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Abstract

Cardiometabolic diseases, such as type 2 diabetes and cardiovascular disease, have a high public health burden. Understanding the
genetically determined regulation of proteins that are dysregulated in disease can help to dissect the complex biology underpinning
them. Here, we perform a protein quantitative trait locus (pQTL) analysis of 248 serum proteins relevant to cardiometabolic processes in
2893 individuals. Meta-analyzing whole-genome sequencing (WGS) data from two Greek cohorts, MANOLIS (n = 1356; 22.5× WGS) and
Pomak (n = 1537; 18.4× WGS), we detect 301 independently associated pQTL variants for 170 proteins, including 12 rare variants (minor
allele frequency < 1%). We additionally find 15 pQTL variants that are rare in non-Finnish European populations but have drifted up
in the frequency in the discovery cohorts here. We identify proteins causally associated with cardiometabolic traits, including Mep1b
for high-density lipoprotein (HDL) levels, and describe a knock-out (KO) Mep1b mouse model. Our findings furnish insights into the
genetic architecture of the serum proteome, identify new protein–disease relationships and demonstrate the importance of isolated
populations in pQTL analysis.

Introduction
Cardiovascular and metabolic disorders, such as hypertension,
hyperlipidaemia, coronary artery disease (CAD) and type 2 dia-
betes (T2D), impose a heavy and increasing health burden (1,2).
Significant progress has been made in disentangling the com-
plex and overlapping genetic aetiology of these diseases through
genome-wide association studies (GWAS), which have success-
fully identified multiple genetic variants associated with disease
risk. At the same time, multiplex proteomic assays have enabled
the identification of disease-associated proteins (3–5).

However, statistical association with disease does not always
mean that the gene or protein plays a causal role. This can
be elucidated by coupling genetics with proteomics to identify

genetic variants associated with protein levels, known as protein
quantitative trait loci (pQTLs). By complementing pQTL analysis
with causal inference approaches such as two-sample Mendelian
randomization (MR), non-spurious protein–disease relationships
and, therefore, disease pathways, genetic variants, and proteins
of clinical relevance can be identified (6–12).

We have previously (10) assessed the genetic architecture of 257
serum protein levels in a Greek isolated cohort, MANOLIS, through
which we found 164 independently associated pQTLs for 109
proteins, and demonstrated the value of genetically predicted pro-
tein levels in clinical risk models. Here, we substantially increase
power by doubling the sample size, meta-analyzing whole genome
sequencing data from MANOLIS with an additional isolated
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Figure 1. Chromosomal location of cis- (red) and trans-pQTLs (blue) plotted against the chromosomal location of the gene encoding the proteins of
interest. Cis-pQTLs were defined as variants lying within 1 Mb of the start of the gene encoding the target protein.

population cohort, Pomak. We find 301 independent pQTLs for
170 proteins and describe pQTLs that are driven up in frequency
in either discovery cohort, illustrating the value of population iso-
lates in the discovery of protein-associated variation. We further
highlight previously undetected causal protein–disease associa-
tions using genetic colocalization analysis and two-sample MR.

Results
Genetic architecture of 170 proteins
We detect 301 independently associated pQTLs (P < 7.45 × 10−11)
for 170 proteins (Supplementary Material, Table S2) that are
present in both cohorts with a consistent direction of effect.
Of these, 133 variants belong to loci that were not detected
previously in MANOLIS only (10). All protein targets had between
one and eight independently associated variants (Supplementary
Material, Fig. S1), highlighting the varying complexity of protein
level genetic architecture. Additional evidence for replication was
sought in a protein level dataset of plasma samples obtained from
up to 950 individuals (Methods) from the ORCADES study (13), an
isolated population from the Orkney islands in the Northern Isles
of Scotland. In sum, 177 (58.8%) pQTLs replicated (Methods) in
this independent cohort (Supplementary Material, Table S2).

Detected pQTLs were categorized into cis- and trans-pQTLs
according to their distance to the target protein-encoding gene
(Methods); we found 215 cis-acting pQTLs for 138 proteins, and
86 trans-pQTLs for 63 proteins (Fig. 1). In sum, 31 proteins had
both cis- and trans-pQTLs. By mapping trans-pQTLs to their nearest
gene, we determined 42 trans-pQTLs located in known pleiotropic
genes; namely, ABO, CFH, HLA, F12, FUT2, ST3GAL6 and KLKB1.
Four of these genes (ABO, FUT2, F12, KLKB1) are involved in blood
coagulation pathways, whereas CFH and HLA are closely related
to inflammatory response.

Protein QTLs that act in trans are also useful for identify-
ing unknown molecular interactions. As proof of principle, we
detect an intronic trans-pQTL for C-C motif chemokine ligand 3
(CCL3) located within the encoding gene for C-C motif chemokine
receptor 3, CCR3. CCL3 is a known agonist of CCR3 that may
contribute to the aggregation of eosinophils to inflammation sites
(14). Mapping trans-pQTLs to their causal genes, however, remains
a challenge as causal genes are often not the closest ones (8,12)
(Supplementary Material, Note 1).

The majority of pQTLs are common variants (minor allele
frequency [MAF] > 5%). We find 12 rare (MAF < 1%) pQTLs and 42
low-frequency pQTLs (1% < MAF < 5%). Using Ensembl’s variant
effect predictor (VEP), we find altogether 36 (12%) pQTLs that have
a most severe consequence of missense, whereas two variants
for PRSS27 (trans-pQTL) and IL17D (cis-pQTL), respectively, are
stop-gain variants. The PRSS27-associated variant acts in trans
and is located within the pleiotropic gene, FUT2. The cis-pQTL
for IL17D and five other missense variants are all rare and were
previously undetected in MANOLIS, showing how larger sample
sizes provide increased power to detect rare associated variants
of severe consequences.

Excluding trans-pQTLs located within pleiotropic genes, we
find 35 pQTLs (11.6%) in regions that have not been reported
in other large-scale pQTL analyses (Supplementary Material,
Table S3), comprising 22 cis-pQTLs for 18 proteins, and 13 trans-
pQTLs for 12 proteins. As isolated populations often contain
private, rare variants that have drifted up in frequency because
of founder effects (15), we additionally interrogate 69 pQTLs that
are present in only one discovery cohort, of which 7 replicate in
ORCADES (10%) and 28 (40.5%) have not been previously reported
(Supplementary Material, Table S2). In sum, 15 novel pQTLs
are rare (MAF < 1%) in non-Finnish Europeans (gnomAD) but
have drifted up in frequency in one or both of our discovery
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Table 1. Novel and previously unreported pQTLs that have drifted up in frequency in MANOLIS and/or Pomak. The gnomAD-NFE MAF
column contains the minor allele frequencies (MAF) of each variant in non-Finnish Europeans (NFE) from the Genome Aggregation
Database (gnomAD). MAFs (gnomAD and 1000 Genomes) of all other detected variants are reported in Supplementary Material, Table
S4. The most severe consequences were obtained using Ensembl’s variant effect predictor (VEP). An expanded table containing the
genotype counts, Hardy–Weinberg equilibrium test P-values, and the full VEP results are in Supplementary Material, Tables S5A and B.
Abbreviations: Chr, chromosome; Pos, position; HELIC, Hellenic isolated cohorts; MAF, minor allele frequency; NFE, non-Finnish
Europeans

Protein Chr Pos rsID Cohorts cis/trans HELIC
MAF

gnomAD-NFE
MAF

Most severe
consequence

SUMF2 7 71973324 rs568788425 MANOLIS cis 0.80% 0.04% Intron
CD1C 1 158292108 rs201448758 MANOLIS+Pomak cis 1.21% 0.01% Missense
ENO2 12 6862641 rs184861396 MANOLIS+Pomak cis 0.45% 0.20% Intron
ITGB7 12 53519700 rs541150953 MANOLIS+Pomak cis 1.53% 0.18% Intron
ACP6 1 121470180 rs114127018 Pomak cis 0.90% 0.01% Intergenic
APLP1 19 35871901 rs767668877 Pomak cis 1.00% 0.00% Missense
CD93 1 3888781 rs912070506 Pomak trans 0.20% 0.01% Intergenic
CD93 2 207672303 rs942471010 Pomak trans 0.40% 0.01% Intergenic
CD93 2 227266736 rs1396628045 Pomak trans 0.40% 0.01% Non-transcript exon
IGFBP7 4 67658568 rs539585543 Pomak cis 0.70% 0.02% Intron
IL1RL2 2 89009162 rs543843028 Pomak cis 2.00% 0.13% Intergenic
KYAT1 9 126833282 rs746374838 Pomak cis 0.60% 0.00% Missense
MMP2 16 55496937 rs144755357 Pomak cis 1.30% 0.01% Missense
PSGL1 12 97893711 rs185338771 Pomak cis 0.40% 0.00% Intergenic
VSIG2 11 124706898 rs959226701 Pomak cis 0.60% 0.15% Intergenic

cohorts by at least 2.25-fold (Table 1; Supplementary Material,
Fig. S2; Supplementary Material, Table S4), including four
missense variants. None of the 15 variants were present in the
replication cohort, and proxies in linkage disequilibrium (LD)
failed to replicate. In particular, a cis-pQTL for 72 kDa type IV
collagenase (MMP2; rs144755357) that has drifted up 95-fold
in Pomak is predicted to be deleterious by SIFT and PolyPhen-
2 (Supplementary Material, Table S5). The MMP2-increasing
variant causes a p.Arg495Gln substitution within the hemopexin
C domain, which binds the inhibitor TIMP-2 (16) (Supplementary
Material, Fig. S3). We therefore demonstrate the importance of
including isolated populations in pQTL association studies as they
may contribute to high-impact variants otherwise undetectable
in cosmopolitan populations.

Identifying proteins associated with
cardiometabolic traits
To identify causal relationships between serum proteins and car-
diometabolic traits, we applied two-sample Mendelian random-
ization and colocalization analysis using GWAS summary statis-
tics of complex traits. We defined cardiometabolic traits as fol-
lows: all lipid traits; glycaemic traits; diabetes; kidney disease and
measures of kidney function; all heart conditions; hypertension;
and body-mass index (BMI) (Methods). We find 43 serum proteins
that are associated with at least one cardiometabolic trait (Sup-
plementary Material, Table S6 and S7).

Of these, 18 proteins show strong evidence of causal asso-
ciation (≥2 instrumental variables, using the inverse variance-
weighted [IVW] method) with at least one cardiometabolic trait
(Fig. 2). Of note are the TYRO3 (tyrosine-protein kinase receptor),
DLK1 (protein delta homologue 1) and CTSH (cathepsin H) pro-
teins, which are significantly associated with diabetic kidney dis-
ease (DKD). Increased TYRO3 and CTSH levels are associated with
an increased risk of DKD in individuals with type 1 or 2 diabetes,
and reduced DLK1 levels are associated with an increased risk
of DKD in individuals with T2D. Whereas CTSH and DLK1 have
not been associated with kidney disease (Supplementary Material,

Note 2), studies have shown increased TYRO3 mRNA expression
(17) and increased circulating and urinary TYRO3 levels (18) in
patients with DKD, further supporting a causal role. We also note
that TYRO3 is targeted by an approved drug for rheumatoid arthri-
tis, fostamatinib, highlighting an opportunity for the repurposing
of fostamatinib to treat DKD. We elaborate on other previously
unreported examples in Supplementary Material, Note 2.

The MR analysis further validates known protein–disease links,
showing causal associations between increased serum LDLR
(low-density lipoprotein [LDL] receptor) protein and decreased
LDL, total cholesterol and risk of coronary heart disease (19). We
also replicate a previously reported finding showing that LRIG1
(leucine-rich repeats and immunoglobulin-like domains 1) lies
on the causal path for atrial fibrillation, T2D and self-reported
hypercholesterolemia (10).

For two proteins, sulfatase modifying factor 2 (SUMF2;
Supplementary Material, Note 2) and meprin A subunit beta
(Mep1b), we observe association with cardiometabolic traits
using novel replicating pQTLs as instrumental variables. We
find that decreased serum Mep1b is causally associated with
increased HDL levels (Wald ratio PFDR = 3.38 × 10−2; beta = −0.008;
SE = 0.002). The intronic cis-pQTL, rs680321, is robustly associated
with serum Mep1b (MAF = 0.37; beta = −1.07; SE = 0.026; P = 2.50 ×
10−372; Supplementary Material, Note 3). Two other independently
associated Mep1b cis-pQTLs are private to Pomak (rs763953724,
rs1410442909); both variants are non-existent in non-Finnish
Europeans and lie upstream of the Mep1b gene.

To better understand the potential metabolic role played by
Mep1b, we systematically phenotyped an existing Mep1b KO
mouse model at the German Mouse Clinic. Monitoring body
weight from age 9 to 19 weeks revealed that Mep1b depletion in the
mouse impacts on the body mass of females, which were heavier
as a result of increased adiposity (Supplementary Material, Note 4;
Supplementary Material, Figs S4–S6; Supplementary Material,
Table S8). This sex-specific effect was not observed for the
cis-pQTL, rs680321 (sex heterogeneity P = 0.086; Supplementary
Material, Fig. S7 and Supplementary Material, Table S9).
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Figure 2. Two-sample Mendelian randomization between proteins (exposure) and cardiometabolic traits (outcome), using only downloaded summary
statistics. Points represent the effect size (beta) and direction of each causal association, with errors bars representing ±SE. Arrows indicate beta
coefficients that are below −1. Actual beta and SE values are given to the right of each plot. Traits marked with an asterisk (∗) indicate that a Wald
ratio test was performed; otherwise, the inverse-variance weighted method was used. Full MR results with MRBase traits are given in Supplementary
Material, Table S6.

Discussion
The relationship between Mep1b and cholesterol or adiposity
remains largely unexplored. Mep1b is a metalloprotease that is
involved in post-translational proteolysis of numerous targets
(20,21) in mammals. Closely related to meprin α (MEP1A),
both proteins have been implicated in inflammatory disorders,
Alzheimer’s disease, kidney disease and cancer (20). Several
substrates of Mep1b have also been linked to cholesterol levels,
such as dipeptidyl peptidase 4 (DPP4) and amyloid precursor
protein (APP) (22,23). Results from our MR analysis and mouse
phenotyping support a direct role of Mep1b in influencing
adiposity, which is a risk factor for a multitude of complex
diseases, including those previously linked to Mep1b. Given its
involvement in complex networks, however, further experiments
will be needed to identify specific pathways.

Our causal inference analysis additionally revealed car-
diometabolic traits that are associated with multiple shared
proteins (Supplementary Material, Figs S8–S10). LDL cholesterol,
total cholesterol and triglyceride levels were all causally associ-
ated with the serum levels of seven proteins: GRN, LDLR, SUMF2,
KIM1, ENTPD5, CHI3L1 and FGF21. HDL cholesterol was associated
with four of the same proteins (GRN, LDLR, SUMF2, ENTPD5), but
additionally with eight other proteins (TYRO3, HBEGF, SPON1, SCF,
TIMP4, TFPI, MEP1B, ANGPTL1, AXL) that were not significantly
associated with LDL or total cholesterol, suggesting a complex
and distinct underlying proteomic landscape. This demonstrates
the potential of such analyses to furnish insights into molecular
similarities and differences between similarly presenting diseases
or disease subtypes in future studies, facilitating efforts for more
precise diagnosis and treatment.

In this work, we detect 133 new pQTLs, 40% of which are
trans-pQTLs for 48 proteins, including the CCR3-CCL3 receptor-
ligand interaction. We were able to reproduce 92% of the 164
independent pQTLs reported previously (10), including 12 vari-
ants exclusive to MANOLIS. The remaining 13 pQTLs (12 cis,

1 trans) were not reproduced because of either the exclusion of the
protein from meta-analysis (QC failure) or a loss of significance.
Overall, 59% of our pQTLs replicated in an independent cohort.
There are several possible explanations for lack of replication,
including insufficient statistical power because of the smaller
sample size of the replication cohorts, a lack of proxies for private
variants, and differences in cell type and protein composition
between serum (MANOLIS and Pomak) and plasma (ORCADES)
(Supplementary Material, Fig. S11).

Population isolates have special population genetics character-
istics that can boost the discovery of rare variant associations.
Here, we identify 15 rare pQTLs that have drifted up in frequency
in one or both cohorts. Whole genome sequencing enables access
to the analysis of rare variants through gene-based burden test-
ing. We have recently described (24) five rare variant burden
pQTLs in MANOLIS, Pomak and ORCADES that are independent
of the single point signals reported in this work. Projects with
larger sample sizes will further increase power and are currently
underway.

We recognize several limitations to this work. First, as Olink’s
immunoassay relies on the binding of antibodies to target anti-
gens, genetic variation can alter binding sites and, therefore, the
affinity of the antibody probes to the target protein. This may
result in association signals that reflect altered protein structure
rather than changes in protein abundance. For 25 proteins with
protein-altering variants (based on Ensembl VEP classification
[Methods]), we checked for such effects through a comparison
of proteomic data by Olink versus an aptamer-based assay by
Somalogic (with different antigen binding sites) in an independent
cohort, Fenland (12). We observed good correlation (Spearman
correlation>0.5) for 13 (59%) of 22 proteins that were measured
using both technologies (Supplementary Material, Table S10), sug-
gesting genuine pQTL signals. Other than altered antibody binding
as a result of protein structure changes, weak correlations may
be explained by different technical and protein characteristics,
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as recently investigated (25). Orthogonal validation is therefore
necessary for accurate downstream biological interpretation.

Secondly, the validity of the two-sample MR results relies on
the assumptions that the genetic instruments (pQTLs) influence
the outcome (cardiometabolic trait) only through the exposure
(protein level) and are not associated with confounders (Methods).
Moreover, we note that the GWAS summary statistics used in this
analysis were not derived from WGS-based studies, and therefore
several of our instruments were not found in these datasets
and could not be used. As we only assess causality unidirection-
ally, future studies will benefit from bidirectional analyses using
larger, sequence-based exposure and outcome GWAS datasets
that can produce a greater number of reliable instruments and
provide validation. Finally, all individuals in the discovery and
replication cohorts are of European descent. Larger, ethnically
diverse sample sizes are needed to fully characterize the genetic
architecture of the serum proteome.

Materials and Methods
Sequencing and variant calling
The two cohorts were sequenced in an identical way. Genomic
DNA (500 ng) from 1482 and 1642 samples for MANOLIS and
Pomak, respectively, was subjected to standard Illumina paired-
end DNA library construction. Adapter-ligated libraries were
amplified by six cycles of PCR and subjected to DNA sequencing
using the HiSeqX platform (Illumina) according to manufacturer’s
instructions.

Basecall files for each lane were transformed into unmapped
BAMs using Illumina2BAM, marking adaptor contamination and
decoding barcodes for removal into BAM tags. PhiX control reads
were mapped using BWA Backtrack and were used to remove
spatial artefacts. Reads were converted to FASTQ and aligned
using BWA MEM 0.7.8 to the hg38 reference (GRCh38) with decoys
(HS38DH). The alignment was then merged into the master sam-
ple BAM file using Illumina2BAM MergeAlign. PCR and optical
duplicates are marked using biobambam markduplicates and the
files were archived in CRAM format.

Per-lane CRAMs were retrieved and reads pooled on a per-
sample basis across all lanes to produce library CRAMs; these
were each divided in 200 chunks for parallelism. GVCFs were
generated using HaplotypeCaller v.3.5 from the Genome Analysis
Toolkit (GATK) (26) for each chunk. All chunks were then merged
at sample level, samples were then further combined in batches
of 150 samples using GATK CombineGVCFs v.3.5. Variant calling
was then performed on each batch using GATK GenotypeGVCFs
v.3.5. The resulting variant callsets were then merged across all
batches into a cohort-wide VCF file using bcftools concat.

Variant and sample quality control
Variant-level QC was performed using the Variant Quality Score
Recalibration tool from the GATK v. 3.5–0-g36282e4 (26), using a
tranche threshold of 99.4% for SNPs, which provided an estimate
false positive rate of 6% and a true positive rate of 95%. For INDELs,
we used the recommended threshold of 1%. For sample-level QC,
we made extensive use of genotyping array datasets in overlap-
ping samples, which provided sample matching information for
1386 and 1511 samples in MANOLIS and Pomak, respectively.
In MANOLIS, a total of 25 individuals were excluded (n = 1457)
based on sex checks, low concordance (<0.8) with chip data,
duplicate checks, average depth (<10×), missingness (>0.5%) and
contamination (Freemix or CHIPMIX score from the verifyBamID
suite32 > 5%). This number was 27 for the Pomak cohort. In the

case of sample duplicates, the sample with highest quality met-
rics (depth, freemix and chipmix score) was kept.

Proteomics
The serum levels of 275 unique from three Olink (https://
www.olink.com/) panels—Cardiovascular II, Cardiovascular III
and Metabolism—were measured using Olink’s proximity
extension assay (PEA) technology (Supplementary Material,
Table S1). Briefly, for each assay, the binding of a unique pair
of oligonucleotide-labelled antibody probes to the protein of
interest results in the hybridization of the complementary
oligonucleotides, which triggers extension by DNA polymerase.
DNA barcodes unique to each protein are then amplified and
quantified using microfluidic real-time qPCR. Measurements
were given in a natural logarithmic scale in Normalized Protein
eXpression (NPX) levels, a relative quantification unit. NPX is
derived by first adjusting the qPCR Ct values by an extension
control, followed by an inter-plate control and a correction factor
predetermined by a negative control signal. This is followed by
intensity normalization, where values for each assay are centred
around its median across plates to adjust for inter-plate technical
variation. Further details on the internal and external controls
used can be found at http://www.olink.com. Additionally, a lower
limit of detection (LOD) value is determined for each protein based
on the negative control signal plus three standard deviations. In
this study, NPX values that fall below the LOD were set to missing.

We adjusted all phenotypes using a linear regression for age,
age squared, sex, plate number and per-sample mean NPX value
across all assays, followed by inverse-normal transformation of
the residuals. We also adjusted for the season, given the observed
annual variability of some circulating protein levels. Given the dry
Mediterranean climate of Crete, we define the season of collection
as hot summer or mild winter. Plate effects are partially offset by
the median-centring implemented by Olink. MANOLIS and Pomak
samples were plated in the order of sample collection, which
results in plate and season information to be largely correlated.

In MANOLIS, we excluded 13 protein measurements across all
panels with missingness or below-LOD proportion greater than
40%. BNP was measured across all three panels and was excluded
because of high missingness in all three. In sum, 26, 2 and 14
samples failed vendor QC and were excluded from Cardiovascular
II, III and Metabolism, respectively. Also, 42 samples were excluded
because of missing age. In Pomak, we excluded 15 proteins and
49, 6 and 13 samples in Cardiovascular II, III and Metabolism.
No samples were excluded because of missing covariates. Seven
proteins in MANOLIS and five in Pomak were further excluded
because of failing QC in the other cohort. A total of 255 proteins
were included in the final single-point analysis (Supplementary
Material, Table S1).

Single-point association and meta-analysis
We carry out single-point association using the linear mixed
model implemented in GEMMA v.0.94 (27). We use an empiri-
cal relatedness matrix calculated on an LD-pruned set of low-
frequency and common variants (MAF > 1%) that pass the Hardy–
Weinberg equilibrium test (P < 1 × 10−5). We further filter out vari-
ants with missingness higher than 1% and MAC < 10. Following
single-point association, a further seven proteins (GDF15, TFF3,
TINAGL1, LOX1, SRC, CTSL1, IDUA) were excluded because of
having a genomic control λGC < 0.97 or λGC > 1.05 after association
in either cohort.

GEMMA truncates alleles to a single character. In order to
enable unambiguous meta-analysis of indels, we updated alleles
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in summary statistics by matching it to the VCF. More precisely,
we join both files by chromosome and position, and match the
alleles by frequency for biallelics. For multiallelics, we compute
the difference in allele frequency between the GEMMA output
MAF, which is based on samples with non-missing phenotypes,
and the AF fields of each allele in the VCF, and use the alleles
with the lowest difference.

We use the 25 March 2011 release of METAL (28) for meta-
analysis of 248 proteins using inverse-variant based weighting.
Full summary statistics are available for download from the
GWAS Catalogue (https://www.ebi.ac.uk/gwas/); accession IDs are
provided in Supplementary Table 14.

Signal extraction and conditional analysis
Using a P-value threshold of 1 × 10−6, 495 signals were
extracted using the peakit.py routine of PeakPlotter commit
545191d6db51d87f2b549351e5cda19aaf50330e (https://github.
com/hmgu-itg/peakplotter), after filtering out index variants with
a minor allele count (MAC) of <10 or do not pass the Hardy–
Weinberg equilibrium test. PeakPlotter is based on a combination
of distance-based and LD-based pruning; specifically, the software
sorts variants passing the significance threshold by increasing the
P-value, then for each variant, computes SNPs in LD greater than
r2 = 0.2, removes them and moves on to the next variant. Variants
selected in this way located within <2 Mb of each other are then
grouped together, and the index variant is set to the variant with
the lowest P-value. Each index variant defines a signal, and we
use locus and signal interchangeably in this article. A total of 380
index variants passing the study-wide significance threshold of
P < 7.45 × 10−11 were extracted. We then extracted independent
SNV at each associated locus using an approximate conditional
and joint stepwise model selection analysis as implemented
in GCTA-COJO34, using merged cross-cohort genotypes for LD
calculation. To avoid overfitting when too many predictors are
included in the model, we perform LD-based clumping using Plink
v.1.9 (29) (www.cog-genomics.org/plink/1.9/), based on an r2 value
of 0.1 and a window of 1 Mb before the GCTA-COJO analysis (30).
The extended LD present within population isolates can cause
very large peaks to be broken up into several signals. We identified
and manually investigated 44 regions where multiple peaks were
present in close proximity of each other, reducing the number
of independent signals to 257 and the number of conditionally
independent variants to 370 (301 present in both cohorts).

Sex-specific meta-analysis
To look for sex-specific pQTLs, we investigated the heterogeneity
between males and females for all 370 conditionally independent
pQTLs present in at least one cohort. Single-point association
analyses for males and females in both discovery cohorts were
first run separately for each pQTL using GEMMA v.0.94 (27), using
the same methods as described for the main single point analysis.
With the output files, we then performed a sex-specific meta-
analysis using the GWAMA v2.2.2 software (31,32) by specifying
the —sex option. None of the 370 pQTLs show significant sex
heterogeneity using a Bonferroni-corrected P-value significance
threshold (P < 1.35 × 10−4) (Supplementary Material, Table S9).

Defining cis- and trans-pQTLs
We define cis-pQTLs as variants that lie within 1 Mb upstream
or downstream of the encoding gene, whereas trans-pQTLs are all
variants lying outside of this region.

Comparison of Olink and Somalogic proteomic
data in Fenland
Cis-acting protein-altering variants may result in false-positive
associations because of epitope effects. We note that 26 cis-acting
variants for 25 proteins have a potentially protein-truncating
effect (IMPACT of MODERATE or HIGH according to Ensembl
VEP). Comparison of Olink measurements with an alternative
assay, Somalogic, in the Fenland (12,25) cohort (https://www.
omicscience.org/apps/pgwas/) showed good correlation between
the two measurements for 13 out of 22 proteins (with cis-pQTLs)
with both Olink and Somalogic proteomic data (Supplementary
Material, Table S10).

Significance threshold
We based our significance threshold on the effective number of
variants and traits analyzed. We excluded variants with MAC < 10
from the MANOLIS cohort, then performed LD-pruning using
Plink v.1.9 (29) using the parameter—indep 50 5 2. This yielded
an Neff = 5 078 182 unique variants for MANOLIS. As computing
a similar value for the meta-analysis would have required a
computationally intensive merging of genotypes across cohorts
and handling of cohort-specific variants, we note that the Pomak
estimate is similar and that the majority of variants in the meta-
analysis will be common to both cohorts, with a further portion
of cohort-specific variants likely in LD with common ones. We
therefore use the MANOLIS Neff in our analysis. For Meff, the
effective number of phenotypes, we compute the ratio of the
eigenvalues of the phenotype correlation matrix to its maximum
and obtain 132. The resulting P-value threshold is 7.45 × 10−11.

Replication
Replication was performed in the ORCADES isolated cohort from
the Orkney archipelago in the Northern Isles of Scotland (13). In
sum, 1348 samples were sequenced using the same WGS protocol
as described for MANOLIS and Pomak. An identical phenotype
transformation was performed on 275 proteins from the CVDII, III
and META Olink panels in 995 samples. Because of quality control,
between 928 and 950 samples overlapped between the WGS and
Olink datasets. All 255 proteins analyzed in MANOLIS and Pomak
were also found in the ORCADES dataset. Association was per-
formed using GCTA v.1.93.0 beta using the MLMA algorithm (33).
In ORCADES, using common LD-pruned variants for calculating
the relatedness matrix was not sufficient, as persistent inflation
was present. We assumed this was because of a different related-
ness structure being expressed in rare variants, and we therefore
included all sequence variants in the relatedness calculation,
using five partitions of the autosomal genome. Following this,
inflation was controlled. We sought replication for each of the
370 independent variants identified by COJO that are present in
at least one cohort, using a Bonferroni threshold of 0.05/371 =
1.35 × 10−4.184 variants replicated in this way.

Novelty
Previous associations with identical proteins was of particular
interest as it determines novelty of our findings. To assess whether
a protein had been previously studied, we examined protein lists
and summary statistics from 33 large published proteomics GWAS
(Supplementary Material, Table S3). To determine the novelty
of genetic cis- and trans-association with proteins in our study,
we first determined previously reported variants within a 2 Mb
window around the association peaks. We used GEMMA (27) to
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perform association analysis using previously reported indepen-
dent variants as covariates. The variants were declared novel if
either there were no known signals in the 2 Mb window, or the
associations were still study-wide significant (P-value threshold:
7.45 × 10−11) after conditioning. For trans associations, we further
annotated signals depending on whether they fell within highly
pleiotropic genes that were associated with more than 1 protein
in the current study and had evidence of additional associations
in the literature (KLKB1, ABO, APOE, FUT2, F12, VTN, CFH, HLA), or
whether they were independent of any cis signals in the vicinity.
After this procedure, 42 cis-associated variants for 30 proteins
were either not within 1 Mb or independent of a signal reported in
previous proteomics GWAS. In sum, 37 trans-associated variants
for 34 proteins were both novel and independent from cis loci.
Only 15 of these were not located within highly pleiotropic genes.
For all loci annotated as provisionally novel using the above
method, we queried the GWAS Catalogue (34) (https://www.ebi.
ac.uk/gwas/home)in a 2 Mb window through the Ensembl (35)
REST API, as well as our PhenoScanner results. As proteomics
GWAS signals are often designated generically in Ensembl, we
additionally performed direct queries to the GWAS catalogue
REST API when phenotype descriptions were not specific enough.
We manually investigated the list of signals in search of variants
associated with the protein trait of interest. When such a variant
was found, conditional analysis was performed and the novelty
status was updated accordingly. Novelty of each independent
variant is annotated in Supplementary Material, Table S2.

Variant consequences
Consequence was evaluated using Ensembl VEP (35,36) for each
variant with respect to any transcript of the cis gene for cis-
associated variants and to the mapped gene for trans-associated
variants. For trans associations, variants were manually mapped
to any gene in a 1 Mb window coding for known ligands or inter-
actants when they were not contained within gene boundaries.
In sum, 38 replicating independent variants were protein-altering
variants with a most severe consequence equal to or more severe
than missense (https://www.ensembl.org/info/genome/variation/
prediction/predicted_data.html) according to Ensembl VEP. For
every variant, we extracted tagging SNVs at r2 > 0.8 using PLINK;
however, none of these tagging variants had a more severe conse-
quence on the target gene than the independent variant. Similarly,
we overlapped all independent variants with regulatory features
using the Ensembl REST API. 21 variants in 19 loci overlapped
with a regulatory feature. Variant consequences are annotated in
Supplementary Material, Table S2.

Gene expression QTL colocalization
We perform colocalization testing with eQTL data from the GTEx
database (37) (https://gtexportal.org/home/). First, to account for
multiple independent variants at the same locus, for every signal,
regions are extended 1 Mb either side of every independent vari-
ant, and associations are conditioned on every other variant in
the peak using GCTA-COJO; the results are used as input for the
colocalization analysis. For cis signals, expression information for
the cis gene is extracted from the GTEx database over the same
region. For trans signals, expression information is restricted to all
genes located within a 2 Mb region surrounding the variant. Then,
for every variant/gene pair, we perform colocalization testing
using the fast.coloc function from the gtx R package (https://
github.com/tobyjohnson/gtx).We use the commonly chosen value
of 0.8 as a posterior threshold to declare colocalization (38), and
default values of 1 × 10−4, with a standard deviation of 1, for
the prior probability of a variant to be causal for either trait, and

1 × 10−5, with a standard deviation of 1, for the prior probability of
a variant to be causal for both traits. In sum, 77 (35%) independent
cis variants colocalize with an expression quantitative trait locus
for the cis gene. In addition, we find that 61 (73%) trans-pQTL
variants colocalize with eQTLs for at least one gene in their
vicinity (±1 Mb), in any tissue (Supplementary Material, Table S11;
Supplementary Material, Figs S12–S13; Supplementary Material,
Note 1).

PheWAS colocalization
We use the PhenoScanner python command line tool (39,40)
(https://github.com/phenoscanner/phenoscannerpy) to query
1 Mb upstream and downstream of every lead variant in each
signal. We only considered previous associations with a reported
P-value of 0 < P < 5 × 10−8. Using the PhenoScanner associations,
we then perform colocalization testing using the same input pQTL
data and methods that were used for the eQTL colocalization
analysis. We additionally perform colocalization testing using
downloaded summary statistics for atrial fibrillation, T2D,
Alzheimer’s disease, albuminuria, BMI, waist-hip ratio, estimated
glomerular filtration rate, diabetic kidney disease and lipid levels.
References to each study and full pheWAS colocalization results
are presented in Supplementary Material, Table S7.

Drug target evaluation
For evaluating whether associated genes were drug targets, we
used the OpenTargets (41) and DrugBank (42) databases. We
accessed OpenTargets using the OpenTarget API. We converted
the DrugBank XML file to flat files using the dbparser R package,
and performed gene name matching using the USCS Gene
Info database (https://genome.ucsc.edu/), downloaded May 6,
2019.35 of the proteins for which a signal was detected at
study-wide significance were targeted by drugs according to
OpenTargets. This was true for 70 proteins when queried against
the DrugBank database (Supplementary Material, Table S12).
In sum, 29 proteins are targeted by drugs according to both
OpenTargets and DrugBank databases.

Mouse phenotype evaluation
We use the Ensembl (35) REST API to extract mouse orthologs
for all of the 170 genes that encode proteins for which genetic
associations were found in our study. According to the IMPC (43)
API (https://www.mousephenotype.org/), KO experiments for 36
of these orthologs were associated with 70 unique phenotypes,
with a P-value smaller than 1 × 10−4 (Supplementary Material,
Table S13).

Two-sample MR
We extracted variants characterized as independent signals by
GCTA-COJO (30) on a protein-by-protein basis across all cis- and
trans-loci, and excluded novel variants without an rsID. For each
remaining variant, we then extracted their pQTL summary statis-
tics. When a variant was not present in the outcome GWAS
summary statistics, we considered pQTL summary statistics for
tagging positions with r2 > 0.8. All such records were then merged
by protein and carried over to MR analysis using the MRBase R
package (44), where they were merged with the exposure datasets
by rsID. MR was performed for 105 proteins on a set of 261
medically relevant traits available in MRBase. We defined car-
diometabolic traits as: all lipid traits; glycaemic traits; diabetes;
kidney disease and measures of kidney function; all heart condi-
tions; hypertension; and BMI. These are annotated in Supplemen-
tary Material, Table S6. As all of our instruments involved a small
number of variants (≤10), we used the inverse-variance weighted
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method, except for single-instrument analyses where we use
the Wald ratio test, which consists of dividing the instrument-
outcome by the instrument-exposure regression coefficient. All
P-values were adjusted for multiple testing using the Benjamini–
Hochberg method, using the adjusted P < 0.05 as the threshold for
significant association.

An important caveat of our overlap-maximizing approach is
that we did not require overlapping variants to be lead variants
in the outcome trait GWAS. This could potentially lead to false-
positives for single-instrument tests if the variant is located at the
shoulders of an association peak in the outcome trait GWAS. The
future availability of population-scale association studies with
WGS or WES will greatly enhance the variant overlap compared
with GWAS, and hence increase the power of MR analyses in
proteomics. In addition to summary statistics available in MRBase,
we also leveraged summary statistics manually downloaded from
recent large association studies for: albuminuria, diabetic kidney
disease, atrial fibrillation, BMI, CAD, lipid levels, T2D. PMID refer-
ences for these studies are provided in Supplementary Material,
Table S6.

Mep1b mouse model
Mep1b −/− (C57BL/6 N) mouse model is described in our previous
study (45). The targeted mutation leads to the disruption of the
catalytic centre in exon7 of the wild-type allele.

Mouse phenotyping
Mice were maintained in IVC cages with water and standard
mouse chow according to the directive 2010/63/EU, German laws
and GMC housing conditions (https://www.mouseclinic.de). All
tests were approved by the responsible authority of the district
government of Upper Bavaria.

In total, 18 mutant mice (9 males, 9 females) and wild-type con-
trol littermates (10 males, 10 females) underwent a systematic,
comprehensive phenotyping screen by the German Mouse Clinic
at the Helmholtz Zentrum Muenchen (https://www.mouseclinic.
de) as previously described (46–49). This screen started at the age
of 8 and 9 weeks for male and females respectively and covered
multiple parameters in the areas of behaviour, cardiovascular
function, clinical chemistry, dysmorphology, energy metabolism,
eye analysis and vision, haematology, immunology, neurology,
allergy and pathology.

Body weight
Body weight was measured at different time-points at a range of
8–19 weeks.

Body composition analysis
Body composition was analyzed at 13 and 18 weeks. Lean tissue
and body fat in live mice without anaesthesia were measured
by the whole-body composition analyzer (Bruker MiniSpec LF 50)
based on Time Domain Nuclear Magnetic Resonance.

Blood collection
Blood samples were collected under isoflurane anaesthesia by
retrobulbar puncture after overnight food withdrawal at 11–
12 weeks of age and as a final blood withdrawal from ad libitum
fed animals at 19–20 weeks. Blood samples for clinical chemistry
analyses were collected in Li-heparin-coated tubes and stored
at room temperature for one to three hours until centrifugation
(4500 × g, 10 min) and separation of plasma aliquots for further
analyses.

Clinical chemistry
The clinical chemistry analyses of circulating biochemical param-
eters in blood was performed using a clinical chemistry ana-
lyzer (AU480 autoanalyzer, Beckman Coulter, Krefeld, Germany).
Fasting plasma lipid and glucose levels at 11–12 weeks of age
and a broad set of parameters from fed animals at 19–20 weeks
were measured using the respective kits provided by Beckman
Coulter, including various enzyme activities as well as plasma
concentrations of specific substrates and electrolytes in ad libitum
fed mice (50).

Statistics
Data generated by the German Mouse Clinic were analyzed
using R (Version 3.2.3). Tests for genotype effects were made by
Wilcoxon rank sum test, linear models, or ANOVA depending on
the assumed distribution of the parameter and the questions
addressed to the data. A P-value <0.05 has been used as level
of significance; a correction for multiple testing has not been
performed. Figures were prepared using GraphPad Prism version
7.00 for Windows (GraphPad Software, La Jolla, California, USA).
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