions.

In this paper, we demonstrate that a novel approach to functional 

mapping that combines rs-fcMRI and modularity optimization 

analyses can reveal putative basal ganglia divisions in individuals. 

Our approach identifies putative basal ganglia divisions with reliable 

patterns of functional connectivity with an amount of data that can 

be acquired in a single, brief MRI session (i.e., one ∼8-min structural 

scan and three ∼5-min scans of relaxed fixation). Remarkably, these 

results appear to be robust at the individual subject-level.

MATERIALS AND METHODS

SUBJECTS

Two cohorts of healthy young adult subjects were recruited from 

the Washington University community. Subjects were screened with 

a self-report questionnaire to ensure that they had no current or 

previous history of neurological or psychiatric diagnosis. Informed 

consent was obtained from all subjects, and the study was approved 

by the Washington University Human Studies Committee. Cohort 

One consisted of 15 subjects (four males, ages 21–29 years, mean 

age = 25 years). Cohort Two consisted of 11 subjects (five males, 

ages 21–27 years, mean age = 25 years). The purpose of examining 

two cohorts was to test independently the reliability of the results 

(see Ihnen et al., 2009).

DATA ACQUISITION

Data were acquired on a Siemens 3 Tesla MAGNETOM Trio sys-

tem (Erlangen, Germany) with a Siemens 12 channel Head Matrix 

Coil. To help stabilize head position, each subject was fitted with a 

thermoplastic mask fastened to holders on the head coil. Structural 

images were obtained using a sagittal magnetization-prepared rapid 

gradient echo (MP-RAGE) three-dimensional T1-weighted sequence 

(TE = 3.08 ms, TR (partition) = 2.4 s, TI = 1000 ms, flip angle = 8°, 

176 slices with 1 × 1 × 1 mm voxels). Functional images were obtained 

using a BOLD contrast sensitive gradient echo  echo-planar sequence 

(TE = 27 ms, volume TR = 2.5 s, flip angle = 90°, in-plane resolution 
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intensity differences attributable to interleaved acquisition without 

gaps, (iii) correction for head movement within and across runs, 

and (iv) intensity normalization to a whole-brain mode value of 

1000 for each run. Atlas transformation of the functional data was 

computed for each individual via the MP-RAGE and T2 weighted 

scans. Each run was then resampled in atlas space on an isotropic 

2-mm grid combining movement correction and atlas transfor-

mation (12 parameter affine co-registration) in one interpolation 

(Lancaster et al., 1995; Snyder, 1996). All subsequent operations 

were performed on the atlas-transformed volumetric time series.

Several additional pre-processing steps were used to reduce spu-

rious variance (e.g., heart rate and respiration) unlikely to reflect 

neuronal activation. These steps included: (i) temporal bandpass 

filtering (0.009 Hz < f < 0.08 Hz) and spatial smoothing (4 mm full 

width at half maximum), (ii) regression of six parameters obtained 

by rigid body head motion correction, (iii) regression of the whole-

brain signal averaged over the whole brain, (iv) regression of ven-

tricular signal averaged from ventricular ROIs, and (v) regression of 

white matter signal averaged from white matter ROIs. [Ventricular 

and white matter ROIs were defined using masks described in Fox 

et al. (2005) and depicted in Supplemental Figure 1 of Fox et al. 

(2009)]. Regression of first order derivative terms for the whole 

brain, ventricular, and white matter signals and any trend term from 

the movement regressors was also included in the pre-processing.

IDENTIFYING THE BASAL GANGLIA

Two methods were used to identify basal ganglia voxels in individual 

subjects. For Cohort One, the caudate, putamen, and pallidum were 

manually traced from each subject’s MP-RAGE scan. For Cohort 

Two, the caudate, putamen, and pallidum were identified from each 

subject’s MP-RAGE using FreeSurfer1, an automated segmenta-

tion algorithm (Fischl et al., 2002, 2004). Automated segmentation 

results for each subject were reviewed as a quality control step. From 

this point forward, the methods applied to the two cohorts were 

identical. The purpose of examining two cohorts separately, rather 

than collapsing cohorts into a single group, was to test independ-

ently the reliability of the results.

rs-fcMRI AND MODULARITY OPTIMIZATION ANALYSIS

For each basal ganglia voxel, whole-brain rs-fcMRI correlation 

maps were generated by correlating each basal ganglia voxel’s 

timecourse with all other voxels in the brain (see Figure 1B for 

example basal ganglia time courses). To quantify the similarity of 

the whole-brain rs-fcMRI correlation maps, a measure of similar-

ity, eta2, was computed between each pair of correlation maps for 

each hemisphere in each subject (see Cohen et al., 2008). Thus, for 

each hemisphere in each subject, we generated a similarity matrix 

that could be examined to identify basal ganglia voxels with similar 

patterns of functional connectivity.

Modularity optimization (Newman, 2006), a network analysis 

tool, was used to identify basal ganglia voxels with similar pat-

terns of functional connectivity and then to assign voxels, based on 

their similar patterns of connectivity, to groups termed modules. 

In graph theory terms, each voxel in each subject’s basal ganglia 

was treated as a node and the similarity (i.e., eta2) between each 

4 × 4 mm). Whole-brain coverage was obtained with 32 contiguous 

interleaved 4-mm axial slices. Three runs of either 133 (Cohort One) 

or 132 (Cohort Two) BOLD volumes per run were acquired. Steady 

state magnetization was assumed after four frames (i.e., 10 s). An 

auto align pulse sequence protocol provided in the Siemens soft-

ware was used to align the acquisition slices of the functional scans 

parallel to the anterior and posterior commissure (AC–PC) plane 

and centered on the brain. A T2 weighted turbo spin echo structural 

image (TE = 84 ms, TR = 6.8 s, 32 slices with 1 × 1 × 4 mm voxels) 

in the same anatomical plane as the BOLD images was also obtained 

to improve alignment to the atlas.

During functional scans, subjects viewed a centrally presented 

crosshair that subtended <1 visual degree and were instructed to 

relax and maintain fixation on the crosshair. The fixation cross was 

either white on a black background (Cohort One) or black on a 

white background (Cohort Two).

DATA PRE-PROCESSING

The analysis stream from the present study is depicted in Figure 1A. 

Functional images were first processed to reduce artifacts (Miezin 

et al., 2000). These steps included: (i) removal of a central spike 

caused by MR signal offset, (ii) correction of odd versus even slice 

FIGURE 1 | (A) Flowchart of analysis stream. (B) Time courses extracted from 

two basal ganglia voxels ([-11 5 12] and [11 5 12]) are highly correlated 

(r = 0.70). Time courses such as these were used to generate whole-brain 

correlation maps for each basal ganglia voxel.
1http://surfer.nmr.mgh.harvard.edu.

http://surfer.nmr.mgh.harvard.edu
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masked image. This analysis revealed that the spatial location of 

each putative basal ganglia division overlapped across subjects in 

anatomical locations consistent with the stereotactic guidelines 

described above (see Figure 2, row 4).

To assess the validity of the modularity optimization results, we 

examined functional connectivity maps derived from modularity 

optimization assignments. For each of the three basal ganglia 

divisions (i.e., the voxels labeled as the putative dorsal caudate, 

dorsal caudal putamen, and ventral striatum) we generated six 

whole-brain correlation maps for each subject (three putative 

divisions × two hemispheres). Each subject’s z- transformed 

whole-brain correlation map was used in a second level random-

effects analysis involving one-sample t-tests (z > 3.00, k = 21, 

pair of nodes was treated as an edge. Networks with N nodes were 

mathematically represented as a N × N matrix of relationships 

where cell ij contained the measure of the similarity between node 

i and node j. Similarity matrices were thresholded such that all cells 

with values below a certain threshold were set to zero, effectively 

removing the edges between the nodes. We therefore explored a 

range of thresholds in our analyses to ensure that our results were 

not specific to a particular threshold. Modules, our unit of analysis 

to test for putative divisions within the basal ganglia, were detected 

with modularity optimization algorithms adopted from Newman 

(2006) and described in Fair et al. (2009). The modularity (Q) 

of a given set of module assignments for a graph is a measure of 

the number of connections found within the assigned modules 

versus the number predicted in a random graph with equivalent 

degree distribution. A positive Q indicates that the number of intra-

module connections exceeds those predicted statistically. A wide 

range of Q may be found for a graph, depending on how nodes 

are assigned to modules. Thus modularity optimization returns 

the set of node assignments that returns the highest Q, that is, the 

optimal modular description of the data.

RESULTS

COHORT ONE

Modularity optimization groupings were examined to determine 

whether they were consistent with putative divisions in the basal 

ganglia. An eta2 threshold of 0.85 was selected for the analyses 

reported below because at this threshold the network was sparse 

(i.e., edge density < 0.1) but fully connected (i.e., graph connected-

ness ∼1.0) and there was strong community structure (i.e., Q > 0.3) 

in the network (see Figure S1 in Supplementary Material).

Modularity optimization generated discrete, contiguous group-

ings of basal ganglia voxels in locations consistent with presumed 

basal ganglia divisions (see Figure 2, rows 1–3). The number of 

modules identified for the left (M = 6.60, SD = 2.19, range = 3–11) 

and right (M = 6.73, SD = 2.76, range = 3–13) hemispheres did 

not differ, p = 0.87. We focused on identifying and characterizing 

three modules because at least three modules were generated across 

subjects in Cohort One.

In each hemisphere for each subject, we identified groupings of 

basal ganglia voxels that were consistent with the location of the 

dorsal caudate, the ventral striatum, and the dorsal caudal puta-

men. Labels were assigned on the basis of stereotactic coordinates 

reported in prior functional connectivity (Di Martino et al., 2008; 

Harrison et al., 2009) and functional MRI co-activation (Postuma 

and Dagher, 2006) studies. The dorsal/ventral distinction for the 

caudate and putamen was z = 2 (i.e., dorsal = z ≥ 2; ventral = z ≤ 2). 

The rostral/caudal distinction for the putamen was y = 0. When 

more than one module met these criterion, the module closest to the 

coordinates reported in Di Martino et al. (2008) was assigned the 

particular label (i.e., dorsal caudate, ventral striatum, dorsal caudal 

putamen). As the spatial extent of each module was not fixed across 

subjects and hemispheres (it was determined by the number of 

voxels assigned to a particular grouping using modularity optimiza-

tion), we sought to determine whether these stereotactic guidelines 

identified modules in similar locations across subjects. Accordingly, 

we conducted a conjunction analysis for each label by creating a 

masked image of that putative division and  summing each subject’s 

FIGURE 2 | Rows 1–3. From Cohort One, three subjects’ basal ganglia voxels 

colored with respect to modularity optimization groupings (shown on each 

subject’s MP-RAGE; coloring for each hemisphere and each subject is 

arbitrary). Arrows indicate modules labeled as dorsal caudate (red arrows, 

z = 16), dorsal caudal putamen (blue arrows, z = 10), and ventral striatum 

(purple arrows, z = -8). Row 4. Conjunction of modules ascribed the same 

label across Cohort One subjects. Color bar depicts number of subjects with a 

module assignment at each voxel.
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robust functional  connectivity in the random-effects analyses 

were driven by a handful of the subjects or whether overlapping 

patterns of functional connectivity could be seen in a majority 

of subjects. Conjunction analyses for each putative basal ganglia 

division across all Cohort One subjects revealed that regions of 

functional connectivity identified in the random-effects analy-

ses seen in individual subjects (see Figure 4, rows 1–3) were 

present in a majority of subjects (see Figure 4, row 4). These 

findings suggest that putative basal ganglia divisions yield pat-

terns of functional connectivity that are reliable at the individual 

subject-level.

COHORT TWO

We examined a second cohort to assess independently the reliability 

of our results. First, we examined Cohort Two to test whether we 

would find similar groupings. As with Cohort One, the number of 

groupings identified for the left (M = 6.82, SD = 2.04, range = 3–10) 

and right (M = 9.09, SD = 5.87, range = 4–21) hemispheres did 

not differ, p = 0.25. Further, the number of groupings identified 

for each hemisphere did not differ across cohorts (left hemi-

sphere: p = 0.80, right hemisphere: p = 0.18). Visual inspection 

of the groupings’ locations revealed that modularity optimization 

 corresponding to p < 0.05, Monte Carlo corrected). The random-

effects maps for the left hemisphere (Figure 3, row 1) revealed 

qualitatively distinct patterns of functional connectivity for the 

putative dorsal caudate, dorsal caudal putamen, and ventral stria-

tum (see Figure S3 in Supplementary Material, Row 1 for ran-

dom-effects analyses for putative right basal ganglia divisions.)

Functional connectivity maps from modularity optimization 

assignments revealed patterns of functional connectivity similar to 

the previously reported patterns of anatomical and functional con-

nectivity of the dorsal caudate, dorsal caudal putamen, and ventral 

striatum (see Figure 3, row 1; Table 1). For example, the dorsal 

caudate was functionally connected to regions in lateral prefrontal 

cortex, the dorsal caudal putamen was functionally connected to 

regions in premotor and motor cortex, and the ventral striatum 

was functionally connected to regions in orbitofrontal and ventro-

medial prefrontal cortex.

The three putative basal ganglia divisions had distinct pat-

terns of functional connectivity that were qualitatively reliable 

across individuals. We generated thresholded (z > 2.00), bina-

rized images of individuals’ z-transformed correlation maps for 

the putative left dorsal caudate, left dorsal caudal putamen, and 

left ventral  striatum and summed them to determine whether 

FIGURE 3 | Z-transformed rs-fcMRI maps from modularity assignments are 

statistically reliable within each cohort for the left hemisphere divisions 

(first and second rows, z > 3.00, k = 21, corresponding to p < 0.05, Monte 

Carlo corrected) and yield common regions of correlation across cohorts 

(conjunction analysis, third row). Positive correlations are depicted in warm 

colors (first two rows) and their overlap is depicted in red in the conjunction 

analysis (third row). Negative correlations are depicted in cool colors (first two 

rows) and their overlap is depicted in green in the conjunction analysis (third row).
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Table 1 | Brain regions showing significant functional connectivity with 

putative basal ganglia divisions identified using random-effects 

one-sample t-tests (z > 3.00, k = 21, corresponding to p < 0.05, Monte 

Carlo corrected).

X Y Z Hemisphere Anatomical Z-score 

    landmark

DORSAL CAUDATE: POSITIVE CORRELATIONS

Subcortical

-12 8 8 Left Caudate 7.42

13 10 7 Right Caudate 7.13

-23 0 10 Left Putamen 6.49

-6 -5 7 Left Anterior thalamus 6.33

24 6 -4 Right Putamen 5.88

6 -5 4 Right Anterior thalamus 5.29

-30 -17 -4 Left Putamen 5.08

-17 -14 15 Left Thalamus 5.08

Frontal

-7 26 41 Left Medial frontal gyrus 5.73

-5 45 32 Left Medial frontal gyrus 5.07

14 30 32 Right Medial frontal gyrus 5.00

-6 35 11 Left Cingulate gyrus 4.92

-17 22 58 Left Superior frontal 4.91 

    gyrus

-37 45 3 Left Inferior frontal gyrus 4.83

Cerebellar

22 -81 -27 Right Cerebellum 5.33

38 -55 -41 Right Cerebellum 4.88

DORSAL CAUDATE: NEGATIVE CORRELATIONS

Frontal

41 -9 47 Right Precentral gyrus -5.05

-35 -15 43 Left Precentral gyrus -4.86

Occipital

12 -85 40 Right Cuneus -5.71

7 -84 31 Right Cuneus -5.41

-16 -88 38 Left Cuneus -5.27

4 -90 20 Right Cuneus -5.20

22 -54 -7 Right Lingual gyrus -4.95

-49 -80 -6 Left Inferior occipital -4.92 

    gyrus

-15 -74 3 Left Lingual gyrus -4.87

15 -72 34 Right Cuneus -4.85

5 -73 4 Right Lingual gyrus -4.80

-16 -98 19 Left Middle occipital -4.74 

    gyrus

25 -86 23 Right Middle occipital -4.71 

    gyrus

-37 -87 25 Left Middle occipital -4.69 

    gyrus

-32 -76 -9 Left Fusiform gyrus -4.66

DORSAL CAUDAL PUTAMEN: POSITIVE CORRELATIONS

Subcortical

-24 -14 7 Left Putamen 7.47

30 -11 5 Right Putamen 7.45

-12 -20 5 Left Thalamus 6.07

12 -17 1 Right Thalamus 5.67

19 -10 8 Right Thalamus 5.67

Frontal

42 8 10 Right Insula 5.95

-40 7 3 Left Insula 5.83

-52 3 11 Left Precentral gyrus 5.72

53 4 11 Right Precentral gyrus 5.60

9 13 39 Right Cingulate gyrus 5.53

-43 15 10 Left Inferior frontal gyrus 5.38

-6 11 34 Left Cingulate gyrus 5.29

-6 8 56 Left Pre-supplementary 5.07 

    motor area

Parietal

66 -35 34 Right Inferior parietal 5.09 

    lobule

-56 -28 28 Left Inferior parietal 4.91 

    lobule

DORSAL CAUDAL PUTAMEN: NEGATIVE CORRELATIONS

Frontal

5 45 -5 Right Anterior cingulate -4.37 

    cortex

-2 45 -14 Left Ventral anterior -4.24 

    cingulate cortex

46 24 36 Right Middle frontal gyrus -4.16

-13 50 0 Left Anterior cingulate -4.12 

    cortex

Parietal

-1 -71 31 Left Precuneus -5.41

5 -76 49 Right Precuneus -4.86

8 -64 27 Right Precuneus -4.67

42 -72 41 Right Inferior parietal -4.66 

    lobule

47 -50 36 Right Supramarginal gyrus -4.56

-13 -60 20 Left Posterior cingulate -4.55 

    cortex

-7 -50 9 Left Posterior cingulate -4.41 

    cortex

11 -50 8 Right Posterior cingulate -4.38 

    cortex

8 -41 39 Right Cingulate gyrus -4.15

Occipital

11 -101 -10 Right Lingual gyrus -4.25

3 -82 -2 Right Lingual gyrus -4.19

VENTRAL STRIATUM: POSITIVE CORRELATIONS

Subcortical

-20 12 -11 Left Ventral striatum 5.90

-8 12 -7 Left Ventral striatum 5.34

4 13 -4 Right Ventral striatum 4.99

-12 21 -5 Left Caudate 4.75

Frontal

10 42 -8 Right Ventral anterior 4.26 

    cingulate cortex

-33 38 42 Left Middle frontal gyrus 3.95

12 30 -9 Right Ventral anterior 3.54 

    cingulate cortex

-18 36 -14 Left Ventromedial 3.36 

    prefrontal cortex
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row 2) revealed qualitatively distinct patterns of functional con-

nectivity for the putative dorsal caudate, dorsal caudal putamen, 

and ventral striatum. (More spatially extensive regions of above 

threshold correlations in Cohort One than Cohort Two likely results 

from Cohort One’s larger sample size.) Conjunction analyses (con-

ducted by thresholding the one-sample t-test images for each group 

at z > 3.00, k = 21, p < 0.05, Monte Carlo corrected (see Forman 

et al., 1995), binarizing the thresholded images, and then searching 

for overlap) across Cohort One and Cohort Two’s random-effects 

analyses revealed largely overlapping patterns of functional con-

nectivity across cohorts for each putative basal ganglia division 

(Figure 3, bottom row). (See Figure S3 in Supplementary Material 

for random-effects analyses for the right hemisphere for Cohort 

Two and conjunction analyses across cohorts.) These data indicate 

that putative basal ganglia divisions generated for two independ-

ent cohorts yield replicable patterns of functional connectivity. 

Accordingly, this independent replication increases our confidence 

in using rs-fcMRI to identify putative basal ganglia divisions.

DISCUSSION

The present study demonstrates that a combination of rs-fcMRI 

and graph theoretic analyses (i.e., modularity optimization) can be 

used to reliably identify divisions in the basal ganglia of individual 

subjects. For each subject, multiple divisions were identified and 

these divisions were similarly located across subjects. Furthermore, 

the correlation maps generated from modularity optimization 

groupings were similar across subjects. The putative basal ganglia 

divisions identified using modularity optimization have strong face 

validity since the locations of significant cortical-basal ganglia func-

tional connectivity was consistent with the presumed connectivity 

of basal ganglia divisions.

Our approach to non-invasively parcellating the basal ganglia 

extends prior methods in ways that facilitate examination of indi-

vidual subjects. We conducted voxel-wise whole-brain correlations, 

which allowed us to examine cortical-basal ganglia functional con-

nectivity with a higher resolution than studies that apply large-

scale cortical ROIs (Lehericy et al., 2004; Leh et al., 2007; Zhang 

et al., 2008), which encompassed very large swaths of cortex (e.g., 

prefrontal cortex) up to multiple lobes (e.g., parietal and occipi-

tal cortex). Additionally, by generating divisions for each subject 

rather than applying ROIs to fixed stereotactic locations (e.g., Di 

Martino et al., 2008; Harrison et al., 2009) we can better accom-

modate individual variation in subcortical volume, either total basal 

ganglia volumes or volumes of particular basal ganglia divisions. 

Accommodation of individual differences in regional brain volume 

is particularly important when examining individuals with disor-

ders where basal ganglia volumes are thought to be reduced, such 

as Tourette’s syndrome (see Albin and Mink, 2006) and attention 

deficit hyperactivity disorder (see Valera et al., 2007). For instance, 

it is unclear whether volumetric reductions in the caudate in indi-

viduals with Tourette’s syndrome stem from a volumetric reduction 

of a particular basal ganglia division or from a more generalized 

shrinking. Following further validation, future studies could use 

these methods to identify putative basal ganglia divisions in indi-

vidual subjects prior to spatial normalization and could help deline-

ate between these alternatives because regional brain volumes and 

spatial extent characteristics would be retained.

generated discrete, contiguous groups of basal ganglia voxels in 

locations consistent with presumed basal ganglia divisions (see 

Figure S2 in Supplementary Material for representative Cohort 

Two subjects and conjunction analysis for Cohort Two). Again, we 

could identify groupings of basal ganglia voxels consistent with the 

location of the dorsal caudate, the dorsal caudal putamen, and the 

ventral striatum in each hemisphere and subject.

Next, we examined whether functional connectivity maps derived 

from modularity optimization assignments were consistent across 

cohorts. As described above, for each of the three basal ganglia divi-

sions (i.e., the putative dorsal caudate, dorsal caudal putamen, and 

ventral striatum) we generated six whole-brain correlation maps 

for each subject (three putative divisions × 2 hemispheres). Each 

subject’s z-transformed whole-brain correlation map was used in 

a second level random-effects analysis involving one-sample t-tests 

(z > 3.00, k = 21, p < 0.05, Monte Carlo corrected). The random-

effects maps for the left hemisphere for Cohort Two (Figure 3, 

X Y Z Hemisphere Anatomical Z-score 

    landmark

-19 55 -17 Left Orbitofrontal cortex 3.32

-3 69 2 Left Ventromedial 3.30 

    prefrontal cortex

-25 21 -15 Left Inferior frontal gyrus 3.29

VENTRAL STRIATUM: NEGATIVE CORRELATIONS

Frontal

20 19 49 Right Superior frontal gyrus -4.51

15 -7 36 Right Cingulate gyrus -4.24

10 38 45 Right Superior frontal -3.64 

    gyrus

34 14 28 Right Middle frontal gyrus -3.57

-19 19 33 Left Anterior cingulate -3.44 

    cortex

Parietal

34 -57 53 Right Superior parietal -4.21 

    lobule

12 -44 22 Right Posterior cingulate -3.92 

    cortex

55 -10 18 Right Postcentral gyrus -3.64

30 -68 44 Right Inferior parietal -3.61 

    lobule

Temporal

-53 -13 -18 Left Middle temporal -4.34 

    gyrus

58 -11 -21 Right Inferior temporal -3.87 

    gyrus

47 -11 -17 Right Middle temporal -3.76 

    gyrus

62 -33 -1 Right Middle temporal -3.53 

    gyrus

Occipital

-33 -87 6 Left Middle occipital -3.64 

    gyrus

Cerebellum

-32 -84 -20 Left Cerebellum -3.53
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FIGURE 4 | Z-transformed rs-fcMRI maps from three representative 

subject’s modularity optimization assignments for the left hemisphere 

(putative dorsal caudate, left column, putative dorsal caudal putamen, 

middle column, and putative ventral striatum, right column, z > 2.00) are 

similar. Black circles depict regions identified from the random-effects analysis 

(superior frontal gyrus: lateral rendering, first column; anterior cingulate cortex, 

medial rendering, first column; ventral premotor cortex: lateral rendering, 

second column; pre-supplementary motor cortex: medial rendering second 

column; orbitofrontal cortex: ventral rendering, third column). Row 4. 

Conjunction image of all subjects rs-fcMRI maps (z > 2.00).

While this method appears to provide a substantial advance in the 

ability to parcellate the basal ganglia in individual subjects, it is not 

clear whether this method would successfully parcellate very small 

subcortical structures, for instance smaller basal  ganglia nuclei such 

as the subthalamic nucleus and substantia nigra. First, it is difficult 

to distinguish these smaller basal ganglia nuclei from neighboring 

structures in BOLD scans (e.g., substantia nigra and the nearby 

ventral tegmental area, Aron et al., 2007). Second, small structures 

will necessarily yield a smaller number of voxels for analysis than 

will large structures. Modularity optimization algorithms ought to 

be more successful with larger networks (c. >100 nodes) because 

groupings in large networks are less influenced by the placement of 

individual edges. Therefore, the graph theory methods used in the 

present study may not be appropriate for the smaller networks gen-

erated from smaller structures. However, it is likely that the present 

methods would be appropriate for parcellating other larger, subcor-

tical structures (e.g., the thalamus) on a subject-wise basis.

In this manuscript we have only focused on characterizing 

three putative basal ganglia divisions. This focused look at putative 

basal ganglia divisions was predicated on the minimum number 

of groupings identified across subjects using modularity optimi-

zation. However, on average, modularity optimization identified 

6–7 groupings. Using rs-fcMRI, Di Martino et al. (2008) reported 

different patterns of cortical-basal ganglia functional connectiv-

ity for six ROIs placed in the caudate and the putamen. Thus, the 

average number of groupings identified with modularity optimiza-

tion converges with prior investigations of basal ganglia divisions 

in humans. Further work is needed to understand the sources of 
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