Mon. Not. R. Astron. Soc. 402, 2369-2387 (2010)

# Identifying birth places of young isolated neutron stars 

N. Tetzlaff, ${ }^{1 \star}$ R. Neuhäuser, ${ }^{1}$ M. M. Hohle ${ }^{1,2}$ and G. Maciejewski ${ }^{1}$<br>${ }^{1}$ Astrophysikalisches Institut und Universitäts-Sternwarte Jena, Schillergässchen 2-3, 07745 Jena, Germany<br>${ }^{2}$ Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85741 Garching, Germany

Accepted 2009 November 23. Received 2009 November 4; in original form 2009 September 15


#### Abstract

Young isolated radio-quiet neutron stars are still hot enough to be detectable at X-ray and optical wavelengths due to their thermal emission and can hence probe cooling curves. An identification of their birth sites can constrain their age. For that reason, we try to identify the parent associations for four of the so-called Magnificent Seven neutron stars for which proper motion and distance estimates are available. We are tracing back in time each neutron star and possible birth association centre to find close encounters. The associated time of the encounter expresses the kinematic age of the neutron star which can be compared to its characteristic spin-down age. Owing to observational uncertainties in the input data, we use Monte Carlo simulations and evaluate the outcome of our calculations statistically.

RX J1856.5-3754 most probably originated from the Upper Scorpius association about 0.3 Myr ago. RX J0720.4-3125 was either born in the young local association TW Hydrae about 0.4 Myr ago or in Trumpler 100.5 Myr in the past. Also RX J1605.3+3249 and RBS 1223 seem to come from a nearby young association such as the Scorpius-Centraurus complex or the extended Corona-Australis association. For RBS 1223 also a birth in Scutum OB2 is possible. We also give constraints on the observables as well as on the radial velocity of the neutron star. Given the birth association, its age and the flight time of the neutron star, we estimate the mass of the progenitor star. Some of the potential supernovae were located very nearby ( $<100 \mathrm{pc}$ ) and thus should have contributed to the ${ }^{10} \mathrm{Be}$ and ${ }^{60} \mathrm{Fe}$ material found in the Earth's crust. In addition, we reinvestigate the previously suggested neutron star/runaway pair PSR B1929+10/ $\zeta$ Ophiuchi and conclude that it is very likely that both objects were ejected during the same supernova event.


Key words: stars: kinematics - pulsars: individual: PSR B1929 + 10 - pulsars: individual: RX J1856.5-3754 - pulsars: individual: RX J0720.4-3125 - pulsars: individual: RX J1605.3 + 3249 - pulsars: individual: RBS 1223.

## 1 INTRODUCTION

Neutron stars have very large proper motions which, with known distances, indicate high space velocities (e.g. Lyne \& Lorimer 1994; Hansen \& Phinney 1997; Lorimer, Bailes \& Harrison 1997; Cordes \& Chernoff 1998; Arzoumanian, Chernoff \& Cordes 2002; Hobbs et al. 2005, thereafter Ho05). Those high velocities that are usually larger than those of the progenitor stars are the result of asymmetric supernova (SN) explosions assigning the new-born neutron star a kick velocity for that a number of mechanisms have been suggested (e.g. Burrows \& Hayes 1996; Janka \& Mueller 1996; Janka et al. 2005; Wang, Lai \& Han 2006; Kisslinger, Henley \& Johnson 2009).
*E-mail: nina@astro.uni-jena.de

Another fact is that about 46 per cent of $O$ and 10 per cent of B stars also show high space velocities (see Stone 1991 for a discussion). Two scenarios (Hoogerwerf, de Bruijne \& de Zeeuw 2001, thereafter H01) are accepted to produce those so-called 'runaway stars' (Blaauw 1961). The binary- SN scenario is related to the formation of the high-velocity neutron stars: the runaway and neutron star are the products of a SN within a binary system. The velocity of the former secondary is comparable to its original orbital velocity. The second scenario, which will not be further discussed within this paper, is the dynamical ejection due to gravitational interactions between massive stars in dense clusters. H01 proposed examples for each of the scenarios. In Section 4, we will review and further investigate the binary SN scenario for PSR B1929+10 and the runaway O9.5V star $\zeta$ Oph. Instead of restricting the unknown pulsar radial
velocity to a certain interval, we will use a velocity distribution to cover the whole spectrum of possible radial velocities. We then use more recent data for the pulsar to strengthen the hypothesis.

Beforehand, we introduce our sample of OB associations and clusters in Section 2 and the procedure utilized in Section 3.

In Section 5, we investigate the origin of four isolated radioquiet X-ray emitting neutron stars. So far, seven such sources have been confirmed. They are not only bright X-ray sources, but also detected in the optical due to a hot cooling surface. In two cases, a parallax is obtained. Brightness, parallax and temperature yield their radii. From spectra, one can in principle determine their mass and composition, which eventually may lead to constraints on the equation of state. However, only seven such sources have been identified up to now for which they were named 'The Magnificent Seven’ (M7) (Treves et al. 2001; for a recent review see Kaplan 2008; two new candidates were recently published by Pires et al. 2009; Rutledge, Fox \& Shevchuk 2008). With known luminosity, one only needs to estimate the age, in order to probe cooling curves. For young neutron stars, the characteristic spin-down age only gives an upper limit. We will therefore try to estimate their age from kinematics.

Our aim in this paper is to identify the parent associations of four members of the M7 and find constraints on their observables and radial velocity.

We give a summary of our results and draw our conclusions in Section 6.

## 2 THE SAMPLE OF ASSOCIATIONS AND CLUSTERS

Given a distance of 1 kpc and typical neutron star velocities of $100-500 \mathrm{~km} \mathrm{~s}^{-1}$ (Arzoumanian et al. 2002; Ho05) and maximum ages of 5 Myr for neutron stars to be detectable in the optical (see cooling curves in Gusakov et al. 2005 and Popov, Grigorian \& Blaschke 2006), we restricted our search for birth associations and clusters of young nearby neutron stars to within 3 kpc . We chose a sample of OB associations and young clusters (we use the term 'association' for both in the following) within 3 kpc from the Sun with available kinematic data and distance. We collected those from Dambis, Mel'nik \& Rastorguev (2001) and H01 and associations to which stars from the Galactic O-star catalogue from Maíz-Apellániz et al. (2004) are associated with. Furthermore, we added young local associations (YLA) from Fernández, Figueras \& Torra (2008) (thereafter F08) since they are possible hosts of a few SNe in the near past. We also included the Hercules-Lyrae association (Her-Lyr) and the Pleiades and massive star-forming regions (Reipurth 2008a,b). We set the lower limit of the association age to $\approx 2 \mathrm{Myr}$ to account for the minimum lifetime of a progenitor star that can produce a neutron star (progenitor mass smaller than $\approx 30 \mathrm{M}_{\odot}$; see e.g. Heger et al. 2003). ${ }^{1}$ The list of all explored associations and their properties can be found in Appendix A. Coordinates as well as heliocentric velocity components are given for a right-handed coordinate system with the $x$-axis pointing towards the galactic centre and $y$ is positive in the direction of galactic rotation.

[^0]
## 3 PROCEDURE

To identify potential parent associations of neutron stars, we calculate the trajectories for both, the neutron star and the centre of the association, into the past. We account for solar motion adopting a local standard of rest of $(\mathrm{UVW})_{\odot}=(10.005 .257 .17) \mathrm{km} \mathrm{s}^{-1}$ (Dehnen \& Binney 1998). To include the effect of a potential on the vertical motion, we use the vertical acceleration from Perrot \& Grenier (2003) (and references therein) and work with an EulerCauchy numerical method with a fixed time-step of $10^{4} \mathrm{yr}$. Utilizing this simple technique is fully sufficient for the treatment of some million years as done here and is consistent with results obtained by applying a fifth-order Runge-Kutta integration method for a more complicated potential as e.g. given in Harding et al. (2001) and references therein (cf. comparison of methods in Tetzlaff 2009).

Simultaneously to the trajectories, we derived the separation between the neutron star and the association centre for each time-step, and found the minimum of those as well as the associated time in the past. Since the input consists of observables with errors, we calculate a large set of simulations varying the starting parameters normally (proper motion and parallax; ${ }^{2}$ radial velocity see below) within their confidence levels.

For neutron stars, the radial velocity cannot easily be derived from spectra due to the large gravitational redshift and hence is unknown. To be able to investigate their 3D motion none the less, we varied the radial velocity within a probability distribution derived from the one for 3D pulsar velocities obtained by Ho05. They deducted a distribution with one Maxwellian component from transverse velocities of 233 pulsars assuming the radial component is of the same order. Arzoumanian et al. (2002) derived a distribution that includes two Maxwellian components suggesting that there might be two different populations: those which gained their speed only due to a kick during the SN and those which have an additional component from their former orbital velocity. However, as stated by Ho05, a onecomponent model better fits the observations. Infact, which radial velocity distribution is used is of minor importance since its usage will just assure that the whole spectra of possible radial velocities are covered and the probability of occurrence of excessively high values is low which is the case for both distributions. Adopting the two-component model does not affect the final results significantly (Tetzlaff 2009). As the sign of the radial velocity cannot be derived from statistics it was chosen randomly, thus covering a total range of -1500 to $+1500 \mathrm{~km} \mathrm{~s}^{-1}$.

## 4 A POTENTIAL BINARY SN IN UPPER SCORPIUS

The runaway O-star $\zeta$ Ophiuchi $(\zeta \mathrm{Oph}=\mathrm{HIP} 81377)$ is an isolated main sequence star with a space velocity of $\approx 20 \mathrm{~km} \mathrm{~s}^{-1}$. Blaauw (1952) suggested its origin in the Scorpius OB2 association due to its proper motion vector which points away from that association.
H 01 investigated the origin of $\zeta \mathrm{Oph}$ in more detail and proposed that it gained its high velocity in a binary SN in Upper Scorpius (US) about 1 Myr ago which is also supported by its large rotational velocity of $\geq 340 \mathrm{~km} \mathrm{~s}^{-1}$ (Herrero et al. 1992; Penny 1996; Howarth \& Smith 2001) and high helium abundance (Herrero et al. 1992; van Rensbergen, Vanbeveren \& de Loore 1996; Villamariz \& Herrero 2005). They also identified a neutron star which might have been the former primary: PSR B1929 + 10 (PSR J1932 + 1059).

[^1]Table 1. Properties of PSR B1929 +10 and $\zeta$ Oph ( $\mu_{\alpha}^{*}$ is the proper motion in right ascension corrected for declination). Note that the radial velocity of the pulsar is an assumption from H 01 , not a measurement.

|  | $\alpha\left({ }^{\circ}\right)$ | $\delta\left({ }^{\circ}\right)$ | $\pi(\mathrm{mas})$ | $\mu_{\alpha}^{*}\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$ | $\mu_{\delta}\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$ | $v_{\mathrm{r}}(\mathrm{km} \mathrm{s}$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| PSR B1929+10 (H01) | 293.06 | 10.99 | $4 \pm 2$ | $99 \pm 12$ | $39 \pm 8$ | $200 \pm 50$ |  |
| PSR B1929+10 (recent) | 293.06 | 10.99 | $2.76 \pm 0.14$ | $94.03 \pm 0.14$ | $43.37 \pm 0.29$ | - | 1 |
| $\zeta$ Oph | 249.29 | -10.57 | $7.12 \pm 0.71$ | $13.07 \pm 0.85$ | $25.44 \pm 0.72$ | $-9.0 \pm 5.5$ | 3,4 |

1 - H01 and references therein, 2 - Chatterjee et al. (2004), 3 - Hipparcos Catalogue, 4 - Hipparcos Input Catalogue.

Initially, we repeat the experiment of H 01 applying the same starting parameters for the pulsar (Table $1, \mu_{\alpha}^{*}$ is the proper motion in right ascension corrected for declination). Note that the pulsar radial velocity of $200 \pm 50 \mathrm{~km} \mathrm{~s}^{-1}$ is not measured, but an assumption in H01. The runaway proper motion and parallax were adopted from the Hipparcos Catalogue (Perryman et al. 1997) and its radial velocity from the Hipparcos Input Catalogue (Turon et al. 1992). The results are in very good agreement with those of H01. 29700 of 3 million Monte Carlo runs yield a minimum separation between $\zeta$ Oph and PSR B1929 +10 of less than 10 pc compared to 30822 runs as published by H01. The smallest separation we found was $0.20 \mathrm{pc}(0.35 \mathrm{pc}$ found by H 01$)$. In 4631 runs , both objects were additionally not farther from the centre of US than 10 pc . The latter number differs slightly from that of H 01 (4210 runs) which is owing to somewhat different input parameters for the association.

Similar calculations were also done by Bobylev (2008) with the same results using the epicycle approximation (Lindblad 1959; Wielen 1982) for tracing back the objects. Afterwards, he used more recent parameter values for the pulsar from Chatterjee et al. (2004), but increased the error intervals (a factor of 10 for the parallax, a factor of 30 for the proper motion components), to have them of the same order as H 01 before, and drew the conclusion that the scenario of a binary SN in US involving the two objects is very likely.

We reinvestigate the issue as well using a radial velocity distribution (Section 3) instead of a specified interval. In 3 million Monte Carlo runs the smallest separation found was 4.0 pc . This is too large to support the hypothesis that $\zeta$ Oph and PSR B1929+10 once were at the same position at the same time in the past. However, the errors of the parallax and the proper motion components of the pulsar (Table 1) are very small and thus might be underestimated due to unknown systematical effects. For that reason, we as well increase them by a factor of 10 . The smallest difference in position then was 0.2 pc which is consistent with the binary SN scenario. We select those minimum separations for which both, the pulsar and the runaway, were not more than 15 pc away from the centre of US. Of 3 million runs, 5367 fulfilled this requirement. The slope of the resulting histogram in Fig. 1(a) can be explained with a 3D Gaussian distribution of the separation (see H01 for details),

$$
\begin{align*}
& W_{3 D}(\Delta) \\
& \quad=\frac{\Delta}{2 \sqrt{\pi} \sigma \mu}\left\{\exp \left[-\frac{1}{2} \frac{(\Delta-\mu)^{2}}{2 \sigma^{2}}\right]-\exp \left[-\frac{1}{2} \frac{(\Delta+\mu)^{2}}{2 \sigma^{2}}\right]\right\} \tag{1}
\end{align*}
$$

and in the limit $\mu \rightarrow 0$
$W_{3 D, \mu \rightarrow 0}(\Delta)=\frac{\Delta^{2}}{2 \sqrt{\pi} \sigma^{3}} \exp \left[-\frac{\Delta^{2}}{4 \sigma^{2}}\right]$,
respectively, either with $\mu=0 \pm 5.6 \mathrm{pc}$ or $\mu=9.0 \pm 4.0 \mathrm{pc}$. $\Delta$ denotes the 3D separation $\mid x_{\text {pulsar }}-x_{\zeta}$ Oph $\mid$ between the pulsar and the runaway, $\mu$ and $\sigma$ are the expectation value and the standard


Figure 1. (a) Distribution of minimum separations $d_{\text {min }}$ of the 5367 runs for which both objects were not farther than 10 pc from the US centre with updated pulsar data. Drawn as well are theoretical curves for 3D Gaussian distributions (equations 1 and 2) with $\mu=9.0 \mathrm{pc}$ and $\sigma=4.0 \mathrm{pc}$ (solid) and $\mu=0$ and $\sigma=5.6 \mathrm{pc}$ (dashed), respectively. Note that these are not fitted to the data. (b) Distribution of corresponding flight times $\tau$ in the past since the SN .


Figure 2. $\tau-d_{\text {min }}$ contour plot to Fig. 1.
deviation, respectively, and $\pi=3.1459 \ldots$ The agreement to the curves is remarkable. Fig. 2 shows the correlation between minimum separations and corresponding times. It can be seen that there is a small spread in time for larger separations which is owing to the deviations from a Gaussian distribution and the actual 4D problem since the time is involved as well.

Adopting that PSR B1929 +10 and $\zeta$ Oph were ejected in the same SN about 1 Myr ago in US, we find that the pulsar would now have a radial velocity of $\approx 250 \mathrm{~km} \mathrm{~s}^{-1}$ which is close to the value of $200 \pm 50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{H} 01$ adopted previously. The distance to the Sun of this SN event 1 Myr ago was $154 \pm 7 \mathrm{pc}$ (note that this error quotes a 68 per cent confidence interval but is not a $1 \sigma$ error, though).

Given an age of 5 Myr for US (de Geus, de Zeeuw \& Lub 1989; Preibisch et al. 2002), we can estimate the mass of the progenitor star of PSR B1929 + 10 assuming that star formation happened

Table 2. Parameters of four of the M7. Note that only for RX J1856.5-3754 and RX J0720.4-3125 $\pi$ denotes trigonometric parallax measurements whereas for RX J1605.3 + 3249 and RBS 1223 distance limits are model estimates (from brightness and extinction compared to RX J1856.5-3754 and RX J0720.4-3125).

|  | $\alpha\left(^{\circ}\right)$ | $\delta\left({ }^{\circ}\right)$ | $\pi(\operatorname{mas})$ | $\mu_{\alpha}^{*}\left(\operatorname{mas~yr}^{-1}\right)$ | $\mu_{\delta}\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$ | $n_{\mathrm{H}}\left(10^{20} \mathrm{~cm}^{-2}\right)$ | $\operatorname{Ref}^{2}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RX J1856.5-3754 | 284.15 | -37.91 | $5.6 \pm 0.6$ | $326.7 \pm 0.8$ | $-59.1 \pm 0.7$ | $0.74 \pm 0.10$ | $2,3,7$ |
| RX J0720.4-3125 | 110.10 | $-31,43$ | $2.77 \pm 1.29$ | $-93.9 \pm 2.2$ | $52.8 \pm 2.3$ | $1.04 \pm 0.02$ |  |
| RX J1605.3+3249 | 231.33 | 32.82 | $>2.4$ | $-43.7 \pm 1.7$ | $148.7 \pm 2.6$ | $1.1 \pm 0.4$ |  |
| RBS 1223 | 197.20 | 21.45 | $1.4-13$ | $-207 \pm 20$ | $84 \pm 20$ | $1.8 \pm 0.2$ | $4,6,9$ |

References: 1 - Motch et al. (1999), 2 - Kaplan, van Kerkwijk \& Anderson (2002), 3 - Kaplan (2003), 4 - Schwope et al. (2005), 5 - Zane et al. (2006), 6 - Schwope et al. (2007) (their model 3), V. Hambaryan (priv. comm.), 7 - Posselt et al. (2007), 8 - Kaplan et al. (2007), 9 - Motch et al. (2007), 10 - Hohle et al. (2009).
contemporaneously, i.e that the progenitor exploded (5-1) Myr after birth. Evolutionary models from Tinsley (1980) (thereafter T80), Maeder \& Meynet (1989) (thereafter MM89) and Kodama (1997) (thereafter K97) (see also Romano et al. 2005 for a review) yield a progenitor mass of 44,38 and $32 \mathrm{M}_{\odot}$, respectively, for a star with a lifetime of 4 Myr assuming solar metallicity, corresponding to a spectral type of O6 to O7 on the main sequence (Schmidt-Kaler 1982). According to Sartori, Lépine \& Dias (2003) US is somewhat older, namely $8-10 \mathrm{Myr}$. This association age range would imply a smaller progenitor mass of $18(\mathrm{~B} 0 \mathrm{~V})$ to $37 \mathrm{M}_{\odot}(\mathrm{O} 6 \mathrm{~V})$ (depending on the evolutionary model) which is in better agreement to the upper star mass limit of $\approx 30 \mathrm{M}_{\odot}$ (Heger et al. 2003) for formation of a neutron star. However, owing to mass transfer during binary evolution also more massive stars may produce neutron stars (Belczynski \& Taam 2008).
The 09.5 V star $\zeta$ Oph has a mass of $20 \mathrm{M}_{\odot}$ [derived from isochrones by Schaller et al. (1992), Bertelli et al. (1994) and Claret (2004) for solar metallicity; table in Schmidt-Kaler (1982)].

If $\zeta$ Oph was ejected in a SN, the progenitor star should have an earlier spectral type, consistent with our results. With the additional constraint that the SN produced a neutron star, i.e. the progenitor was later than $\approx 06$ to 07 , the progenitor star was $\mathrm{O} 6 / 07$ to 09 .

It may not be justified to enlarge the errors of the input parameters of the pulsar. With the published small error bars, we cannot confirm that $\zeta$ Oph was at the same position in space at the same time as PSR B1929+10, but may have been ejected by a different SN event in US.

## 5 IDENTIFYING PARENT ASSOCIATIONS AND CLUSTERS FOR YOUNG ISOLATED NEUTRON STARS

For four of the M7 distance estimates and proper motion values are available and thus their birth sites can in principle be found if assumptions on the radial velocity are made. Table 2 gives their properties.
We trace back the objects for 5 Myr . As a first step, we perform 100000 runs for each neutron star and all 140 associations in the sample. Those associations for which the smallest separation found was less than three times the association radius or less than 100 pc were chosen for a more detailed investigation with 2 million runs. We give the results of the latter in the following sections.

### 5.1 RX J1856.5-3754

Investigating probable birth places of RX J1856.5-3754, nine of the 140 associations yield a smallest separation between the neutron star and the association centre found after another 2 million runs which

Table 3. Associations for which the smallest separation between RX J1856.5-3754 and the association centre found (min. $d_{\text {min }}$ ) after 2 million runs was within the radius of the association. Column 2 gives the smallest separation, Column 3 the radius of the association (see Appendix A for references).

| Association | $\min . d_{\min }(\mathrm{pc})$ | $R_{\text {Assoc }}(\mathrm{pc})$ |
| :--- | :---: | :---: |
| US | 0.4 | 15 |
| Tuc-Hor | 46.1 | 50 |
| $\beta$ Pic-Cap | 26.3 | 57 |
| Ext. R CrA | 4.4 | 31 |
| AB Dor | 32.0 | 45 |
| Her-Lyr | 10.4 | 13 |
| Sgr OB5 | 64.1 | 111 |
| Sco OB4 | 19.0 | 33 |
| Pismis 24 | 1.6 | 2 |
| Tr 27 | 1.8 | 6 |

was consistent with the respective association radius ${ }^{3}$ (see Table 3). However, only five of the other associations show a peak in the $\tau-$ $d_{\text {min }}$ contour plot which also lies within the association boundaries or at least intersects. Table 4 lists the respective associations along with the results of the investigation including 2 million runs with varying input parameters. Columns 2 and 3 of that table specify a region in the $\tau-d_{\text {min }}$ contour diagram with higher probability than its surroundings (see Appendix B). Columns 4-8 give values for the present-day properties which RX J1856.5-3754 would have if it originated from the particular association. The space velocity $v_{\text {space }}$ which corresponds to the ejection speed of the neutron star in the SN is given in Column 7. Assuming that the ejection speed is of the same amount as the kick velocity, this value gives an upper limit of the latter. ${ }^{4}$
The last three columns indicate the position of the potential SN at the corresponding time with the distance to the Sun and equatorial coordinates. For how those values are derived, please see Appendix B.

From Table 4, we conclude that the most likely parent association for RX J1856.5-3754 is either US, the extended CoronaAustralis association (Ext. R CrA) or Scorpius OB4 (Sco OB4).

[^2]Table 4. Potential parent associations of RX J1856.5-3754. Columns 2 and 3 mark the boundaries of a 68 per cent area in the $\tau-d_{\text {min }}$ contour plot for which the current neutron star parameters (Columns $4-7$, radial velocity $v_{\mathrm{r}}$, proper motion $\mu_{\alpha}^{*}$ and $\mu_{\delta}$ and parallax $\pi$ ) were obtained, and Columns $8-10$ indicate the distance to the Sun $\mathrm{d}_{\odot}$ and equatorial coordinates (J2000.0) of the potential SN . Column 7 gives the space velocity (ejection speed) $v_{\text {space }}$ derived from proper motion and radial velocity. For the deduction of the values given in Columns 4-11, please see Appendix B.

| Association | $\begin{aligned} & d_{\min } \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{gathered} \tau \\ (\mathrm{Myr}) \end{gathered}$ | $\begin{gathered} v_{\mathrm{r}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} \mu_{\alpha^{*}} \\ \left(\operatorname{mas} \mathrm{yr}^{-1}\right) \end{gathered}$ | $\begin{gathered} \mu_{\delta} \\ \left(\operatorname{mas~yr^{-1})}\right. \end{gathered}$ | $\begin{gathered} v_{\text {space }} \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} \pi \\ (\mathrm{mas}) \end{gathered}$ | $\mathrm{d}_{\odot}$ <br> (pc) | $\begin{gathered} \alpha \\ \left({ }^{\circ}\right) \end{gathered}$ | $\begin{gathered} \delta \\ \left({ }^{\circ}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| US | 5... 3 | 0.28...0.34 | $1933_{-32}^{+45}$ | $326.7 \pm 0.8$ | $-59.1 \pm 0.7$ | $349_{-32}^{+40}$ | $5.41_{-0.28}^{+0.33}$ | 140... 163 | $243.21_{-0.52}^{+0.56}$ | $-23.66_{-0.29}^{+0.31}$ |
| $\beta$ Pic-Cap | 35. . . 53 | 0.10...0.15 | $1190_{-172}^{+167}$ | $326.7 \pm 0.8$ | $-59.1 \pm 0.7$ | $1222_{-173}^{+165}$ | $5.711_{-0.24}^{+0.49}$ | $40_{-5}^{+5}$ | 221... 233 | -18...-8 |
| Ext. R CrA | 26. . . 54 | 0.10...0.15 | $406_{-88}^{+121}$ | $326.7 \pm 0.8$ | $-59.1 \pm 0.7$ | $492{ }_{-81}^{+113}$ | $5.688_{-0.37}^{+0.35}$ | $127{ }_{-6}^{+6}$ | $256.76{ }_{-2.02}^{+2.06}$ | $-33.72_{-0.61}^{+0.63}$ |
| AB Dor | 44. . . 60 | 0.12...0.16 | $1146{ }_{-152}^{+138}$ | $326.7 \pm 0.8$ | $-59.1 \pm 0.7$ | $1177_{-151}^{+137}$ | $5.888_{-0.27}^{+0.30}$ | 32.. . 46 | $210.19_{-4.13}^{+6.41}$ | $0.90_{-5.72}^{+2.80}$ |
| Sco OB4 | 25.. . 33 | 1.26...1.51 | $-604_{-20}^{+31}$ | $326.7 \pm 0.8$ | $-59.1 \pm 0.7$ | $664_{-35}^{+25}$ | $5.72_{-0.30}^{+0.32}$ | $1092_{-2}^{+2}$ | $259.84_{-0.69}^{+0.69}$ | $-31.66_{-0.34}^{+0.85}$ |



Figure 3. Distribution of minimum separations $d_{\text {min }}$ between $R X$ J1856.5-3754 and the centre of US within the defined time range $\tau$ (see Table 4, Column 3). Shown as well is a theoretical curve for a 3D Gaussian distribution (equation 1) with $\mu=5.5 \mathrm{pc}$ and $\sigma=1.2 \mathrm{pc}$. Note that the curve is not a fit to the data but will just give an explanation of the slope of the histogram. The disagreement on the right-hand side of the diagram is due to the actual 4D problem since the time is involved. Furthermore, natural discrepancies to a Gaussian distribution occur since parallaxes are taken to obtain positions and a Maxwellian distribution is utilized for the velocities. Unlike in the previous section, we cannot restrict to a certain number of runs owing to a third component (in the case of PSR B1929/弓 Oph the distance to US) which gives constraints on the time.

For the two remaining - the $\beta$ Pictoris group ( $\beta$ Pic-Cap) and AB Doradus (AB Dor) - the radial needed velocities would be excessively high ( $>1000 \mathrm{~km} \mathrm{~s}^{-1}$, space velocities $v_{\text {space }}>1000 \mathrm{~km} \mathrm{~s}^{-1}$ ), thus making them unlikely (see Ho05) to host the birth place of RX J1856.5-3754. The probability of those two associations of being the birth associations is more than 4000 times smaller than for the other three (for deviation of the probability, please see Appendix B).

Since the smallest separation found for Sco OB4 (19 pc) is relatively high compared to those of US ( $<1 \mathrm{pc}$ ) and Ext. R CrA $(<5 \mathrm{pc})$, and the modulus of the radial velocity needed of $\approx 600 \mathrm{~km} \mathrm{~s}^{-1}$ (Column 4 of Table 4) is rather high (space velocity $\approx 665 \mathrm{~km} \mathrm{~s}^{-1}$ ), Sco OB4 may be less likely the birth place of RX J1856.5-3754. For Ext. R CrA, the potential place of the SN lies between 26 and 44 pc away from the association centre. The radius of Ext. R CrA is 31 pc , thus the SN should have occurred near the edge of the association. In comparison to that, a SN in US which produced RX J1856.5-3754 would have taken place at $5.5 \pm 1.2 \mathrm{pc}$ from the centre of US (Fig. 3) which has a radius of 15 pc . As SNe are supposed to occur in denser regions of an association, the latter scenario thus seems most likely. Furthermore, the probability of US


Figure 4. Past trajectories for RX J1856.5-3754 and US projected on a Galactic coordinate system (for a particular set of input parameters consistent with Table 4). Present positions are marked with a star for the neutron star and a diamond for the association. The large circle reflects an association radius of 15 pc .
being the parent association of RX J1856.5-3754 is 10 times larger than that for Ext. R CrA and eight times larger than for Sco OB4.

The origin of RX J1856.5-3754 has also been previously suggested by Walter \& Lattimer (2002) to lie within the US association $\approx 0.5 \mathrm{Myr}$ ago as the projected trajectory of RX J1856.5-3754 crosses the projection of US. Here, we find a kinematic age of $\approx 0.3 \mathrm{Myr}$.

In this case (Fig. 4), the neutron star would now have a radial velocity of $\approx 190 \mathrm{~km} \mathrm{~s}^{-1}$. The space velocity of $\approx 340 \mathrm{~km} \mathrm{~s}^{-1}$ in this case is close to the peak of the velocity distribution for pulsars from Ho05.

Walter et al. (2000) suggested that $\zeta$ Oph was the former secondary of RX J1856.5-3754 that exploded a few Myr ago in US. Therefore, we re-investigate the separation between RX J1856.5-3754 and the runaway star as well as their separation to the centre of US. Out of 3 million runs the smallest separation found between the neutron star and $\zeta$ Oph was 22 pc which is far too large to support this former binary hypothesis.

Given the age of US of 5 Myr (de Geus et al. 1989), we estimate the mass of the progenitor star (lifetime 4.7 Myr ) to be, depending on the model, $45 \mathrm{M}_{\odot}$ (T80), $41 \mathrm{M}_{\odot}$ (MM89) and $35 \mathrm{M}_{\odot}$ (K97) (spectral type $\approx 06.5$, Schmidt-Kaler 1982). Using the more recent age determination for the Sco-Cen associations by Sartori et al.

Table 5. Associations for which the smallest separation between RX J0720.4-3125 and the association centre found (min. $d_{\text {min }}$ ) after 2 million runs was within the radius of the association, as Table 3.

| Association | $\min . d_{\min }(\mathrm{pc})$ | $R_{\text {Assoc }}(\mathrm{pc})$ |
| :--- | :---: | :---: |
| US | 11.8 | 15 |
| UCL | 27.5 | 33 |
| LCC | 18.2 | 23 |
| TWA | 0.1 | 33 |
| Tuc-Hor | 37.6 | 50 |
| $\beta$ Pic-Cap | 18.2 | 57 |
| HD 141569 | 4.7 | 16 |
| Pup OB1 | 6.0 | 65 |
| Pup OB3 | 0.5 | 15 |
| NGC 2546 | 6.6 | 10 |
| Tr 10 | 17.3 | 23 |
| Cha T | 0.8 | 21 |

(2003) of $8-10 \mathrm{Myr}$ for US, we estimate the mass of the progenitor star of RX J1856.5-3754 to be between 17 and $35 \mathrm{M}_{\odot}$ (B0 to O7 on the main sequence). Currently, the earliest spectral type in US is B0. Hence, our assumption of contemporary star formation and our result on the progenitor spectral type are consistent with the progenitor star of RX J1856.5-3754 being earlier than the earliest present member star.

Since Walter \& Lattimer (2002) published a significant different parallax for RX J1856.5-3754 of $\pi=8.5 \pm 0.9$ mas, we repeat our simulations adopting this value. The overall picture of potential parent associations remains (cf. Table 3). ${ }^{5}$ Still, US is the most probable association to have hosted the SN which formed RX J1856.5-3754. While the position of this SN using Walter's parallax does not significantly change, the neutron star's current parallax would be $\pi=7.44_{-0.48}^{+1.27}$ mas and the radial velocity needed $v_{\mathrm{r}}=$ $-25_{-24}^{+58} \mathrm{~km} \mathrm{~s}^{-1}$. Furthermore, the kinematic age would be slightly larger, $\tau \approx 0.5 \mathrm{Myr}$ (confirming the result of Walter \& Lattimer 2002), implying a progenitor mass of $37-45 \mathrm{M}_{\odot}(\approx 06.5$ on the main sequence) adopting an age of US of 5 Myr or $17-29 \mathrm{M}_{\odot}(\mathrm{B} 0$ to O 7 on the main sequence) for an association age of 10 Myr (T80; MM89; K97).

We again investigated the RX J1856.5-3754/ $\zeta$ Oph binary scenario using the larger parallax as an input. Out of 2 million runs, we found a smallest separation of 20 pc ruling out this hypothesis.

### 5.2 RX J0720.4-3125

For RX J0720.4-3125, 12 associations were identified for which the smallest separation between the neutron star and the association centre found in the past after 2 million runs lied within the respective association boundaries (see Table 5). Five of those show a peak in the $\tau-d_{\text {min }}$ contour plot at values of $d_{\text {min }}$ that at least intersect the association. For the Chamaeleon-T association (Cha T) only a very small fraction of runs yield small distances, thus we exclude it as a probable parent association for RX J0720.4-3125. Analogues to Table 4 for RX J1856.5-3754, they are given in Table 6 along with the separation and corresponding time ranges in the past defined by the peak in the $\tau-d_{\min }$ contour diagram. Also given are the neutron star parameters needed as well as the position of the potential SN.

[^3]It has been previously suggested that RX J0720.4-3125 originated from the Trumpler $10(\operatorname{Tr} 10)$ association by Motch, Zavlin \& Haberl (2003) who considered the general direction of the neutron star's motion and Kaplan, van Kerkwijk \& Anderson (2007) who investigated the probability of close approaches of the neutron star to any of the OB associations given in de Zeeuw et al. (1999) giving the proper motion randomly directions and sign as well as varying the radial velocity in a certain range and adopting specified distances. They concluded that it is very likely that $\operatorname{Tr} 10$ is the birth place. Since early B-type stars are present in $\operatorname{Tr} 10$, it is plausible that the association already experienced a SN. Varying the parallax in the range $\pi \pm \sigma_{\pi}$ and the radial velocity in the range $v_{\mathrm{r}} \pm$ $0.935 v_{\mathrm{t}}$ ( 0.935 corresponds to $1 \sigma$ in $v_{\mathrm{r}}$ for random orientation, $v_{\mathrm{t}}$ is the transverse velocity), Kaplan et al. (2007) found a separation between the neutron star and the centre of $\operatorname{Tr} 10$ of 17 pc 0.7 Myr ago for a radial velocity of -20 to $+50 \mathrm{~km} \mathrm{~s}^{-1}$. Infact, we find the smallest separation between RX J0720.4-3125 and the centre of Tr 10 to be $17 \mathrm{pc} \approx 0.6 \mathrm{Myr}$ in the past. We find radial velocities in the range of -50 to $500 \mathrm{~km} \mathrm{~s}^{-1}$ for which RX J0720.4-3125 would have come as close as 30 pc to the centre of $\operatorname{Tr} 10$. In the $\tau-d_{\text {min }}$ contour plot a maximum lies at $d_{\text {min }}$ between 23 and 40 pc and corresponding flight times $\tau$ of 0.44 and 0.65 Myr . The slope of the histogram of minimum separations $d_{\min }$ within this time range [Fig. 5(c)] is in good agreement with a 3D Gaussian implying $d_{\text {min }}=33.0 \pm 2.8 \mathrm{pc}$. Given a radius of Tr 10 of 23 pc , this means that the potential SN would have occurred outside the association or, if we relax the boundary condition, at least at its outer edge making the scenario less likely [the probability is two times smaller than for TW Hydrae (TWA)]. If we nevertheless adopt $\operatorname{Tr} 10$ as the birth place of RX J0720.4-3125 (Fig. 6) and consider the association age ( $15-35 \mathrm{Myr}$ ), we estimate a progenitor mass of $\approx 7-13 \mathrm{M}_{\odot}$ (models from T80, MM89 and K97), corresponding to a spectral type between B4 and B1 on the main sequence (Schmidt-Kaler 1982). Motch et al. (2003) and Kaplan et al. (2007) also suggest Vela OB2 (Vel OB2) as a possible birth place of RX J0720.4-3125 for which we find a minimum separation of 81.6 pc (cf. 70 pc stated by Kaplan et al. 2007) which is outside the association with a radius of 35 pc .

We exclude Pup OB3 as birth association owing to a very small parallax needed to reach the association implying a current distance to the Sun of $>1 \mathrm{kpc}$. For that reason, the probability of Pup OB3 being the birth site of RX J0720.4-3125 is more than five times smaller than for TWA (and more than two times for most of the other associations listed in Table 6).

The four other associations for which we find a maximum in the $\tau-d_{\text {min }}$ contour plot which is located well within the association boundaries are YLA - TWA, Tucana/Horologium (Tuc-Hor), the $\beta$ Pictoris moving group ( $\beta$ Pic-Cap) and HD 141569. For two of them, TWA and the HD 141569 group, the smallest separation between RX J0720.4-3125 and the centre of the particular association is smaller than 5 pc . For that reason, it seems plausible that one of those two may be the birth place of RX J0720.4-3125. However, since the radii of Tuc-Hor ( 50 pc ) and $\beta$ Pic-Cap ( 56 pc ) are rather large, they could also have hosted the SN. Compared to TWA the probabilities that one of those two associations hosted the SN which formed RX J0720.4-3125 is 2-3 times smaller.

Figs 5(a) and (b) show the distributions of minimum separations $d_{\text {min }}$ to the centres of TWA and HD 141569. From the theoretical curves, we can predict that a potential SN which formed RX J0720.4-3125 in HD 141569 would have been situated $15 \pm 2 \mathrm{pc}$ from the centre, i.e. at the edge of the association with a radius of about 15 pc . Moreover, since HD 141569 only consists of five members (F08), it is rather unlikely to have hosted a SN far from

Table 6. Potential parent associations of RX J0720.4-3125, columns as in Table 4.

| Association | $d_{\min }$ <br> $(\mathrm{pc})$ | $\tau$ <br> $(\mathrm{Myr})$ | $v_{\mathrm{r}}$ <br> $\left(\mathrm{km} \mathrm{s}^{-1}\right)$ | $\mu_{\alpha^{*}}$ <br> $\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$ | $\mu_{\delta}$ <br> $\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$ | $v_{\text {space }}$ <br> $\left(\mathrm{km} \mathrm{s}^{-1}\right)$ | $\pi$ <br> $(\mathrm{mas})$ | $\mathrm{d}_{\odot}$ <br> $(\mathrm{pc})$ | $\alpha$ <br> $\left({ }^{\circ}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TWA | $0 \ldots . \ldots 2$ | $0.34 \ldots 0.46$ | $502_{-88}^{+111}$ | $-93.9 \pm 2.2$ | $52.8 \pm 2.3$ | $518_{-90}^{+112}$ | $4.06_{-0.49}^{+0.47}$ | $48 \ldots .6^{\left({ }^{\circ}\right)}$ |  |



Figure 5. (a) Distribution of minimum separations $d_{\min }$ between RX J0720.4-3125 and the centres of TWA (a), HD 141569 (b) and $\operatorname{Tr} 10$ (c), respectively, within the defined time range $\tau$ (see Table 6, Column 3). Shown as well are theoretical curves for 3D Gaussian distributions (equation 1) with $\mu=0 \mathrm{pc}$ and $\sigma=2 \mathrm{pc}$ for TWA, $\mu=15 \mathrm{pc}$ and $\sigma=2 \mathrm{pc}$ for HD 141569 and $\mu=33 \mathrm{pc}$ and $\sigma=2.8 \mathrm{pc}$ for $\operatorname{Tr} 10$. Note that the curves are not fitted to the data (see also Fig. 3).
its core. The probability of such a scenario is seven times smaller than for TWA.

In the case of TWA, we can predict the SN very close to the association centre at a separation of $0 \pm 2 \mathrm{pc}$. Then, RX J0720.4-3125 would have been formed $\approx 0.4 \mathrm{Myr}$ ago and its current radial velocity would be $\approx 500 \mathrm{~km} \mathrm{~s}^{-1}$ (space velocity $\approx 520 \mathrm{~km} \mathrm{~s}^{-1}$ ). The current distance to the Sun which the neutron star would have in this case is $\approx 250 \mathrm{pc}$ which is in very good agreement with 235 265 pc as derived by Posselt et al. (2007) (thereafter P07) from the spectrum and $n_{\mathrm{H}}$ (note that they obtained a slightly higher value of $1.2 \times 10^{20} \mathrm{~cm}^{-2}$ compared to the most recent value from Hohle et al. 2009; Table 2 ) as well as with the parallax of $2.77 \pm 1.29$ mas (Kaplan et al. 2007).

The potential SN would have occurred between 48 and 67 pc from the Sun. For such a small distance, we expect to find SN-produced radionuclides in the terrestrial crust (Ellis, Fields \& Schramm 1996) such as ${ }^{10} \mathrm{Be}$ and ${ }^{60} \mathrm{Fe}$, with half-lives of 1.5 Myr (Acton et al. 1993) and 2.6 Myr (Rugel et al. 2009), respectively. A small but insignificant signal of ${ }^{60} \mathrm{Fe}$ was found at a time below 1 Myr (Knie et al. 2004; Fitoussi et al. 2008). For ${ }^{10} \mathrm{Be}$ anomalous abundances in Antarctic ice cores corresponding to times of $\approx 0.35$ and $\approx 0.6 \mathrm{Myr}$


Figure 6. Past trajectories for RX J0720.4-3125 and Tr 10 and TWA, respectively, projected on a Galactic coordinate system (for particular sets of input parameters consistent with Table 6). Present positions are marked with a star for the neutron star and a diamond for Tr 10 and an open circle for TWA. Large circles reflect association extensions (radii of 23 pc for Tr 10 and 33 pc for TWA).
in the past were identified (Raisbeck et al. 1987). The first signal has also been reported for deep-sea sediments in the Gulf of California (McHargue, Damon \& Donahue 1995) and in the Mediterranean (Cini Castagnoli et al. 1995). More recently, Cole et al. (2006) analysed ice cores from the Qinghai-Tibetan plateau in China but could not confirm previous findings. However, it seems possible that a recent SN in TWA which produced RX J0720.4-3125 (Fig. 6) contributed to one of the ${ }^{10} \mathrm{Be}$ signals.

Moreover, F08 state that it is likely that one or more of the YLA hosted a SN in the near past. Despite the small number of TWA members, we can expect one $10 \mathrm{M}_{\odot}$ star to have been born in TWA due to its present mass function ${ }^{6}$ (Fig. 7). Given the association age of $3-20 \mathrm{Myr}$ (e.g. Barrado Y Navascués 2006), we estimate a progenitor mass of $10(\mathrm{~B} 2 \mathrm{~V})$ up to $100 \mathrm{M}_{\odot}(\mathrm{O} 4 \mathrm{~V})\left(10\right.$ to $>50 \mathrm{M}_{\odot}$ for T80, 11-100 $\mathrm{M}_{\odot}$ for MM89 and $10-100 \mathrm{M}_{\odot}$ for K97; spectral types from Schmidt-Kaler 1982).

If RX J0720.4-3125 was born in TWA, the SN would have contributed only a small amount to ${ }^{10} \mathrm{Be}$ and ${ }^{60} \mathrm{Fe}$ found in the Earth's crust due to the relatively low-mass progenitor $\left(\approx 10 \mathrm{M}_{\odot}\right)$. This would be consistent with the findings. Furthermore, we propose a larger age ( $\approx 20 \mathrm{Myr}$ ) for TWA.

[^4]

Figure 7. Present TWA mass function (black circles, see footnote 6) in comparison with the initial mass function $\xi$ (IMF, solid line) as given by Kroupa \& Weidner (2005), their equation (2). Dashed and dotted lines represent the 1 and $1.5 \sigma$ IMF boundaries. Within $1.5 \sigma$, we expect up to one star with $10 \mathrm{M}_{\odot}$; the probability for higher mass stars is low.

Table 7. Associations for which the smallest separation between RX J1605.3 +3249 and the association centre found (min. $d_{\text {min }}$ ) after 2 million runs was within the radius of the association, as Table 3.

| Association | $\min . d_{\min }(\mathrm{pc})$ | $R_{\text {Assoc }}(\mathrm{pc})$ |
| :--- | :---: | :---: |
| US | 4.6 | 15 |
| UCL | 13.0 | 33 |
| Tuc-Hor | 5.2 | 50 |
| $\beta$ Pic-Cap | 6.3 | 57 |
| $\epsilon$ Cha | 21.4 | 28 |
| HD 141569 | 9.1 | 16 |
| Ext. R CrA | 25.3 | 31 |
| AB Dor | 12.7 | 43 |
| NGC 6322 | 2.2 | 11 |
| Bochum 13 | 2.1 | 2 |
| Sco OB4 | 0.9 | 33 |

### 5.3 RX J1605.3+3249

Since there is currently only an upper limit of the distance ( $<410 \mathrm{pc}$, Motch et al. 2007) available for RX J1605.3 + 3249, thus a lower limit for the parallax ( $\pi>2.4$ mas, see Table 2 ) we had to adopt a value for our investigations. The hydrogen column density of $n_{\mathrm{H}}=1.1 \pm 0.4 \times 10^{20} \mathrm{~cm}^{-2}$ (Motch et al. 1999) predicts a relatively small distance of RX J1605.3 + 3249 to the Sun. For that reason, we chose a parallax value of $\pi=5 \pm 3$ mas corresponding to a distance of $200_{-75}^{+300} \mathrm{pc}$. Infact, this is a source of large uncertainty. After the 2 million run investigation, we identify 11 associations for which the smallest separation $d_{\text {min }}$ between the association centre and RX J1605.3 + 3249 was consistent with the association radius (Table 7). Five of them show a maximum in the $\tau-d_{\text {min }}$ contour plot also being consistent with the respective association boundaries (Table 8, top).
Due to the small parallax needed for RX J1605.3 + 3249 to reach the Scorpius OB4 (Sco OB4) association ( $\pi=1.1$ mas, Column 7 of Table 8), we may exclude this association since this is even smaller than the lower limit of $\pi>2.4$ mas (Table 2).
The remaining four associations once again belong to the YLA (F08). We can explain the slopes of the histograms of minimum separations $d_{\text {min }}$ with 3D Gaussians (equation 1) that predict the place of the potential SN within the boundaries of the associations (see Fig. 8). For the YLA, the simulations suggest a very small cur-
rent distance of the neutron star to the Sun between 100 and 250 pc . From $n_{\mathrm{H}} \mathrm{P} 07$ derived a distance between 325 and 390 pc [they obtained $n_{\mathrm{H}}=2.0 \times 10^{20} \mathrm{~cm}^{-2}$ without giving errors; however, for an $n_{\mathrm{H}}$ of $\approx 1 \times 10^{20} \mathrm{~cm}^{-2}$ (Table 2), the distance should at least be $\approx 230 \mathrm{pc}$, cf. P07 their table 2]. For that reason, we find Tuc-Hor, $\beta$ Pic-Cap and AB Dor to be less likely parent associations of RX $\mathrm{J} 1605.3+3249$ since the neutron star would then need to have a current distance to the Sun smaller than $160 \mathrm{pc} .^{7}$
In Table 8 (bottom), we also give the results for two associations of the Scorpius-Centaurus (Sco-Cen) complex - US and Upper Centaurus Lupus (UCL) - for which slightly larger distances are required. Constraining the age to 1 Myr as a maximum and using current distances of $100-500 \mathrm{pc}$ as well as radial velocities in the range of $\pm 700 \mathrm{~km} \mathrm{~s}^{-1}$, Motch et al. (2005) proposed the origin of RX J1605.3 + 3249 in US. We consider the Sco-Cen complex also to be a likely birth site of RX J1605.3+3249. The respective $d_{\text {min }}$ histograms are shown in Figs 8(e) and (f).

Hence, we conclude that RX J1605.3 + 3249 either originated from the extended Corona-Australis association $\approx 0.5 \mathrm{Myr}$ ago with a current distance of $\approx 230 \mathrm{pc}$ and radial velocity of $\approx 320 \mathrm{~km} \mathrm{~s}^{-1}$ (space velocity $\approx 360 \mathrm{~km} \mathrm{~s}^{-1}$ ) or was born in the Sco-Cen complex $28.5 \pm 2.0 \mathrm{pc}$ from the centre of US about 0.5 Myr in the past (Fig. 9). The first scenario is possible due to the existence of Btype stars (highest content within the YLA, F08), thus late O- or early B-type stars may have been born there. For the latter scenario, the current distance to the Sun would be $\approx 300 \mathrm{pc}$ and the neutron star's radial velocity $\approx 340 \mathrm{~km} \mathrm{~s}^{-1}$ (space velocity $\approx 400 \mathrm{~km} \mathrm{~s}^{-1}$ ). Both the cases would be in good agreement with a space velocity of $\approx 400 \mathrm{~km} \mathrm{~s}^{-1}$, which reflects the mean velocity of the velocity distribution for pulsars from Ho05.

Accepting one of the two birth sites and taking the ages of the associations of $5-10 \mathrm{Myr}$ (US) and $10-15 \mathrm{Myr}$ (Ext. R CrA), we estimate the mass of the progenitor star to be 17 (B0V) to $45 \mathrm{M}_{\odot}$ (O5.5V) (29-45 M $\odot$ for T80, 18-42 $\mathrm{M}_{\odot}$ for MM89, $17-36 \mathrm{M}_{\odot}$ for K97) for a birth in the Sco-Cen complex or 12 (B1V) to $30 \mathrm{M}_{\odot}$ (O7V) (13-30 $\mathrm{M}_{\odot}$ for T80, 13-18 $\mathrm{M}_{\odot}$ for MM89, $12-17 \mathrm{M}_{\odot}$ for K97) for a birth in Ext. R CrA (spectral types from Schmidt-Kaler 1982).

Such a nearby SN (see Table 8, Column 8) could also have contributed to the ${ }^{10} \mathrm{Be}$ and ${ }^{60} \mathrm{Fe}$ material found in the Earth's crust (e.g. Raisbeck et al. 1987; Knie et al. 2004).

### 5.4 RBS 1223 (RX J1308.8+2127)

For RBS 1223 both distance limits are available ( $76-700 \mathrm{pc}$, Schwope et al. 2005; Motch et al. 2007, hence $\pi=1.4-13$ mas). Since the span between those limits is rather large, we adopted a parallax of $\pi=7 \pm 5$ mas which is, as for RX J1605.3+3249, a source of large uncertainty. After performing 2 million Monte Carlo runs, we found 22 associations for which the smallest separation between RBS 1223 and the association centre found was within the association radius (Table 9). Five of these 23 show well-defined areas of higher probability in their $\tau-d_{\min }$ contour plots (Table 10), whereas for more distant ( $>1 \mathrm{kpc}$ ) associations as well as Serpens OB1 (Ser OB1) and M6 (below Her-Lyr in Table 9) only very few runs yield small separations $d_{\min }$ between the neutron star and the association centre. The latter behaviour does not change even if we constrain input parallaxes to a range of $3 \pm 2$ mas. Furthermore, an

[^5]Table 8. Potential parent associations of RX J1605.3+3349, columns as in Table 4.

| Association | $\begin{aligned} & d_{\min } \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{gathered} \tau \\ (\mathrm{Myr}) \end{gathered}$ | $\begin{array}{r} v_{\mathrm{r}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{array}$ | $\begin{gathered} \mu_{\alpha^{*}} \\ \left({\left.\operatorname{mas~} \mathrm{yr}^{-1}\right)}^{2}\right. \end{gathered}$ | $\begin{gathered} \mu_{\delta} \\ \left(\operatorname{mas~yr}^{-1}\right) \end{gathered}$ | $\begin{gathered} v_{\text {space }} \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} \pi \\ (\mathrm{mas}) \end{gathered}$ | $\begin{aligned} & \mathrm{d}_{\odot} \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{gathered} \alpha \\ \left({ }^{\circ}\right) \end{gathered}$ | $\begin{gathered} \delta \\ \left({ }^{\circ}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tuc-Hor | 7... 15 | 0.24...0.39 | $452_{-76}^{+115}$ | $-43.7 \pm 1.7$ | $148.7 \pm 2.6$ | $462_{-78}^{+118}$ | $7.54_{-1.33}^{+1.53}$ | $39_{-4}^{+5}$ | $32.48{ }_{-34.55}^{+10.60}$ | $-75.69_{-1.55}^{+4.70}$ |
| $\beta$ Pic-Cap | 8. . . 10 | 0.16. . . 0.24 | $537{ }_{-93}^{+103}$ | $-43.7 \pm 1.7$ | $148.6 \pm 2.6$ | $543-94$ | $8.866_{-1.09}^{+1.60}$ | $18_{-7}^{+2}$ | $292.49_{-22.49}^{+13.51}$ | $-75.21_{-1.41}^{+8.25}$ |
| Ext. R CrA | 30.. . 42 | 0.43... 0.64 | $321_{-58}^{+109}$ | $-43.7 \pm 1.7$ | $148.8 \pm 2.6$ | $362_{-66}^{+117}$ | $4.41_{-0.85}^{+0.90}$ | 70... 115 | $261.99_{-0.99}^{+1.12}$ | $-39.84_{-2.00}^{+2.10}$ |
| AB Dor | 21... 43 | 0.17... 0.32 | $452_{-84}^{+109}$ | $-43.7 \pm 1.7$ | $148.7 \pm 2.6$ | $462_{-85}^{+110}$ | $7.56{ }_{-0.78}^{+1.22}$ | $21_{-6}^{+7}$ | $264.30_{-4.93}^{+4.76}$ | $-44.11_{-8.82}^{+6.98}$ |
| Sco OB4 | 12. . . 74 | 1.28...1.68 | $311_{-69}^{+75}$ | $-43.7 \pm 1.7$ | $148.7 \pm 2.6$ | $743_{-77}^{+98}$ | $1.09_{-0.08}^{+0.08}$ | 1042. . 1140 | $259.57_{-0.99}^{+0.97}$ | -35.0.. - 30.5 |
| US | 26. . . 36 | 0.46. . . 0.63 | $343_{-80}^{+86}$ | $-43.7 \pm 1.6$ | $148.8 \pm 2.6$ | $406_{-85}^{+92}$ | $3.388_{-0.41}^{+0.47}$ | 129... 171 | $255.09_{-0.66}^{+0.57}$ | $-18.44_{-1.06}^{+1.00}$ |
| UCL | 50... 63 | 0.48... 0.73 | $318{ }_{-63}^{+116}$ | $-43.7 \pm 1.7$ | $148.7 \pm 2.6$ | $375{ }_{-72}^{+122}$ | $3.70_{-0.59}^{+0.71}$ | 96. . 164 | $260.48_{-0.86}^{+0.81}$ | $-35.68_{-1.60}^{+1.83}$ |



Figure 8. (a) Distribution of minimum separations $d_{\text {min }}$ between RX $\mathrm{J} 1605.3+3249$ and the centres of Tuc-Hor (a), $\beta$ Pic-Cap (b), Ext. R CrA (c), AB Dor (d), US (e) and UCL (f), respectively, within the defined time range $\tau$ (see Table 8, Column 3). Shown as well are theoretical curves for three-dimensional Gaussian distributions (equation 1) with $\mu=9.5 \mathrm{pc}$ and $\sigma=1.0 \mathrm{pc}$ for Tuc-Hor, $\mu=8.5 \mathrm{pc}$ and $\sigma=0.4 \mathrm{pc}$ for $\beta$ Pic-Cap, $\mu=$ 33.5 pc and $\sigma=1.5 \mathrm{pc}$ for Ext. R CrA, $\mu=29.0 \mathrm{pc}$ and $\sigma=4.5 \mathrm{pc}$ for AB Dor, $\mu=28.5 \mathrm{pc}$ and $\sigma=2.0 \mathrm{pc}$ for US and $\mu=53.5 \mathrm{pc}$ and $\sigma=2.5 \mathrm{pc}$ for UCL. Note that the curves are not fitted to the data (see also Fig. 3).
origin in most of those associations implies a parallax smaller than the lower limit of 1.4 mas. For those reasons, we may exclude them as probable birth associations for RBS 1223.

However, calculating past trajectories of RBS 1223, Motch et al. (2007) proposed that a small fraction of orbits passes though the Scutum OB2 (Sct OB2) association. More recently, Motch et al. (2009) reinvestigated this association considering that it consists of two groups, Sct OB2A at 510 pc and Sct OB2B at 1170 pc (Reichen


Figure 9. Past trajectories for RX J1605.3 + 3249 and US and Ext. R CrA, respectively, projected on a Galactic coordinate system (for particular sets of input parameters consistent with Table 8). Present positions are marked with a star for the neutron star and a diamond for US and an open circle for Ext. R CrA. Large circles reflect association extensions (radii of 15 pc for US and 31 pc for Ext. R CrA).
et al. 1990). We adopt these two distances and the proper motion and radial velocity for Sct OB2 from Dambis et al. (2001) and calculate again 2 million orbits for both, the neutron star and each subgroup, as well as their separations $d_{\min }$ at each time-step $\tau$. Due to the large uncertainty in parallax and radial velocity of RBS 1223, we do not find a maximum in their $\tau-d_{\text {min }}$ plots, but can derive flight time ranges from the $\tau$ histograms for which smaller separations ( $d_{\text {min }} \leq 50 \mathrm{pc}$ ) occur. Considering the input parameters of the runs in the derived time ranges, we obtain the neutron star properties and potential SN positions as given in Table 11.

All associations for which we found a peak in their $\tau-d_{\text {min }}$ contour plot that was consistent with the association boundaries (Table 10, top) belong to the YLA (F08) and imply a rather small present distance of RBS 1223 to the Sun. Regarding the hydrogen column density of $n_{\mathrm{H}}=1.8 \pm 0.2 \times 10^{20} \mathrm{~cm}^{-2}$ (Schwope et al. 2007) which is comparable to other M7 members and even a bit higher (see Table 2), the distance of RBS 1223 to the Sun is supposed to be at least 180 pc (the distance to the Sun of the probably closest member RX J1856.5-3754 is $\approx 180 \mathrm{pc}$ ), corresponding to a parallax smaller than approximately 5.5 mas. For that reason, we can exclude three of the YLA - Tuc-Hor, $\beta$ Pic-Cap and AB Dor - for which the current distance to RBS 1223 would be smaller than $100 \mathrm{pc} .{ }^{8}$ From the $\tau-d_{\text {min }}$ contour plot for HD 141569, a potential SN in HD 141569 would have occurred near the edge of the group our
${ }^{8}$ As for RX J1605.3 +3249 , the distance of RBS 1223 is too poorly known to estimate probabilities for the potential parent associations. For that reason, we give an individual discussion.

Table 9. Associations for which the smallest separation between RBS 1223 and the association centre found (min. $d_{\min }$ ) after 2 million runs was within the radius of the association, as Table 3.

| Association | $\min . d_{\min }(\mathrm{pc})$ | $R_{\text {Assoc }}(\mathrm{pc})$ |
| :--- | :---: | :---: |
| US | 1.1 | 15 |
| Tuc-Hor | 10.3 | 50 |
| $\beta$ Pic-Cap | 0.3 | 57 |
| HD 141569 | 0.1 | 16 |
| Ext. R CrA | 0.3 | 31 |
| AB Dor | 7.9 | 43 |
| Her-Lyr | 9.7 | 13 |
| Sgr OB5 | 6.2 | 111 |
| NGC 6530 | 1.3 | 6 |
| Sgr OB1 | 2.2 | 104 |
| Sgr OB7 | 3.0 | 29 |
| Sgr OB4 | 5.0 | 27 |
| Sgr OB6 | 1.8 | 17 |
| M 17 | 3.5 | 10 |
| Ser OB1 | 1.1 | 36 |
| NGC 6611 | 0.8 | 7 |
| Sct OB3 | 2.2 | 17 |
| Ser OB2 | 3.7 | 31 |
| NGC 6604 | 4.5 | 8 |
| Sct OB2 | 6.6 | 31 |
| NGC 6383 | 3.0 | 5 |
| M6 | 2.5 | 4 |

even outside (between 5 and 21 pc , the radius of HD 141569 is $\approx 16 \mathrm{pc}$ ) and thus is unlikely.
Indeed, the case Ext. R CrA is very promising, since the shape of the $d_{\min }$ distribution is in good agreement with a 3D Gaussian distribution with $\mu=0$ and $\sigma=13.5$ [see Fig. 10(a), equation 2]. Hence, a potential SN which created RBS 1223 would have occurred near the centre of the association. Assuming this, RBS 1223 would now be $\approx 0.5 \mathrm{Myr}$ old. Its current radial velocity would be $\approx 350 \mathrm{~km} \mathrm{~s}^{-1}$ (space velocity $\approx 400 \mathrm{~km} \mathrm{~s}^{-1}$ ). Furthermore, it is very likely that Ext. R CrA experienced a SN in the near past owing to the existence of B-type stars (highest content within the YLA, F08).
In Table 10 (bottom), we also give the results for the US association which has also been suggested as a possible birth place for RBS 1223 by Motch et al. (2009). Although the $d_{\min }$ histogram in this case does not support a birth in US [a SN is predicted at a distance from the US centre of $51 \pm 12 \mathrm{pc}$, see Fig. 10(b)], it seems possible that the neutron star was born in the Sco-Cen complex (similar to RX J1605.3 + 3249, see previous section) in the vicinity of US. In this case, the present distance of RBS 1223 to the Sun would be slightly larger as for Ext. R CrA ( $\approx 215 \mathrm{pc}$ ) whereas age and radial velocity are similar to those for Ext. R $\mathrm{CrA}\left(\tau \approx 0.5 \mathrm{Myr}, v_{\mathrm{r}}\right.$ $\approx 350 \mathrm{~km} \mathrm{~s}^{-1}$, space velocity $\approx 420 \mathrm{~km} \mathrm{~s}^{-1}$ ). Adopting a near birth scenario either in the Sco-Cen complex or Ext. R CrA 0.5 Myr ago (Fig. 11), we can estimate the mass of the progenitor of RBS 1223. Given association ages of $5-10 \mathrm{Myr}$ for US and $10-15 \mathrm{Myr}$ for Ext. R CrA, the mass would be 17 (B0V) to $45 \mathrm{M}_{\odot}(\mathrm{O} 5.5 \mathrm{~V})$ (US) or 12 (B1V) to $30 \mathrm{M}_{\odot}(\mathrm{O} 7 \mathrm{~V})$ (Ext. R CrA) (T80; MM89; K97; spectral types from Schmidt-Kaler 1982).

However, since the distance to RBS 1223 is very uncertain and following P07 can only hardly get constrained through $n_{\mathrm{H}}$, we eventually cannot completely exclude the associations in the lower part of Table 9. Infact, in the case RBS 1223, P07 reached the limit of their modelling which was set at 1 kpc . Thus, the neutron star might be located at somewhat larger distances which would be consistent with its origin lying in the Sct region. If so, we can again estimate the
mass of the progenitor star adopting an age of RBS 1223 of 1 Myr (Fig. 11) and Sct OB2 of 6 Myr (Schild \& Maeder 1985). Models from T80, MM89 and K97 yield masses of 44,38 and $32 \mathrm{M}_{\odot}(\approx \mathrm{O} 6$ on the main sequence).

### 5.5 Remarks

It has to be mentioned that any association identified for which it is possible to trace our neutron stars back such that they reach the association boundary (although it might be only fulfilled for a very small fraction of runs) is a potential parent association. However, for a few associations, theoretical curves (equations 1 and 2) fit the $d_{\text {min }}$ histograms remarkably well. Hence, we conclude that they reflect the real separation at the encounter time (flight time).
Furthermore, it is important to bear in mind that the initially input distribution for radial velocities (Ho05) somewhat biases the outcoming radial velocities to median ranged values $\left(\approx \pm 400 \mathrm{~km} \mathrm{~s}^{-1}\right.$, depending on the transverse velocity). Due to this bias, the range of $\tau$ (flight time) might be underestimated. None the less, our method allows us to also identify associations requiring either very small or high radial velocities.

Compared to previous investigations of the origin of M7 members as done by e.g. Walter \& Lattimer (2002), Motch et al. (2003), Kaplan et al. (2007) and Motch et al. (2009), our calculations do not only cover certain radial velocity ranges, but the whole spectrum of possible radial velocities ranging from -1500 to $+1500 \mathrm{~km} \mathrm{~s}^{-1}$. To account for the velocity distribution for neutron stars, we used the probability distribution of Ho05. Furthermore, we vary the distances for RX J1605.3 + 3249 and RBS 1223 in a wide range to account for their large uncertainties.
We compiled a list of 140 OB associations and clusters to cover most ${ }^{9}$ of the potential birth sites of neutron stars.
For estimating the SN progenitor star mass from the difference between association age and kinematic age, we assumed that all stars formed about at the same time in that association. This assumption is justified because once an O or B star is formed, its strong wind and slightly later its SN shock front will blow away all the remaining gas, so that star formation will cease in that region. This assumption holds for OB associations and is consistent with observations. It does not necessary hold for associations without an O- or B-type star, like possibly TWA, which however may have had an early B-type star.

## 6 CONCLUSIONS

We reviewed the prominent neutron star/ runaway case PSR $\mathrm{B} 1929+10 / \zeta$ Oph (H01) and re-investigated it with more recent data for the pulsar. Although we did not put constraints on the radial velocity, we could confirm previous results from Bobylev (2008) and eventually derive a radial velocity of $\approx 250 \mathrm{~km} \mathrm{~s}^{-1}$ of the pulsar which is needed to find the two objects at nearly the same position in US at the same time in the past. However, we should bear in mind that we had to increase the errors of the parallax and proper motion components. If they are truly as small as published by Chatterjee et al. (2004) the scenario is less likely.

We investigated the motion of four members of the M7 and for each neutron star simultaneously the motion of 140 OB associations and clusters to confine potential parent associations of the neutron stars. A summary of our results is given in Table 12 (for individual discussions please see previous sections).

[^6]Table 10. Potential parent associations of RBS 1223, columns as in Table 4.

| Association | $\begin{aligned} & d_{\min } \\ & (\mathrm{pc}) \end{aligned}$ | $\begin{gathered} \tau \\ (\mathrm{Myr}) \end{gathered}$ | $\begin{gathered} v_{\mathrm{r}} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} \mu_{\alpha^{*}} \\ \left({\text { mas } \left.\mathrm{yr}^{-1}\right)}^{2}\right. \end{gathered}$ | $\begin{gathered} \mu_{\delta} \\ \left(\operatorname{mas}_{\mathrm{yr}^{-1}}\right) \end{gathered}$ | $\begin{gathered} v_{\text {space }} \\ \left(\mathrm{km} \mathrm{~s}^{-1}\right) \end{gathered}$ | $\begin{gathered} \pi \\ (\mathrm{mas}) \end{gathered}$ | $\mathrm{d}_{\odot}$ (pc) | $\begin{gathered} \alpha \\ \left({ }^{\circ}\right) \end{gathered}$ | $\begin{gathered} \delta \\ \left({ }^{\circ}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tuc-Hor | 23. . 30 | 0.17... 0.31 | $463_{+82}^{+94}$ | $-206 \pm 19$ | $84 \pm 18$ | $4733_{-86}^{+100}$ | $10.85{ }_{-2.16}^{+3.38}$ | $37_{-3}^{+4}$ | $339.68_{-9.68}^{+14.32}$ | $-29.20_{-3.33}^{+2.56}$ |
| $\beta$ Pic-Cap | 5. . . 10 | 0.13... 0.22 | $482_{-95}^{+106}$ | $-206 \pm 19$ | $82 \pm 19$ | $490_{-98}^{+110}$ | $12.06_{-2.25}^{+2.45}$ | $19_{-3}^{+2}$ | $316.23_{-7.80}^{+11.81}$ | $-29.63_{-3.90}^{+3.70}$ |
| HD 141569 | 5... 21 | 0.27. . . 0.40 | $332_{-85}^{+103}$ | $-209 \pm 19$ | $85 \pm 20$ | $393{ }_{-99}^{+130}$ | $5.09_{-0.98}^{+0.91}$ | 84. . 122 | $236.46{ }_{-9.09}^{+7.70}$ | $1.55{ }_{-4.74}^{+5.55}$ |
| Ext. R CrA | 16. . 40 | 0.38... 0.58 | $345_{-90}^{+114}$ | $-209 \pm 20$ | $85 \pm 18$ | $391_{-103}^{+137}$ | $5.78{ }_{-1.21}^{+1.33}$ | $80_{-10}^{+22}$ | $294.82_{-7.92}^{+7.24}$ | $-22.94_{-6.29}^{+4.33}$ |
| AB Dor | 15... 28 | 0.15... 0.24 | $437{ }_{-95}^{+99}$ | $-206 \pm 20$ | $83 \pm 19$ | $446_{-97}^{+104}$ | $11.56_{-2.05}^{+2.24}$ | $18_{-3}^{+4}$ | 225... 358 | $-28.86_{-6.85}^{+11.77}$ |
| US | 42. . . 64 | 0.38. . . 0.55 | $351_{-104}^{+100}$ | $-210 \pm 20$ | $83 \pm 18$ | $420_{-118}^{+154}$ | $4.63{ }_{-1.27}^{+0.84}$ | $109_{-19}^{+36}$ | $254.09_{-2.34}^{+2.11}$ | $-6.29_{-5.09}^{+3.23}$ |

Table 11. Results for RBS 1223 and Sct OB2A and B. Minimum separations have been constrained to $d_{\min } \leq 50$ pc. Column 2 gives the smallest separation $d_{\min }$ found after 2 million runs, Column 3 gives the maximum of the time $(\tau)$ histogram along with its 68 per cent interval (note that this is not a $1 \sigma$ error). Columns 4-10 indicate the current neutron star properties needed to yield small separations to the particular association as well as the position of the potential SN (see also Table 4). Note that receding radial velocities are positive contrary to Motch et al. (2009).

| Association | min. $d_{\text {min }}$ <br> $(\mathrm{pc})$ | $\tau$ <br> $(\mathrm{Myr})$ | $v_{\mathrm{r}}$ <br> $\left(\mathrm{km} \mathrm{s}^{-1}\right)$ | $\mu_{\alpha^{*}}$ <br> $\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$ | $\mu_{\delta}$ <br> $\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$ | $v_{\text {space }}$ <br> $\left(\mathrm{km} \mathrm{s}^{-1}\right)$ | $\pi$ <br> $(\mathrm{mas})$ | $\mathrm{d}_{\odot}$ <br> $(\mathrm{pc})$ | $\alpha$ <br> $\left({ }^{\circ}\right)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sct OB2A | 1.6 | $1.07_{-0.34}^{+0.56}$ | $75 \ldots .310$ | $-216 \pm 19$ | $53 \pm 10$ | $272 \ldots .597$ | $2.70_{-0.44}^{+0.96}$ | $517_{-19}^{++18}$ | $277.15_{2.60}^{2.47}$ |
| Sct OB2B | 3.2 | $1.56_{-0.42}^{+0.80}$ | $285_{-129}^{+107}$ | $-221 \pm 20$ | $46 \pm 7$ | $731_{-172}^{+313}$ | $1.59_{-0.38}^{+0.22}$ | $1199_{-19}^{+19}$ | $277.93_{-1.41}^{+1.22}$ |



Figure 10. Distribution of minimum separations $d_{\text {min }}$ between RBS 1223 and the centre of the extended Corona-Australis association (a) and US (b) within the defined time range $\tau$ (see Table 10, Column 3). Shown as well is a theoretical curve for a 3D Gaussian distributions (equations 1 and 2) with $\mu=0 \mathrm{pc}$ and $\sigma=13.5 \mathrm{pc}$ for Ext. R CrA and $\mu=51 \mathrm{pc}$ and $\sigma=12 \mathrm{pc}$ for US. Note that the curves are not fitted to the data but will just give an explanation of the slopes of the histograms.

We find that RX J1856.5-3754 most probably originated from US about 0.3 Myr ago. RX J0720.4-3125 was very likely born in TWA about 0.4 Myr ago or may come from $\operatorname{Tr} 10$, where the SN then would have occurred 0.5 Myr in the past. RX J1605.3 + 3249 and RBS 1223 also were seemingly born from a close young association such as the Sco-Cen complex or Ext. R CrA. For RBS 1223 also a birth in Scutum OB2 is possible.

Thus, we find that the most probable birth places were located close to the Sun. The SN distances are consistent with the local bubble and hence may have contributed to its formation or reheating (Berghöfer \& Breitschwerdt 2002; F08). There is no doubt that the Sco OB2 association to which US belongs experienced some SNe in the past (Maíz-Apellániz 2001; Berghöfer \& Breitschwerdt 2002; F08). There have been other investigations showing that many neutron stars may have been born within the Gould Belt (Popov et al. 2003), a torus-like structure around the Sun with a radius of $\approx 600 \mathrm{pc}$ (Torra, Fernández \& Figueras 2000), to which most of the associations just mentioned also belong.

Some of the four investigated M7 neutron stars may have formed within $\approx 250 \mathrm{pc}$ within the last 0.5 Myr , so that they


Figure 11. Past trajectories for RBS 1223 and US, Ext. R CrA and Sct OB2, respectively, projected on a Galactic coordinate system (for a particular set of input parameters consistent with Table 10). Present positions are marked with a star for the neutron star, a diamond for US, an open circle for Ext. R CrA and a square for Sct OB2. Large circles reflect association extensions (radii of 15 pc for US, 31 pc for Ext. R CrA) and 31 pc for Sct OB2.
could have contributed to the ${ }^{10} \mathrm{Be}$ and ${ }^{60} \mathrm{Fe}$ found in the Earth's crust.

Adopting a birth scenario of each neutron star, we can derive estimations of the mass of the progenitor star assuming contemporary star formation in the association as well as the kinematic neutron star age which we here always find to be lower than the

Table 12. Summary of the results discussed in Section 5. Given here are those associations that we conclude to be the most probable birth places of the four M7 members. Columns 3-5 give the position of the potential SN as equatorial coordinates and distance to the Sun, Column 6 gives the approximate time in the past at which the SN may have occurred and Columns $7-10$ give constraints on the neutron star parameters as they would be needed to reach the respective association at the given time.

| RX J | Association | Position of SN |  |  | Time |  | Present-day parameters |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\alpha\left({ }^{\circ}\right)$ | $\delta\left({ }^{\circ}\right.$ | $\mathrm{d}_{\odot}(\mathrm{pc})$ | of SN | $\pi$ (mas) | $v \mathrm{r}\left(\mathrm{km} \mathrm{s}^{-1}\right)$ | $\mu \alpha^{*}\left(\right.$ mas yr $\left.^{-1}\right)$ | $\mu \delta\left(\mathrm{mas} \mathrm{yr}^{-1}\right)$ |
| 1856.5-3754 | US | $243.21_{-0.52}^{+0.58}$ | $-23.66_{-0.29}^{+0.31}$ | 140... 163 | 0.3 Myr | $5.41_{-0.28}^{+0.33}$ | $193{ }_{-32}^{+45}$ | $326.7 \pm 0.8$ | $-59.1 \pm 0.7$ |
| 0720.4-3125 | TWA | $187.10_{-2.91}^{+3.44}$ | $-37.98_{-1.38}^{+1.53}$ | 48. . . 67 | 0.4 Myr | $4.06{ }_{-0.49}^{+0.47}$ | $502_{-88}^{+111}$ | $-93.9 \pm 2.2$ | $52.8 \pm 2.3$ |
|  | Tr 10 | 135. . 140 | $-40.19_{-0.59}^{+0.58}$ | 335... 375 | 0.5 Myr | $41.93{ }_{-0.20}^{+0.24}$ | $290{ }_{-110}^{+143}$ | $-93.8 \pm 2.2$ | $53.1 \pm 2.2$ |
| $1605.3+3249$ | Sco-Cen | $255.09_{-0.66}^{+0.57}$ | $-18.44_{-1.06}^{+1.00}$ | 129... 171 | 0.5 Myr | $3.38{ }_{-0.41}^{+0.47}$ | $343_{-80}^{+86}$ | $-43.7 \pm 1.6$ | $148.8 \pm 2.6$ |
|  | Ext. R CrA | $261.99_{-0.99}^{+1.12}$ | $-39.84_{-2.00}^{+2.10}$ | 70... 115 | 0.5 Myr | $4.41_{-0.85}^{+0.90}$ | $321-58$ | $-43.7 \pm 1.7$ | $148.8 \pm 2.6$ |
| RBS 1223 | Sco-Cen | $254.09_{-2.34}^{+2.11}$ | $-6.29_{-5.09}^{+3.23}$ | $1099_{-19}^{+36}$ | 0.5 Myr | $4.63_{-1.27}^{+0.84}$ | $351_{-104}^{+100}$ | $-210 \pm 20$ | $83 \pm 18$ |
|  | Ext. R CrA | $294.82_{-7.92}^{+7.24}$ | $-22.94_{-6.29}^{+4.33}$ | $80_{-10}^{+22}$ | 0.5 Myr | $5.78{ }_{-1.21}^{+1.33}$ | $345{ }_{-90}^{+114}$ | $-209 \pm 20$ | $85 \pm 18$ |
|  | Sct OB2A | $277.15_{-2.60}^{+2.47}$ | $-12.04_{-1.83}^{+2.13}$ | $517_{-19}^{+18}$ | 1 Myr | $2.70_{-0.44}^{+0.96}$ | 75. . 310 | $-216 \pm 19$ | $53 \pm 10$ |

Table 13. Kinematic ages $\tau_{\text {kin }}$ of the four M7 members compared with their characteristic spin-down ages $\tau_{\text {char }}$ (taken from the ATNF pulsar data base (http://www.atnf.csiro.au/research/pulsar/psrcat/), Manchester et al. 2005). The fifth column gives the effective temperature as listed in table 1 of Haberl (2005) (see references therein). Column 6 gives the median masses (for TWA a mass consistent with its mass function) of the progenitor stars predicted using evolutionary models from T80, MM89 and K97 (see text) given the difference between the ages of the associations and the time since the predicted SNe .

| RX J | Association | $\tau_{\text {kin }}$ <br> $(\mathrm{Myr})$ | $\tau_{\text {char }}$ <br> $(\mathrm{Myr})$ | $T_{\text {eff, }}$ <br> $\left(10^{3} \mathrm{~K}\right)$ | $M_{\text {prog }}$ <br> $\left(\mathrm{M}_{\odot}\right)$ |
| :--- | :--- | :--- | :---: | :---: | :---: |
| $1856.5-3754$ | US | $\approx 0.3$ | 3.8 | 696 | $\approx 29$ |
| $0720.4-3125$ | TWA | $\approx 0.4$ | 1.9 | 1044 | $\approx 10$ |
|  | Tr 10 | $\approx 0.5$ |  |  | $\approx 10$ |
| $1605.3+3249$ | Sco-Cen | $\approx 0.5$ | - | 1113 | $\approx 29$ |
|  | Ext. R CrA | $\approx 0.5$ |  |  | $\approx 15$ |
| RBS 1223 | Sco-Cen | $\approx 0.5$ | 1.5 | 998 | $\approx 29$ |
|  | Ext. R CrA | $\approx 0.5$ |  |  | $\approx 15$ |
|  | Sct OB2 | $\approx 1$ |  |  | $\approx 38$ |

characteristic spin-down age (Table 13) that is an upper limit to the true age. From cooling models we know that, given the surface temperature, for the neutron stars investigated here, the characteristic age is too high. This is also plausible since those objects are still very young. Thus, our kinematic ages better fit with cooling models (see Fig. 12).

Since RX J1856.5-3754 is the coolest of the four M7 members investigated (RX J0720.4-3125, RX J1605.3 + 3249 and RBS 1223 show similar temperatures), it should be the oldest. However, it seems, that RX J1856.5-3754 is slightly younger than the other three (or has a similar kinematic age if we adopt the parallax of Walter et al. 2000). This might be owing to different parameters at birth or different cooling. Also the kinematic age of RX J1856.5-3754 is of about a factor of 13 smaller than its characteristic age, which is a large difference. This may indicate further doubts on the characteristic age. Mori \& Ruderman (2003) propose that RX J1856.5-3754 is an isolated magnetar that has spun down by the propeller effect. In this case, dipole braking, which is assumed to calculate characteristic ages, is no longer valid. Moreover, RX J1856.5-3754 does only show a very small pulse fraction making it difficult to derive $\dot{P}$ (van Kerkwijk \& Kaplan 2008).

In addition, effective temperatures may be influenced by hot spots and do not reflect the real surface temperature. Infact, this is the case


Figure 12. The four M7 members inserted into a cooling diagram. Filled stars mark the characteristic spin-down age (see Table 3) whereas horizontal lines characterize an area of the kinematic age (lower and upper values from associations in tables of Section 5). Open diamonds show the kinematic age for the associations summarized in Table 12. Effective temperatures can be found in Table 13. The purple set of cooling curves was adopted from Popov et al. (2006) (solid lines, for masses of 1.05, 1.13, 1.22, 1.28, 1.35, $1.45,1.55,1.65$ and $1.75 \mathrm{M}_{\odot}$ from top to bottom; model from Grigorian, Blaschke \& Voskresensky 2005), the green set has been kindly provided by A. D. Kaminker (dashed lines, includes superconductive protons and neutrons, for masses from 1.1 to $1.9 \mathrm{M}_{\odot}$ from top to bottom; see also Gusakov et al. 2005).
for RX J0720.4-3125 (Haberl et al. 2006; Hohle et al. 2009) and RBS 1223 (Schwope et al. 2005; Haberl 2007) which appear hotter, thus must be actually shifted somewhat to smaller temperatures (even more consistent with cooling curves).

## ACKNOWLEDGMENTS

We thank Thomas Eisenbeiss for data on the Her-Lyr assocation and Sergei B. Popov and Alexandr Loktin for their assistance with the preparation of our sample of OB associations and clusters. We also would like to thank Valeri V. Hambaryan for discussions and data on RBS 1223 as well as Dieter Breitschwerdt and Burkhard Fuchs for discussions on the Local Bubble. Furthermore, we thank A. D. Kaminker, Hovic Gregorian and David Blaschke for providing us their cooling curves. We also would like to thank Jos de Bruijne for discussions on the statistics and Fred Walter for carefully reading the manuscript and helping to improve the paper.

RN acknowledges general support from the German National Science Foundation (Deutsche Forschungsgemeinschaft, DFG) in grants NE 515/23-1 and SFB/TR-7, MMH and NT acknowledge partial support from DFG in the SFB/TR-7 Gravitational Wave Astronomy. The work of MMH and NT has been supported by CompStar, a research networking programme of the European Science Foundation (ESF). GM acknowledges support from the EU in the FP6 MC ToK project MTKD-CT-2006-042514. Our work has made use of the ATNF Pulsar Catalogue, version of February 2009 (Manchester et al. 2005).

We would like to thank Arnold Benz, who has motivated this study with one sentence in his new book 'Das geschenkte Universum'.

## REFERENCES

Acton P. D. et al., 1993, Phys. Lett. B, 312, 501
Aharonian F. et al., 2006, A\&A, 454, 775
Arzoumanian Z., Chernoff D. F., Cordes J. M., 2002, ApJ, 568, 289
Balona L. A., Laney C. D., 1995, MNRAS, 276, 627
Barrado Y Navascués D., 2006, A\&A, 459, 511
Belczynski K., Taam R. E., 2008, ApJ, 685, 400
Berghöfer T. W., Breitschwerdt D., 2002, A\&A, 390, 299
Bertelli G., Bressan A., Chiosi C., Fagotto F., Nasi E., 1994, A\&AS, 106, 275
Beshenov G. V., Loktin A. V., 2004, Astron. Astrophys. Trans., 23, 103
Bhavya B., Mathew B., Subramaniam A., 2007, Bull. Astron. Soc. India, 35, 383
Blaauw A., 1952, Bull. Astron. Inst. Netherlands, 11, 414
Blaauw A., 1956, ApJ, 123, 408
Blaauw A., 1961, Bull. Astron. Inst. Netherlands, 15, 265
Blaauw A., 1991, in Lada C. J., Kylafis N. D., eds, NATO ASIC Proc. Vol. 342, The Physics of Star Formation and Early Stellar Evolution. Kluwer, Dordrecht, p. 125
Blaha C., Humphreys R. M., 1989, AJ, 98, 1598
Bobylev V. V., 2008, Astron. Lett., 34, 686
Brown A. G. A., Blaauw A., Hoogerwerf R., de Bruijne J. H. J., de Zeeuw P. T., 1999, in Lada C. J., Kylafis N. D., eds, NATO ASIC Proc. Vol. 540, The Origin of Stars and Planetary Systems OB Associations. Kluwer, Dordrecht, p. 411
Burrows A., Hayes J., 1996, Phys. Rev. Lett., 76, 352
Carpenter J. M., Hodapp K. W., 2008, The Monoceros R2 Molecular Cloud. p. 899

Carraro G., Chaboyer B., Perencevich J., 2006, MNRAS, 365, 867
Chatterjee S., Cordes J. M., Vlemmings W. H. T., Arzoumanian Z., Goss W. M., Lazio T. J. W., 2004, ApJ, 604, 339

Cini Castagnoli G., Bonino G., Lehman B., Taricco C., 1995, in Lucci N., Lamanna E., eds, Proc. 24th Int. Cosmic Ray Conf. Vol. 4. Int. Union of Pure and Applied Physics (IUPAP), p. 1204
Claret A., 2004, A\&A, 424, 919
Clariá J. J., 1974, A\&A, 37, 229
Cole A. L., Boyd R. N., Davis M. E., Thompson L. G., Davis A. M., Lewis R. S., Zinner E., 2006, ApJ, 652, 1763

Contreras M. E., Sicilia-Aguilar A., Muzerolle J., Calvet N., Berlind P., Hartmann L., 2002, AJ, 124, 1585
Cordes J. M., Chernoff D. F., 1998, ApJ, 505, 315
Dambis A. K., Mel'nik A. M., Rastorguev A. S., 2001, Astron. Lett., 27, 58
D’Antona F., Mazzitelli I., 1997, Mem. S. A. It., 68, 807
de Geus E. J., de Zeeuw P. T., Lub J., 1989, A\&A, 216, 44
de la Reza R., Jilinski E., Ortega V. G., 2006, AJ, 131, 2609
de Zeeuw P. T., Hoogerwerf R., de Bruijne J. H. J., Brown A. G. A., Blaauw A., 1999, AJ, 117, 354

Dehnen W., Binney J. J., 1998, MNRAS, 298, 387
Dias W. S., Lépine J. R. D., Alessi B. S., 2002, A\&A, 388, 168
Eisenbeiss T., 2007, Master's thesis, AIU, Friedrich-Schiller-Universität Jena, Germany
Ellis J., Fields B. D., Schramm D. N., 1996, ApJ, 470, 1227

Fernández D., Figueras F., Torra J., 2008, A\&A, 480, 735 (F08)
Fitoussi C. et al., 2008, Phys. Rev. Lett., 101, 121101
Fuhrmann K., 2004, Astron. Nach., 325, 3
Garcia B., 1994, ApJ, 436, 705
Garmany C. D., Stencel R. E., 1992, A\&AS, 94, 211
Girardi L., Bertelli G., Bressan A., Chiosi C., Groenewegen M. A. T., Marigo P., Salasnich B., Weiss A., 2002, A\&A, 391, 195

Graham J. A., 1971, AJ, 76, 1079
Gregorio-Hetem J., 2008, in Reipurth B., ed., ASP Monograph Publ. Vol. 5, Handbook of Star Forming Regions Vol. II, The Southern Sky. Astron. Soc. Pac., San Francisco, p. 1
Grigorian H., Blaschke D., Voskresensky D., 2005, Phys. Rev. C, 71, 045801
Gusakov M. E., Kaminker A. D., Yakovlev D. G., Gnedin O. Y., 2005, MNRAS, 363, 555
Gvaramadze V. V., Bomans D. J., 2008, A\&A, 490, 1071
Haberl F., 2005, in Briel U. G., Sembay S., Read A., eds, MPE Report 288, 5 yr of Science with XMM-Newton. MPE, Garching, p. 39
Haberl F., 2007, Ap\&SS, 308, 181
Haberl F., Turolla R., de Vries C. P., Zane S., Vink J., Méndez M., Verbunt F., 2006, A\&A, 451, L17

Hansen B. M. S., Phinney E. S., 1997, MNRAS, 291, 569
Harding P., Morrison H. L., Olszewski E. W., Arabadjis J., Mateo M., Dohm-Palmer R. C., Freeman K. C., Norris J. E., 2001, AJ, 122, 1397
Havlen R. J., 1972, A\&A, 17, 413
Heger A., Fryer C. L., Woosley S. E., Langer N., Hartmann D. H., 2003, ApJ, 591, 288
Herbst W., Racine R., 1976, AJ, 81, 840
Herrero A., Kudritzki R. P., Vilchez J. M., Kunze D., Butler K., Haser S., 1992, A\&A, 261, 209
Hobbs G., Lorimer D. R., Lyne A. G., Kramer M., 2005, MNRAS, 360, 974 (Ho05)
Hohle M. M., Haberl F., Vink J., Turolla R., Hambaryan V., Zane S., de Vries C. P., Méndez M., 2009, A\&A, 498, 811
Hoogerwerf R., de Bruijne J. H. J., de Zeeuw P. T., 2001, A\&A, 365, 49 (H01)
Howarth I. D., Smith K. C., 2001, MNRAS, 327, 353
Humphreys R. M., 1978, ApJS, 38, 309
Janka H.-T., Mueller E., 1996, A\&A, 306, 167
Janka H.-T., Scheck L., Kifonidis K., Müller E., Plewa T., 2005, in Humphreys R., Stanek K., eds, ASP Conf. Ser. Vol. 331, The Fate of the Most Massive Stars. Astron. Soc. Pac., San Francisco, p. 363
Jilinski E., Ortega V. G., de la Reza R., 2005, ApJ, 619, 945
Johnson D. R. H., Soderblom D. R., 1987, AJ, 93, 864
Kaltcheva N., Makarov V., 2007, ApJ, 667, L155
Kaltcheva N. T., Georgiev L. N., 1994, MNRAS, 269, 289
Kaplan D., 2003, Proc. of Workshop, Physics and Astrophysics of Neutron Stars, held 2003 July 28-August 1, Santa Fe, New Mexico
Kaplan D. L., 2008, in Yuan Y.-F., Li X.-D., Lai D., eds, AIP Conf. Ser. Vol. 968, Astrophysics of Compact Objects. Am. Inst. Phys., New York, p. 129

Kaplan D. L., van Kerkwijk M. H., Anderson J., 2002, ApJ, 571, 447
Kaplan D. L., van Kerkwijk M. H., Anderson J., 2007, ApJ, 660, 1428
Kharchenko N. V., Piskunov A. E., Röser S., Schilbach E., Scholz R.-D., 2005, A\&A, 440, 403
Kharchenko N. V., Scholz R.-D., Piskunov A. E., Röser S., Schilbach E., 2007, Astron. Nach., 328, 889
Kisslinger L. S., Henley E. M., Johnson M. B., 2009, Mod. Phys. Lett. A, 24, 2507
Knie K., Korschinek G., Faestermann T., Dorfi E. A., Rugel G., Wallner A., 2004, Phys. Rev. Lett., 93, 171103
Kodama T., 1997, PhD thesis, Institute of Astronomy, Univ. Tokyo (K97)
Kroupa P., Weidner C., 2005, in Corbelli E., Palla F., Zinnecker H., eds, Astrophys. Space Sci. Libr. Vol. 327, The Initial Mass Function 50 Years Later. Springer, Dordrecht, p. 175
Kuranov A. G., Popov S. B., Postnov K. A., 2009, MNRAS, 395, 2087
Lindblad B., 1959, Handb. Phys., 53, 21
Lodieu N., Bouvier J., James D. J., de Wit W. J., Palla F., McCaughrean M. J., Cuillandre J.-C., 2006, A\&A, 450, 147

Loktin A. V., Beshenov G. V., 2001, Astron. Lett., 27, 386
Loktin A. V., Beshenov G. V., 2003, Astron. Rep., 47, 6
López-Santiago J., Montes D., Crespo-Chacón I., Fernández-Figueroa M. J., 2006, ApJ, 643, 1160

Lorimer D. R., Bailes M., Harrison P. A., 1997, MNRAS, 289, 592
Lozinskaia T. A., Sitnik T. G., Lomovskii A. I., 1986, Ap\&SS, 121, 357
Luhman K. L., 2008, in Reipurth B., ed., ASP Monograph Vol. 5, Handbook of Star Forming Regions, Vol. II: The Southern Sky. Astron. Soc. Pac., San Francisco, p. 169
Luhman K. L., Steeghs D., 2004, ApJ, 609, 917
Lyne A. G., Lorimer D. R., 1994, Nat, 369, 127
MacConnell D. J., 1968, ApJS, 16, 275
McHargue L. R., Damon P. E., Donahue D. J., 1995, Geophys. Res. Lett., 22, 659
Madsen S., Dravins D., Lindegren L., 2002, A\&A, 381, 446
Maeder A., 1987, A\&A, 178, 159
Maeder A., Meynet G., 1989, A\&A, 210, 155 (MM89)
Maíz-Apellániz J., 2001, ApJ, 560, L83
Maíz-Apellániz J., Walborn N. R., Galué H. A., Wei L. H., 2004, ApJS, 151, 103
Makarov V. V., 2007, ApJS, 169, 105
Manchester R. N., Hobbs G. B., Teoh A., Hobbs M., 2005, AJ, 129, 1993
Massey P., Johnson K. E., Degioia-Eastwood K., 1995, ApJ, 454, 151
Massey P., DeGioia-Eastwood K., Waterhouse E., 2001, AJ, 121, 1050
Mel'nik A. M., Efremov Y. N., 1995, Astron. Lett., 21, 10
Menten K. M., Reid M. J., Forbrich J., Brunthaler A., 2007, A\&A, 474, 515
Merín B. et al., 2004, A\&A, 419, 301
Mermilliod J. C., Mayor M., Udry S., 2008, A\&A, 485, 303
Mermilliod J.-C., Paunzen E., 2003, A\&A, 410, 511
Moffat A. F. J., Vogt N., 1973, A\&AS, 10, 135
Morgan W. W., Whitford A. E., Code A. D., 1953, ApJ, 118, 318
Mori K., Ruderman M. A., 2003, ApJ, 592, L75
Motch C., Haberl F., Zickgraf F.-J., Hasinger G., Schwope A. D., 1999, A\&A, 351, 177
Motch C., Zavlin V. E., Haberl F., 2003, A\&A, 408, 323
Motch C., Sekiguchi K., Haberl F., Zavlin V. E., Schwope A., Pakull M. W., 2005, A\&A, 429, 257
Motch C., Pires A. M., Haberl F., Schwope A., Zavlin V. E., 2007, preprint (ariXiv:0712.0342)
Motch C., Pires A. M., Haberl F., Schwope A., Zavlin V. E., 2009, A\&A, 497, 423
Neuhäuser R., Guenther E. W., Petr M. G., Brandner W., Huélamo N., Alves J., 2000a, A\&A, 360, L39

Neuhäuser R. et al., 2000b, A\&AS, 146, 323
Ng C., Romani R. W., 2007, ApJ, 660, 1357
Penny L. R., 1996, ApJ, 463, 737
Perrot C. A., Grenier I. A., 2003, A\&A, 404, 519
Perry C. L., Hill G., Christodoulou D. M., 1991, A\&AS, 90, 195
Perryman M. A. C. et al., 1997, A\&A, 323, L49
Pires A. M., Motch C., Turolla R., Treves A., Popov S. B., 2009, A\&A, 498, 233
Popov S. B., Colpi M., Prokhorov M. E., Treves A., Turolla R., 2003, A\&A, 406, 111
Popov S. B., Grigorian H., Blaschke D., 2006, Phys. Rev. C, 74, 025803
Posselt B., Popov S. B., Haberl F., Trümper J., Turolla R., Neuhäuser R., 2007, Ap\&SS, 308, 171 (P07)
Preibisch T., Brown A. G. A., Bridges T., Guenther E., Zinnecker H., 2002, AJ, 124, 404
Raisbeck G. M., Yiou F., Bourles D., Lorius C., Jouzel J., 1987, Nat, 326, 273
Reichen M., Lanz T., Golay M., Huguenin D., 1990, Ap\&SS, 163, 275
Reipurth B., ed., 2008a, ASP Monograph Publ. Vol. 4, Handbook of Star Forming Regions, Volume I: The Northern Sky. Astron. Soc. Pac., San Francisco
Reipurth B., ed., 2008b, ASP Monograph Publ. Vol. 5, Handbook of Star Forming Regions, Vol. II: The Southern Sky. Astron. Soc. Pac., San Francisco
Romano D., Chiappini C., Matteucci F., Tosi M., 2005, A\&A, 430, 491

Rugel G. et al., 2009, Phys. Rev. Lett., 103, 072502
Rutledge R. E., Fox D. B., Shevchuk A. H., 2008, ApJ, 672, 1137
Sartori M. J., Lépine J. R. D., Dias W. S., 2003, A\&A, 404, 913
Schaller G., Schaerer D., Meynet G., Maeder A., 1992, A\&AS, 96, 269
Scheck L., Kifonidis K., Janka H., Müller E., 2006, A\&A, 457, 963
Schild H., Maeder A., 1985, A\&A, 143, L7
Schmidt-Kaler T. H., 1982, in Schaifers K., Voigt H. H., eds, LandoltBörnstein New Ser. Vol. 2b, Physical Parameters of the Stars. Springer, New York, p. 451
Schwope A. D., Hambaryan V., Haberl F., Motch C., 2005, A\&A, 441, 597
Schwope A. D., Hambaryan V., Haberl F., Motch C., 2007, Ap\&SS, 308, 619
Smith N., 2006, MNRAS, 367, 763
Soderblom D. R. et al., 1998, ApJ, 498, 385
Southworth J., Maxted P. F. L., Smalley B., 2004, MNRAS, 351, 1277
Stelzer B., Neuhäuser R., 2000, A\&A, 361, 581
Stone R. C., 1991, AJ, 102, 333
Terranegra L., Morale F., Spagna A., Massone G., Lattanzi M. G., 1999, A\&A, 341, L79
Tetzlaff N., 2009, Master's thesis, AIU, Friedrich-Schiller-Universität Jena, Germany
Tinsley B. M., 1980, Fundamentals Cosmic Phys., 5, 287 (T80)
Torra J., Fernández D., Figueras F., 2000, A\&A, 359, 82
Torres G., Mader J. A., Marschall L. A., Neuhäuser R., Duffy A. S., 2003, AJ, 125, 3237
Treves A., Popov S. B., Colpi M., Prokhorov M. E., Turolla R., 2001, in Giacconi R., Serio S., Stella L., eds, ASP Conf. Ser. Vol. 234, X-ray Astronomy 2000, The Magnificient Seven: Close-by Cooling Neutron Stars? Astron. Soc. Pac., San Francisco, p. 225
Turner D. G., 1976, ApJ, 210, 65
Turner D. G., 1979, A\&A, 76, 350
Turner D. G., 1980, ApJ, 235, 146
Turner D. G., Grieve G. R., Herbst W., Harris W. E., 1980, AJ, 85, 1193
Turon C. et al., eds, 1992, The HIPPARCOS Input Catalogue, ESA Spec. Publ. Vol. 1136. ESA, Noordwijk
Uyanıker B., Fürst E., Reich W., Aschenbach B., Wielebinski R., 2001, A\&A, 371, 675
van Kerkwijk M. H., Kaplan D. L., 2008, ApJ, 673, L163
van Rensbergen W., Vanbeveren D., de Loore C., 1996, A\&A, 305, 825
Villamariz M. R., Herrero A., 2005, A\&A, 442, 263
Walter F. M., An P., Lattimer J., Prakash M., 2000, in Martens P. C. H., Tsuruta S., Weber M. A., eds, Proc. IAU Symp. Vol. 195, Highly Energetic Physical Processes and Mechanisms for Emission from Astrophysical Plasma. Astron. Soc. Pac., San Francisco, p. 437
Walter F. M., Lattimer J. M., 2002, ApJ, 576, L145
Wang C., Lai D., Han J. L., 2006, ApJ, 639, 1007
Webb R. A., Zuckerman B., Platais I., Patience J., White R. J., Schwartz M. J., McCarthy C., 1999, ApJ, 512, L63

Westerlund B. E., 1963, MNRAS, 127, 71
Whittet D. C. B., Prusti T., Franco G. A. P., Gerakines P. A., Kilkenny D., Larson K. A., Wesselius P. R., 1997, A\&A, 327, 1194
Wielen R., 1982, in Schaifers K., Voigt H. H., eds, Landolt-Börnstein New Ser. Vol. 2, Group 6, Astronomy Kinematics and Dynamics. Springer, Berlin, p. 208
Wolff S. C., Strom S. E., Dror D., Venn K., 2007, AJ, 133, 1092
Wolk S. J., Comerón F., Bourke T., 2008, in Reipurth B., ed., ASP Monograph Publ. Vol. 5, Handbook of Star Forming Regions, Vol. II: The Southern Sky. Astron. Soc. Pac., San Francisco, p. 388
Zane S., de Luca A., Mignani R. P., Turolla R., 2006, A\&A, 457, 619
Zuckerman B., Song I., Bessell M. S., Webb R. A., 2001, ApJ, 562, L87
Zuckerman B., Song I., Webb R. A., 2001, ApJ, 559, 388

## APPENDIX A: SAMPLE OF OB ASSOCIATIONS AND CLUSTERS

For our investigation, we selected OB associations and clusters within 3 kpc from the Sun (Table A1; for detailes on the selection criteria, please see Section 2).

Table A1. The sample of OB associations and clusters. The table gives the consecutive number, the designation, the position on the sky (J2000 galactic longitude $l$ and latitude $b$ ), the parallax $\pi$, heliocentric velocity components $U, V$ and $W$ as well as estimated ages and spatial extensions either as found in the literature or obtained from angular extensions and distances. Besides Sco OB2 and YLA, $U, V$ and $W$ were computed as in Johnson \& Soderblom (1987) (errors include proper motion and radial velocity uncertainties only). Note that ages are often uncertain to a factor of up to 2 . Many OB associations contain several clusters of different ages (many of them listed here as well). The last column lists the references used for each group: A06 - Aharonian et al. (2006), B08 Bobylev (2008), BaL95 - Balona \& Laney (1995), BH89 - Blaha \& Humphreys (1989) (according to Dambis et al. (2001) distances taken from this publication have been reduced by 20 per cent), Bh07 - Bhavya, Mathew \& Subramaniam (2007), B156 - Blaauw (1956), B191 - Blaauw (1991), BL04 - Beshenov \& Loktin (2004), Br99 - Brown et al. (1999), BYN06 - Barrado Y Navascués (2006), C06 - Carraro, Chaboyer \& Perencevich (2006), CH08 - Carpenter \& Hodapp (2008), Cl74 - Clariá (1974), Co02 - Contreras et al. (2002), D01 - Dambis et al. (2001), dG89 - de Geus et al. (1989), Di02 - Dias, Lépine \& Alessi (2002), dlR06 - de la Reza, Jilinski \& Ortega (2006), dZ99 - de Zeeuw et al. (1999), E07 - Eisenbeiss (2007), F08 - Fernández et al. (2008), Fu04 - Fuhrmann (2004), G94 - Garcia (1994), GB08 - Gvaramadze \& Bomans (2008), GH08 - Gregorio-Hetem (2008), Gr71 - Graham (1971), GS92 - Garmany \& Stencel (1992), H01 - Hoogerwerf et al. (2001), Ha72 - Havlen (1972), HR76 - Herbst \& Racine (1976), Hu78 - Humphreys (1978), J05 - Jilinski, Ortega \& de la Reza (2005), K05 - Kharchenko et al. (2005), K07 - Kharchenko et al. (2007), KG94 - Kaltcheva \& Georgiev (1994), KM07 - Kaltcheva \& Makarov (2007), L06 - López-Santiago et al. (2006), LB01 - Loktin \& Beshenov (2001), LB03 - Loktin \& Beshenov (2003), Lo06 - Lodieu et al. (2006), Loz86 - Lozinskaia, Sitnik \& Lomovskii (1986), LS04 - Luhman \& Steeghs (2004), Lu08 - Luhman (2008), M02 - Madsen, Dravins \& Lindegren (2002), Ma07 - Makarov (2007), Mae87 - Maeder (1987), Mas95 - Massey, Johnson \& Degioia-Eastwood (1995), Mas01 - Massey, DeGioia-Eastwood \& Waterhouse (2001), MC68 - MacConnell (1968), ME95 - Mel'nik \& Efremov (1995), Me07 - Menten et al. (2007), Mer08 - Mermilliod, Mayor \& Udry (2008), Meri04 - Merín et al. (2004), MP03 - Mermilliod \& Paunzen (2003Webda database, http://www.univie.ac.at/webda), MV73 - Moffat \& Vogt (1973), Mo53 - Morgan, Whitford \& Code (1953), N00 - Neuhäuser et al. (2000b), P91 - Perry, Hill \& Christodoulou (1991), Pr02 - Preibisch et al. (2002), S06 - Smith (2006), Sa03 - Sartori et al. (2003), SM85 - Schild \& Maeder (1985), SN00 - Stelzer \& Neuhäuser (2000), So04 - Southworth, Maxted \& Smalley (2004), Sod98 - Soderblom et al. (1998), T76 - Turner (1976), T79 - Turner (1979), T80a - Turner (1980), T80b - Turner et al. (1980), E07 - Eisenbeiss (2007), Te99 - Terranegra et al. (1999), U01 - Uyanıker et al. (2001), W07 - Wolff et al. (2007), We63 - Westerlund (1963), Web99 - Webb et al. (1999), Wh97 - Whittet et al. (1997), Wo08 Wolk, Comerón \& Bourke (2008), Z01a - Zuckerman et al. (2001), Z01b - Zuckerman, Song \& Webb (2001).

| Nr | Name | $l\left({ }^{\circ}\right)$ | $b{ }^{\circ}{ }^{\text {) }}$ | $\pi$ (mas) | $U\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$ | $V\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$ | $W\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$ | Age (Myr) | $\emptyset(\mathrm{pc})$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Scorpius OB2 |  |  |  |  |  |  |  |  |  |  |
| 1 | US | 351.07 | 19.43 | 6.65 | $-6.7 \pm 5.9$ | $-16.0 \pm 3.5$ | $-8.0 \pm 2.7$ | 5-10 | 30 | $\begin{aligned} & \text { dG89, dZ99, Br99, M02, } \\ & \text { Pr02, Sa03, F08 } \end{aligned}$ |
| 2 | UCL | 330.51 | 12.86 | 6.96 | $-6.8 \pm 4.6$ | $-19.3 \pm 4.7$ | $-5.7 \pm 2.5$ | 10-20 | 65 | $\begin{aligned} & \text { dG89, dZ99, Br99, M02, } \\ & \text { Sa03, F08 } \end{aligned}$ |
| 3 | LCC | 301.54 | 6.74 | 8.38 | $-8.2 \pm 5.1$ | $-18.6 \pm 7.3$ | $-6.4 \pm 2.6$ | 13-20 | 45 | $\begin{aligned} & \text { dG89, dZ99, Br99, M02, } \\ & \text { Sa03, F08 } \end{aligned}$ |
| YLA |  |  |  |  |  |  |  |  |  |  |
| 4 | TWA | 291.61 | 20.22 | 16.46 | $-9.7 \pm 4.1$ | $-17.1 \pm 3.1$ | $-4.8 \pm 3.7$ | 8-20 | 66 | Sod98, Web99, dIR06, BYN06, F08 |
| 5 | Tuc-Hor | 296.57 | -51.72 | 23.09 | $-10.1 \pm 2.4$ | $-20.7 \pm 2.3$ | $-2.5 \pm 3.8$ | 10-40 | 100 | SN00, Z01b, Ma07, F08 |
| 6 | $\beta$ Pic-Cap | 330.95 | -55.54 | 54.97 | $-10.8 \pm 3.4$ | $-15.9 \pm 1.2$ | $-9.8 \pm 2.5$ | 8-34 | 113 | Z01a, Ma07, F08 |
| 7 | $\epsilon$ Cha | 300.43 | -15.08 | 10.41 | $-8.6 \pm 3.6$ | $-18.6 \pm 0.8$ | $-9.3 \pm 1.7$ | 5-15 | 55 | Te99, J05, F08 |
| 8 | $\eta$ Cha | 292.42 | -21.45 | 10.76 | $-12.2 \pm 0.0$ | $-18.1 \pm 0.9$ | $-10.1 \pm 0.5$ | 5-8 | 13 | LS04, J05, F08 |
| 9 | HD 141569 | 7.40 | 39.50 | 9.94 | $-5.4 \pm 1.5$ | $-15.6 \pm 2.6$ | $-4.4 \pm 0.8$ | 5 | 31 | Meri04, F08 |
| 10 | Ext. R CrA | 359.41 | -17.19 | 9.85 | $-0.1 \pm 6.4$ | $-14.8 \pm 1.4$ | $-10.1 \pm 3.3$ | 10-15 | 62 | N00, F08 |
| 11 | AB Dor | 146.31 | -59.00 | 71.43 | $-7.4 \pm 3.2$ | $-27.4 \pm 3.2$ | $-12.9 \pm 6.4$ | 30-120 | 85 | L06, Ma07, F08 |
| Her-Lyr |  |  |  |  |  |  |  |  |  |  |
| 12 | Her-Lyr | 180.00 | 68.20 | 52.10 | $-13.6 \pm 3.7$ | $-22.7 \pm 3.4$ | $-7.9 \pm 5.2$ | 40-200 | 26 | Fu04, L06, E07 |
| Other OB associations and clusters |  |  |  |  |  |  |  |  |  |  |
| 13 | Sgr OB5 | 0.00 | -1.19 | 0.41 | $-6.5 \pm 10.8$ | $1.2 \pm 11.6$ | $1.3 \pm 15.0$ | 6-12 | 221 | SM85, BH89, D01 |
| 14 | NGC 6530 | 6.07 | -1.33 | 0.76 | $-12.1 \pm 6.3$ | $-16.2 \pm 1.0$ | $-14.3 \pm 0.8$ | 4-5 | 11 | LB03, K05 |
| 15 | Sgr OB1 | 7.58 | -0.78 | 0.65 | $-8.0 \pm 1.8$ | $-12.8 \pm 1.5$ | $-9.5 \pm 1.5$ | 5-8 | 207 | SM85, BH89, D01 |
| 16 | Sgr OB7 | 10.71 | -1.52 | 0.54 | $-7.4 \pm 3.1$ | $-3.2 \pm 2.3$ | $-18.6 \pm 2.4$ | 4-5 | 58 | K05 |
| 17 | Sgr OB4 | 12.10 | -0.99 | 0.52 | $1.7 \pm 3.6$ | $-6.2 \pm 7.2$ | $-7.3 \pm 12.8$ | $<10^{\text {j }}$ | 54 | Hu78, BH89, D01 |
| 18 | Sgr OB6 ${ }^{\text {a }}$ | 14.18 | 1.28 | 0.62 | $-10.8 \pm 3.9$ | $-2.8 \pm 7.4$ | $-16.0 \pm 8.6$ | $<10^{j}$ | 34 | Hu78, BH89, ME95 |
| 19 | M17 | 15.04 | -0.68 | 0.55 | $-20.5 \pm 12.7$ | $9.9 \pm 7.4$ | $-21.6 \pm 8.9$ | 6 | 19 | K05 |
| 20 | Ser OB1 | 16.73 | 0.00 | 1.88 | $-4.3 \pm 4.9$ | $-3.1 \pm 1.6$ | $-2.1 \pm 1.3$ | $8-13{ }^{\text {j }}$ | 71 | Hu78, BH89, D01 |
| 21 | NGC 6611 | 16.95 | 0.79 | 0.58 | $17.2 \pm 0.6$ | $5.5 \pm 0.7$ | $-5.6 \pm 0.8$ | 1-5 | 13 | $\begin{aligned} & \text { Mas95 LB03, K05, } \\ & \text { GB08 } \end{aligned}$ |
| 22 | Sct OB3 | 17.32 | -0.84 | 0.74 | $7.4 \pm 6.1$ | $-3.7 \pm 2.6$ | $-3.9 \pm 3.8$ | $4.5{ }^{\text {j }}$ | 33 | Hu78, BH89, D01 |
| 23 | Ser OB2 | 18.23 | 1.66 | 0.63 | $-1.6 \pm 1.8$ | $-6.9 \pm 2.2$ | $-10.7 \pm 0.8$ | $4.5{ }^{\text {j }}$ | 61 | Hu78, BH89, D01 |
| 24 | NGC 6604 | 18.25 | 1.71 | 0.59 | $11.9 \pm 7.1$ | $-5.2 \pm 2.7$ | $1.5 \pm 1.5$ | 4-5 | 15 | LB03, K05 |
| 25 | Sct OB2 | 23.21 | -0.53 | 0.63 | $-8.7 \pm 7.5$ | $-7.8 \pm 8.1$ | $-4.4 \pm 3.8$ | $<6$ | 61 | SM85, BH89, D01 |
| 26 | Tr 35 | 28.28 | 0.01 | 0.83 | $4.1 \pm 1.9$ | $-17.6 \pm 3.3$ | $-1.0 \pm 3.6$ | 73 | 2 | Di02 |
| 27 | Col 359 | 29.66 | 12.72 | 2.22 | $6.5 \pm 0.3$ | $-15.8 \pm 0.5$ | $-10.8 \pm 0.7$ | 28-80 | 17 | $\begin{aligned} & \text { LB03, K05, K07, Lo06, } \\ & \text { B08 } \end{aligned}$ |

Table A1 - continued

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Nr | Name | $l$ |  |  |  |  |  |  |

Table A1 - continued

| Nr | Name | $l\left({ }^{\circ}\right)$ | $b\left({ }^{\circ}\right)$ | $\pi$ (mas) | $U\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$ | $V\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$ | $W\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$ | Age (Myr) | $\emptyset(\mathrm{pc})$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 82 | $\lambda$ Ori | 195.27 | $-12.10$ | 2.28 | $-27.5 \pm 1.3$ | $-14.4 \pm 0.6$ | $-8.1 \pm 0.5$ | 6 | 8 | LB03, K05 |
| 83 | NGC 1976 | 209.01 | -19.38 | 2.42 | $-23.2 \pm 2.3$ | $-16.4 \pm 1.4$ | $-7.0 \pm 1.2$ | 51 | 6 | K05, Me07 |
| 84 | Mon R2 ${ }^{\text {d }}$ | 213.91 | -11.90 | 1.2 | $-11.3 \pm 9.0$ | $2.2 \pm 16.6$ | $-11.1 \pm 24.4$ | 6-10 | 7 | HR76, CH08 |
| 85 | NGC 2232 | 214.60 | -7.41 | 2.74 | $-11.5 \pm 3.7$ | $-10.7 \pm 2.6$ | $-9.9 \pm 1.2$ | 53 | 8 | H01, LB01, LB03, K05 |
| 86 | Mon OB3 ${ }^{\text {e }}$ | 217.65 | -0.43 | 0.41 | -31.6 | -24.4 | $-0.3$ | $7{ }^{\text {j }}$ | 47 | Gr71, BH89, ME95 |
| 87 | CMa OB1 | 224.60 | $-1.50$ | 0.61 | $-40.3 \pm 4.2$ | $-4.6 \pm 4.1$ | $-21.3 \pm 2.3$ | 3 | 102 | C174, ME95, D01 |
| 88 | IC 1848 | 229.07 | 30.40 | 0.50 | $3.6 \pm 7.0$ | $14.3 \pm 7.3$ | $-35.3 \pm 6.8$ | 4.5 | 24 | K05 |
| 89 | NGC 2287 | 231.02 | -10.45 | 1.44 | $-16.2 \pm 1.3$ | $-13.0 \pm 1.5$ | $-18.5 \pm 0.7$ | 100-280 | 12 | K05, GH08 |
| 90 | NGC 2414 | 231.41 | 1.95 | 0.35 | $-58.9 \pm 3.0$ | $-39.4 \pm 2.6$ | $-41.8 \pm 3.7$ | 9 | 12 | LB03, K05 |
| 91 | NGC 2367 | 235.60 | -3.84 | 0.50 | $-73.2 \pm 4.5$ | $-1.7 \pm 6.0$ | $-49.7 \pm 3.3$ | 10 | 12 | LB03, K05 |
| 92 | Col 121 | 237.40 | -7.74 | 1.29 | $-37.4 \pm 1.5$ | $-14.9 \pm 2.2$ | $-13.9 \pm 0.8$ | 5-11 | 115 | $\begin{aligned} & \text { dZ99, Br99, D01, LB01, } \\ & \text { BL04, KM07 } \end{aligned}$ |
| 93 | NGC 2362 | 238.20 | -5.58 | 0.72 | $-39.9 \pm 3.5$ | $-16.2 \pm 5.0$ | $-5.3 \pm 2.5$ | 4 | 12 | LB03, K05 |
| 94 | Pup OB1 ${ }^{\text {f }}$ | 243.50 | 0.13 | 0.50 | $-48.4 \pm 17.2$ | $-24.1 \pm 16.5$ | $5.0 \pm 15.3$ | 4 | 129 | Ha72, Hu78, HB89, ME95 |
| 95 | NGC 2467 | 243.16 | 0.35 | 0.74 | $-44.9 \pm 5.4$ | $-40.1 \pm 8.8$ | $-15.3 \pm 4.7$ | 112 | 9 | K05 |
| 96 | Col 140 | 245.18 | -7.91 | 2.67 | $-21.2 \pm 0.4$ | $-13.8 \pm 0.8$ | $-12.1 \pm 0.4$ | 35 | 7 | H01, LB01, K05 |
| 97 | NGC 2439 | 245.31 | -4.11 | 0.77 | $-21.6 \pm 2.3$ | $-55.7 \pm 4.4$ | $-18.8 \pm 1.3$ | 6.5 | 8 | D01, BL04, K05 |
| 98 | Col 135 | 248.70 | -11.22 | 3.33 | $-18.3 \pm 0.8$ | $-7.0 \pm 2.0$ | $-12.7 \pm 0.5$ | 26 | 12 | H01, LB01, LB03, K05 |
| 99 | Pup OB3 ${ }^{\text {b }}$ | 253.90 | -0.23 | 0.69 | $-53.5 \pm 15.3$ | $-21.5 \pm 12.6$ | $-6.6 \pm 14.4$ | 4 | 29 | We63, BH89, ME95 |
| 100 | NGC 2546 | 254.84 | -2.06 | 1.09 | $-35.4 \pm 0.5$ | $-27.5 \pm 0.1$ | $-11.0 \pm 0.5$ | 83 | 20 | LB03, K05 |
| 101 | Vel OB2 | 262.41 | -7.52 | 1.97 | $-26.3 \pm 3.1$ | $-19.8 \pm 2.7$ | $-6.9 \pm 1.3$ | 10 | 70 | dZ99, Br99, D01 |
| 102 | Tr 10 | 264.38 | 0.47 | 2.73 | $-26.8 \pm 1.8$ | $-18.5 \pm 0.2$ | $-8.4 \pm 0.7$ | 15-35 | 45 | $\begin{aligned} & \text { dZ99, Br99, LB01, K04, } \\ & \text { BL04 } \end{aligned}$ |
| 103 | Vel OB1 | 264.88 | -1.42 | 1.13 | $-30.2 \pm 1.3$ | $-20.1 \pm 1.7$ | $-6.1 \pm 0.8$ | 20 | 120 | T79, BH89, D01 |
| 104 | IC 2395 | 266.65 | -3.58 | 1.41 | $-20.6 \pm 1.3$ | $-23.6 \pm 16.9$ | $-7.0 \pm 1.4$ | 12 | 9 | LB03, K05 |
| 105 | IC 2391 | 270.39 | -6.93 | 6.67 | $-23.5 \pm 0.2$ | $-15.6 \pm 2.5$ | $-6.3 \pm 0.4$ | 46-76 | 7 | H01, LB01, LB03, K05 |
| 106 | vdB-Hagen 99 | 286.62 | -0.57 | 2.00 | $-27.0 \pm 2.3$ | $-14.2 \pm 3.4$ | $-15.1 \pm 2.8$ | 72 | 6 | H01, K05 |
| 107 | Car OB1 | 286.50 | -1.49 | 0.53 | $-66.5 \pm 1.0$ | $-15.0 \pm 1.6$ | $-8.9 \pm 0.9$ | $8-12.5{ }^{\text {j }}$ | 165 | Hu78, BH89, D01 |
| 108 | IC 2581 | 284.59 | 0.02 | 0.41 | $-87.5 \pm 7.9$ | $-18.0 \pm 4.0$ | $-4.5 \pm 9.1$ | 16.5 | 15 | K05 |
| 109 | NGC 3293 | 285.85 | 0.07 | 0.43 | $-90.2 \pm 6.0$ | $-12.9 \pm 2.8$ | $-12.5 \pm 6.6$ | 5-9 | 6 | T80b, K05 |
| 110 | NGC 3324 | 286.22 | -0.18 | 0.43 | $-94.9 \pm 4.2$ | $-19.3 \pm 1.2$ | $-8.5 \pm 3.7$ | 5 | 13 | LB03, K05 |
| 111 | Tr 14 | 287.40 | -0.58 | 0.36 | $-57.4 \pm 3.3$ | $-2.9 \pm 1.1$ | $20.0 \pm 3.3$ | 0-5 | 10 | Mas95, LB03, K05, S06 |
| 112 | $\operatorname{Tr} 15$ | 287.41 | -0.37 | 0.47 | $-57.6 \pm 4.0$ | $3.4 \pm 1.6$ | $11.5 \pm 3.3$ | 12 | 6 | LB03, K05, Mer08 |
| 113 | Tr 16 | 287.63 | -0.65 | 0.35 | $-84.9 \pm 3.6$ | $-29.1 \pm 1.6$ | $15.2 \pm 3.2$ | 0-8 | 12 | Mas95, LB03, K05, S06 |
| 114 | Col 228 | 287.64 | -1.06 | 0.52 | $-65.3 \pm 2.7$ | $-6.9 \pm 3.2$ | $-7.9 \pm 2.5$ | 5 | 23 | LB03, K05 |
| 115 | IC 2602 | 289.60 | -4.90 | 7.14 | $-8.9 \pm 1.1$ | $-23.2 \pm 2.8$ | $-2.8 \pm 0.5$ | 32-67 | 12 | H01, LB01, LB03, K05 |
| 116 | Car OB2 | 290.41 | 0.09 | 0.39 | $-78.9 \pm 2.4$ | $-25.1 \pm 2.3$ | $-9.7 \pm 2.4$ | 4 | 152 | BH89, G94, D01 |
| 117 | Tr 18 | 290.99 | -0.13 | 0.74 | $-53.2 \pm 2.2$ | $0.8 \pm 0.9$ | $-11.9 \pm 2.4$ | 59 | 4 | LB03, K05 |
| 118 | NGC 3766 | 294.12 | -0.04 | 0.57 | $-59.8 \pm 1.2$ | $-10.9 \pm 1.6$ | $-8.3 \pm 1.0$ | 33 | 14 | LB03, K05 |
| 119 | Cru OB1 | 294.89 | -1.08 | 0.61 | $-43.7 \pm 1.6$ | $-16.6 \pm 1.9$ | $-6.2 \pm 0.8$ | 5-7 | 117 | BH89, KG94, D01 |
| 120 | IC $2944{ }^{\text {h }}$ | 294.85 | -1.65 | 0.56 | $-46.5 \pm 8.9$ | $-14.0 \pm 12.7$ | $-24.0 \pm 7.4$ | 8 | 15 | K05, MP03 |
| 121 | Cha T | 297.37 | -14.25 | 6.15 | $-9.9 \pm 18.9$ | $-10.3 \pm 20.2$ | $-6.2 \pm 10.8$ | 2-6 | 42 | Wh97, Lu08 |
| 122 | Cen OB1 | 304.18 | 1.41 | 0.56 | $-45.5 \pm 1.3$ | $-6.7 \pm 1.7$ | $-8.2 \pm 1.7$ | 6-12 | 175 | BH89, KG94, D01 |
| 123 | Stock 16 | 306.08 | 0.19 | 0.61 | $-44.5 \pm 5.4$ | $19.1 \pm 7.2$ | $-2.6 \pm 1.5$ | 6 | 13 | LB03, K05 |
| 124 | Hogg 16 | 307.48 | 1.34 | 0.63 | $-52.2 \pm 4.4$ | $5.1 \pm 5.4$ | $-12.6 \pm 1.4$ | 18 | 5 | LB03, K05 |
| 125 | NGC 5606 | 314.84 | 0.99 | 0.55 | $-51.2 \pm 1.9$ | $2.6 \pm 1.9$ | $-15.3 \pm 1.9$ | 7 | 13 | LB03, K05 |
| 126 | NGC 6067 | 329.75 | -2.21 | 0.71 | $-45.7 \pm 3.6$ | $-5.1 \pm 2.2$ | $-17.2 \pm 0.8$ | 102 | 12 | LB03, K05 |
| 127 | R 105 ${ }^{\text {f }}$ | 333.10 | 1.90 | 0.62 | $-32.4 \pm 10.5$ | $17.0 \pm 16.8$ | $-44.5 \pm 18.8$ | $<10^{\text {j }}$ | 8 | Hu78, BH89, ME95 |
| 128 | Ara OB1A | 337.71 | -0.92 | 0.89 | $-16.0 \pm 8.3$ | $-7.8 \pm 4.0$ | $-11.6 \pm 2.1$ | 50 | 106 | BH89, D01, Wo08 |
| 129 | NGC 6193 | 336.71 | $-1.57$ | 0.87 | $-38.4 \pm 4.0$ | $-7.6 \pm 2.7$ | $-13.4 \pm 2.3$ | 8 | 10 | K05 |
| 130 | NGC 6204 | 338.56 | -1.03 | 0.92 | $-7.4 \pm 1.6$ | $-19.2 \pm 4.3$ | $1.3 \pm 4.6$ | 36 | 3 | LB03, MP03, K05 |
| 131 | Ara OB1B | 337.92 | -0.84 | 0.36 | $-50.0 \pm 1.1$ | $-30.7 \pm 2.4$ | $-28.8 \pm 4.0$ | 50 | 276 | $\begin{aligned} & \text { BH89, Mas95, D01, } \\ & \text { Wo08 } \end{aligned}$ |
| 132 | Sco OB1 | 343.74 | 1.36 | 0.65 | $-29.4 \pm 2.8$ | $-2.8 \pm 1.5$ | $-5.8 \pm 1.5$ | 8 | 62 | BH89, P91, D01 |
| 133 | NGC 6231 | 343.46 | 1.19 | 0.80 | $-28.8 \pm 2.9$ | $-1.4 \pm 1.0$ | $-0.8 \pm 0.7$ | 4-7 | 10 | BaL95, LB03, K05 |
| 134 | NGC 6322 | 345.28 | -3.05 | 1.00 | $-57.7 \pm 0.2$ | $5.5 \pm 0.9$ | $-2.7 \pm 0.9$ | 14.5 | 22 | LB03, K05 |
| 135 | Bochum 13 | 351.20 | 1.36 | 0.93 | $-5.2 \pm 1.6$ | $-17.7 \pm 4.3$ | $0.7 \pm 5.1$ | 12 | 4 | LB03, K05 |
| 136 | Sco OB4 | 352.40 | 3.44 | 0.91 | $3.9 \pm 0.3$ | $-8.5 \pm 0.8$ | $-8.5 \pm 0.8$ | 7 | 65 | D01, K05 |
| 137 | Pismis $24^{\text {i }}$ | 353.05 | 0.65 | 0.40 | $-3.9 \pm 3.0$ | $-13.0 \pm 23.4$ | $28.2 \pm 27.0$ | 10 | 4 | MV73, Mas01, MP03 |
| 138 | Tr 27 | 355.07 | -0.74 | 0.83 | $-17.0 \pm 0.3$ | $-12.0 \pm 3.3$ | $-7.2 \pm 3.4$ | 30 | 11 | LB03, K05 |

Table A1 - continued

| Nr | Name | $l\left({ }^{\circ}\right)$ | $b\left({ }^{\circ}\right)$ | $\pi(\mathrm{mas})$ | $U\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$ | $V\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$ | $W\left(\mathrm{~km} \mathrm{~s}^{-1}\right)$ | Age $(\mathrm{Myr})$ | $\emptyset(\mathrm{pc})$ | Ref. |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| 139 | NGC 6383 | 355.69 | 0.04 | 1.02 | $3.5 \pm 3.2$ | $-2.2 \pm 1.7$ | $-10.5 \pm 1.8$ | 5 | 9 | K05 |
| 140 | M6 | 356.62 | -0.74 | 2.05 | $-12.5 \pm 3.5$ | $-16.4 \pm 0.4$ | $-3.9 \pm 0.4$ | 81 | 7 | LB03, K05 |

${ }^{\text {a }} v_{\mathrm{r}}$ from ME95, proper motion components derived from Hu78 members as median $\pm$ average deviation from median.
${ }^{\mathrm{b}}$ Proper motion components and $v_{\mathrm{r}}$ derived from W63 members as median $\pm$ average deviation from median.
${ }^{c}$ Coordinates and parallax denote the mean of Cas-Tau members given by dZ99, velocity components reflect their median $U, V, W$.
${ }^{\text {d }}$ Proper motion components and $v_{\mathrm{r}}$ derived from CH 08 members as median $\pm$ average deviation from median.
${ }^{\mathrm{e}}$ Velocity components were derived from $v_{\mathrm{r}}$ only.
${ }^{\mathrm{f}}$ Proper motion components and $v_{\mathrm{r}}$ derived from Hu78 members as median $\pm$ average deviation from median.

${ }^{\mathrm{h}} v_{\mathrm{r}}$ derived from WEBDA (MP03) members as median $\pm$ average deviation from median.
${ }^{\text {i }}$ Proper motion components and $v_{\mathrm{r}}$ derived from Mas01 members; proper motion (2 stars): mean $\pm$ maximum deviation, $v_{\mathrm{r}}$ : for only one star available (without deviation).
${ }^{j}$ We derived ages from HR diagrams from memberlists either from Hu78 or GS92 (Mo53 for Cyg OB4, Gr71 for Mon OB3) by fitting a set of theoretical Padova isochrones (Girardi et al. 2002) assuming solar metallicity. The fitting algorithm is based on the least-squares method and uses stellar magnitudes as weights.
${ }^{\mathrm{k}}$ Ori OB1a: 11 Myr , Ori OB1b: 2 Myr , Ori OB1c: $5-11 \mathrm{Myr}$, Ori OB1d (= Trapezium cluster): $\approx 1 \mathrm{Myr}$.


Figure B1. Distribution of the number of runs in the $\tau-d_{\text {min }}$ space (excluding runs yielding $\tau=0$ ) for RX J1856.5-3754 and US. The ellipse marks the region for determination of the parameters given in Table 4 and Fig. B2.


## APPENDIX B: DERIVATION OF PRESENT-DAY NEUTRON STAR PARAMETERS AND SN POSITION - EXAMPLE RX J1856.5-3754 COMING FROM US

In Table $4,6,8$ and 10 , we list the current proper motions ( $\mu_{\alpha}^{*}, \mu_{\delta}$; Columns 5 and 6 ), radial velocities ( $v_{\mathrm{r}}$; Column 4) and parallaxes ( $\pi$; Column 8 ) which the neutron stars would have if they originated from the particular associations as well as the positions of the predicted SN (distance to the Sun and equatorial coordinates; Columns 9-11). Here, we describe how those values are obtained.
We first define an area within the $\tau-d_{\text {min }}$ contour plot such that its boundaries reflect a 68 per cent decline from the peak (Columns 2 and 3 of the respective tables). Parameter values in Columns 4-11 were derived by selecting the input parameters (parallax, proper motion, radial velocity) which correspond to this defined region. The distance to the Sun as well as equatorial coordinates at the time of the SN were then calculated for each parameter set.

Figure B2. (a)-(d): distributions of present-day parameters for RX J1856.5-3754 supporting that it was created in a SN in US about 0.3 Myr ago. (e)-(g): position of the potential SN. Lines are interpolations to easier see the shape of the histogram and determine the confidence intervals of the parameters.

From the histogram of each parameter, we obtain its value and error by drawing an interpolation curve to better characterize the shape of the distribution. The 'mean' of the parameter is then given by the maximum of the curve. The error intervals include about 68 per cent of the histogram area (note that these are not $1 \sigma$ errors). In the case of multiple peaks in the histogram, the interval between the two values which reflect a 68 per cent decrease of the maximum is given.

Fig. B1 gives an example of a $\tau-d_{\text {min }}$ contour diagram indicating the area described above. The plot shows the distribution of minimum separations between RX J1856.5-3754 and the US centre in the $\tau-d_{\text {min }}$ space. Histograms corresponding to the entries for US in Columns 4, 6 and 8-11 of Table 4 are shown in Fig. B2.

The probability of an association being the birth place of a neutron star is roughly estimated from the probability of the parallax value
needed for the scenario (Gaussian distribution according to the literature value) and the probability of the necessary space velocity (adopting the distribution by Ho05). Furthermore, we are taking into account the distance of the potential SN from the centre of the association since due to a decrease of the star density with increasing distance from the centre of an association, SNe occur more likely near the centre. To account for that we make a rough estimate of the probability of a potential SN position by taking a Gaussian distribution with $\sigma$ being half the radius of the association (weighted according to the number of member stars). This is justified since radii of associations are derived from star density profiles in most cases. The three probabilities are then multiplied.

This paper has been typeset from a $\mathrm{T}_{\mathrm{E}} \mathrm{X} / \mathrm{L}_{\mathrm{E}} \mathrm{X}$ file prepared by the author.


[^0]:    ${ }^{1}$ The minimum lifetime is actually $\approx 6 \mathrm{Myr}$. We relax that condition to account for possible uncertainties in the association age as well as the fact that also more massive stars may produce neutron stars (Belczynski \& Taam 2008).

[^1]:    ${ }^{2}$ For some cases, we obtain the parallax from other distance estimates.

[^2]:    ${ }^{3}$ Considering the present radius of an association ensures that we do not miss potential SNe that might have occurred near the edge. The former radius was surely smaller than the present one.
    ${ }^{4}$ The kick velocity strongly depends on whether the progenitor star was single or not and in the case of binarity also on the separation between the stars. However, SN kick theory predicts kick velocity distributions which are consistent with observed neutron star velocities (e.g. Scheck et al. 2006; Ng \& Romani 2007; Kuranov, Popov \& Postnov 2009).

[^3]:    ${ }^{5}$ We find additional small separations for Bochum 13 and NGC 6383; however, the fraction of such runs is very small.

[^4]:    ${ }^{6}$ We estimated the masses for the TWA members listed in F08, taking also into account that HD 98800 (Soderblom et al. 1998) and TWA-5 (Neuhäuser et al. 2000a; Torres et al. 2003) are both quadruple, using the D'Antona \& Mazzitelli (1997) model, and $2.9 \mathrm{M}_{\odot}$ for the A0-type main-sequence star HR 4796 A.

[^5]:    ${ }^{7}$ Estimating probabilities, even rough values, is unreliable in the case of RX J1605.3+3249 because of the uncertain distance. Hence, an individual discussion is appropriate.

[^6]:    ${ }^{9}$ However, some neutron stars may have been former massive runaway stars.

