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Abstract

We develop a fully nonparametric identification framework and a test of col-

lusion in ascending bid auctions. Assuming efficient collusion, we show that the

underlying distributions of values can be identified despite collusive behaviour when

there is at least one bidder outside the cartel. We propose a nonparametric esti-

mation procedure for the distributions of values and a bootstrap test of the null

hypothesis of competitive behaviour against the alternative of collusion. Our frame-

work allows for asymmetric bidders, and the test can be performed on individual

bidders. The test is applied to the Guaranteed Investment Certificate auctions

conducted by US municipalities over the Internet. Despite the fact that there have

been allegations of collusion in this market, our test does not detect deviations from

competition. A plausible explanation of this finding is that the Internet auction

design involves very limited information disclosure.
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1 Introduction

Collusion in auctions is an antitrust violation, but is nevertheless a pervasive phe-

nomenon. It has been subject to many empirical studies. However, much of the research

has focused on the sealed-bid, first-price auction format. For example, Porter and Zona

(1993) and Bajari and Ye (2003) have studied collusion in highway procurement, while

Porter and Zona (1999) and Pesendorfer (2000) have studied collusion in school milk

procurement.1

There has been relatively less empirical or econometric work on collusion in open (or

English) auctions, partly because of the dominance of the sealed-bid format in public

procurement and sales.2 The arrival of the Internet has greatly reduced the costs of

bringing buyers and sellers together, and thus contributed to the increase in popularity

of open auctions.

In this paper, we provide a structural nonparametric identification, estimation and

testing framework for collusion in open Internet auctions. The analysis focuses on the

commonly accepted theoretic model of such auctions, namely the button (or thermome-

ter) model, where the price is risen continuously and bidders drop out irrevocably. This

model is becoming increasingly relevant for the auctions conducted over the Internet.

The reason for this is the availability (and popularity) of electronic bidding agents that

update bids continuously on bidders’ behalf, which effectively implements the button

model.

We make the most often exploited assumption: bidders draw their values indepen-

dently (the IPV framework), however, allowing for bidder asymmetries. As the bench-

mark, and also the first step in our approach, we consider a model where there is no

collusion. The main difficulty with identification and estimation of value distributions

is the censoring problem: while the losing bids reveal bidder values, the winning value

is censored. Our approach to de-censoring is based on the Nelson-Aalen estimator origi-

nally developed in the competing risks literature. We derive a simple formula that allows

one to identify the value distribution of a particular bidder using only its losing bids and

the losing bids of its highest rival.

Our main contribution is to extend this de-censoring technique to potentially collud-

ing bidders. We restrict attention to collusion through cover (or phantom) bidding, a

1See a survey by Harrington (2008) for more examples.
2One exception is Baldwin et al. (1997), who have studied collusion is timber auctions.
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commonly used form of collusion in auctions. We allow such cover bidding to take the

form of nonparticipation, where instead of submitting a low bid, the cover bidder does

not bid at all. This is because only the highest cartel bid is used for identification, as

will be explained shortly.3

Our result is made feasible due to several identifying assumptions. First, we assume

that values are drawn independently, allowing, however, for nonidentical distributions.

The latter is important because the cartel is usually stronger on average than any of the

non-cartel bidders.

Second, it is assumed that only one serious bid is submitted by the cartel, by a bidder

that we call the cartel leader. The cartel leader is assumed to be selected efficiently, i.e.

as the bidder with the highest valuation. This efficiency assumption is commonly made

in the empirical literature on auctions, and is also supported by auction theory, as we

explain in the next section.

Third, it is assumed that there is at least one competitive firm bidding against the

cartel. This is often the case empirically, as e.g. in Porter and Zona (1993), Porter and

Zona (1999), and Baldwin et al. (1997). Apart from this, the composition of the cartel

does not need to be known. It is only important that the cartel leader bids competitively

against the non-cartel firms.4

The cartel leader’s value is censored from above by the competitive bid. At the same

time, being the maximal value among the cartel bidders, it is censored from below by

the second-highest cartel value. So unlike the competitive setup, here we have a joint

censoring of the value both from above and below. Nevertheless, we show that the value

distribution can be de-censored for each bidder in the cartel. This is because, as we show,

the selection mechanism is identifiable under efficient collusion. This identification result

is constrictive in that it gives a closed-form formula for the de-censored distribution of

the values of the cartel members that is simple to estimate nonparametrically.

In our analysis, the cartel set should be understood as a suspect set. If competitive

firms are mistakenly included in the cartel, the identification of the values of the colluders

is unaffected as long as there is at least one competitive firm outside the cartel. Empir-

ical studies often provide direct evidence as to who might be a potential colluder. This

3See, e.g. Porter and Zona (1993) and Baldwin et al. (1997). Collusion in auctions can take other
forms, notably a market division agreement. See Hendricks and Porter (1989). Pesendorfer (2000)
presents evidence that collusion takes different forms in highway procurement auctions in Florida and
Texas.

4It is also permissible that the fringe firms collude among themselves.
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evidence often allows to plausibly argue that certain firms are “clean”, i.e. did not par-

ticipate in the conspiracy. Sometimes the cartel composition is known, as the defendant

in an antitrust case as in Porter and Zona (1993) and Porter and Zona (1999). However,

the strength of our approach is that it works under minimal knowledge concerning the

composition of the cartel.

As we have argued, regardless of whether a bidder is competitive or not, its value

distribution can be identifiable through our de-censoring approach. This allows us to

construct the counterfactual distribution of its bids under competition, even if the bid-

der’s actual behaviour is collusive. If the bidder is competitive, then the counterfactual

and actual distributions will coincide. However, if the bidder is collusive, we show that

the counterfactual competitive bid distribution stochastically dominates the actual col-

lusive one. This allows us to design a formal statistical test of the null hypothesis of

competitive bidding agains the alternative of collusive bidding. The test can be applied

individually bidder by bidder, or can be applied jointly to a group of bidders.

Our test is initially developed at the individual bidder level. However, in combination

with Bonferroni-type sequential hypothesis testing such as Holm (1979), it leads to a

simple estimator of the composition of the cartel. In our setting, the Holm-Bonferroni

procedure works as follows. First, each bidder in the suspect set is tested and the p-

value of the test recorded. Second, the p-values are ordered from smallest to highest. The

bidders are then tested sequentially at appropriately adjusted levels of significance. If the

competitive behaviour of the suspect bidder with the smallest p-value is not rejected, then

the procedure terminates with no collusion found. If not, then this bidder is classified

as a colluder, and the procedure moves to the next bidder in the order. This bidder is

tested at a higher level of significance, and is included in the cartel following rejection.

If no rejection occurs, then the test finds no presence of a cartel, as it is impossible to

have a single-firm cartel. Continuing in this fashion until termination, the procedure

results in an estimated cartel set with at least two bidders. The probability of one or

more false bidder inclusions in the cartel is controlled overall at a predetermined level of

significance, e.g. 5%. Moreover, the estimator of the cartel set is consistent.5

Once the collusive set has been estimated, we can proceed to estimate the collusive

damages. For each colluding bidder, we can estimate its value distribution, which deter-

mines its dropout prices under competition. This allows us to recover the distribution

5Recently, Coey et al. (2014) considered placing bounds on collusive damages and proposed an
approach based on bidder exclusion.
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of the auction price if all bidders were competitive, and to compare this counterfactual

distribution with the actual distribution of the prices. For example, one could estimate

the average loss of revenue due to collusion, and other statistics of the loss’ distribution.

In our empirical application, we employ a new dataset of auctions for municipal

guaranteed investment contracts (GICs for short). These contracts arise as a result of

municipal bond issuance. Municipalities auction off cash from bond sales to financial

institutions, awarding it in whole to the bidder that offers the highest interest rate on

the investment.

Over the past decade, Grant Street Group Inc. (GSG) has successfully provided

municipalities with an Internet auction platform. This platform has been used for bond

sales, foreclosure sales, and GIC auctions. Our dataset contains GIC auctions conducted

over the Internet by GSG. The rules of the auctions involve “closed exit” (as defined

by Milgrom (2004)), in that bidders do not observe exit by other bidders. The design

adopted by GSG allows bidders employ electronic bidding agents, which upgrade their

bids in small increments up to the maximum value specified by the bidder. The only

information disclosed to the bidders at any time is the status of their bid: winning or not

winning. The bidders are not provided any information about actions of other bidders

participating in the auction. This makes it a dominant strategy for a bidder to bid up to

its value under competition, so that the auction conforms closely to the button model.

It is well known that open auctions may be prone to collusion, as bidders may signal

their intentions through their behaviour in the auction. This has been documented for

example in spectrum auctions, see vivid discussions in Klemperer (2002). Marshall and

Marx (2009) have recently argued that by restricting the information flow in the open

auction, the seller can inhibit collusion. This can be more easily achieved on the Internet,

as the communication protocol could be programmatically enforced. Marshall and Marx

(2009) formally show that first-best collusion cannot be achieved at an open auction if

the identities of the registrants as well as of the current highest bidder are not disclosed.6

The GSG open auction platform is marketed as a transparent mechanism that may

help municipalities combat bidder collusion, which had been a pervasive problem in the

municipal derivative market.7 Whether or not the open Internet GIC auctions have

6This is true even if the auctioneer reveals the winner’s identity. See Proposition 3 in Marshall and
Marx (2009).

7See a recent article in Bond Buyer, the leading municipal fi-
nance periodical, available at http://www.bondbuyer.com/issues/122_1/

will-market-see-more-big-rigging-cases-in-2013-1047224-1.html?zkPrintable=true. This
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been successful in achieving the goal of combatting collusion is an interesting empirical

question investigated in our paper. We take advantage of the fact that the set of alleged

conspirators in GIC auctions can be determined from court case filings for non-Internet

auctions. Our test finds no evidence of collusive behaviour.

We are not aware of any previous research on nonparametric identification of collusion

in open auctions. We believe our paper is the first one to investigate this issue. Our

parallel contribution is that we propose full identification of model primitives under

collusion. This can be used to address other important policy questions such as, for

example, the optimal reserve price under collusion.

Relation to the existing literature

A common approach in the empirical literature on collusion in auctions is to use different

bid responses to exogenous variation under collusion and competition. Porter and Zona

(1993) study collusion in first-price highway procurement auctions conducted by The

New York State Department of Transportation. They use measures of capacity and

utilization rates as explanatory variables, and develop a likelihood-based model stability

test across low and high bid ranks. The cartel composition is known in their case as

they have access to court records. They find that parameter estimates are stable for the

competitive group, but not for the cartel, which provides strong reduced-form evidence

for collusion in the form of phantom bidding.

In another influential paper, Porter and Zona (1999) consider collusion in Ohio school

milk auctions. They find that while the probability of submitting a bid falls with distance

for non-defendant diaries, it increases for the defendants. Also, bid levels increase with

distance for the non-defendants, but decrease for the defendants. These reduced-form

finding convincingly point to collusion among the defendants, in the form territorial

allocation.

Bajari and Ye (2003) adopt a structural approach in their study of collusion in high-

way procurement. The essence of their approach is to derive high-level testable predic-

tions of the competitive model such as conditional independence and exchangeability,

and build a statistical test based on these predictions. The main structural assumption

is that the cartel is efficient, as in our paper. An extension of Bajari and Ye’s approach

to English auctions is difficult because censoring of the highest valuation implies that

will be discussed in more detail in Section 6.2 of this paper.
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the dropout prices are correlated even under competition.

Aryal and Gabrielli (2013) consider a different test of collusion in first-price auctions.

They exploit the variation in the number of bidders to argue that only the true model

(competition or collusion) results in stable distributions of bidder values.

There is very little work on collusion in open English auctions. Baldwin et al. (1997)

considered collusion in US Forest Service Timber auctions. They consider a symmetric

setting where bidders draw values from the same parametric distribution, and assume

that the cartel is efficient. Within their parametric specifications, they compare likeli-

hoods of competitive and collusive models and find support for collusion.

Asker (2010) has estimated damages from collusion in a structural model of a knock-

out auction of stamp dealer cartel.

Athey and Haile (2002) is a fundamental paper on identification in auctions, and

provides a proper perspective on our identification results. Without collusion, and in

the IPV framework as in our paper, it is well understood that the asymmetric ascending

bid auction is identifiable. For example, one can invoke an “identification at infinity”

argument. The model is identifiable even if only winning bids are observable. This has

been established in Athey and Haile (2002), building on the results for competing risks in

Meilijson (1981).8 However, feasible nonparametric estimators have not been developed

due to the complex nature of the identification arguments.9

Our estimator in the absence of collusion is based on a well-known Nelson-Aalen

estimator for models with random censoring.10 However, its application to auctions is

novel as is our approach to the identification and estimation of the value distributions

under collusion.

Our approach relies on the button model of the English auction. Haile and Tamer

(2003) emphasize that losing bids do not necessarily reflect true values because of jump

bidding in many real-world open auctions. Be this at it may in the traditional open

auctions, the arrival of the Internet has opened door to new ascending-bid auctions that,

as we have argued, conform more closely to the original “button” model considered in

the theoretical literature.

8This approach has been recently extended by Komarova (2013).
9The identification using winning bids only relies on Pfaffian integral equations, which are very

difficult to solve even numerically. See Brendstrup and Paarsch (2007), who instead appeal to parametric
flexible-form maximum likelihood estimation. We should also mention that outside the IPV framework,
the model is not identifiable even under symmetry. A recent paper by Aradillas-López et al. (2011)
addresses partial identification of this model.

10See e.g. the discussion in Section 20.15 in van der Vaart (1998).
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Our main structural identification assumption is that the cartel is efficient. This as-

sumption is commonly assumed in the empirical literature on auctions, e.g. Bajari and

Ye (2003), Baldwin et al. (1997). Auction theory also supports it. Graham and Marshall

(1987) show that, if the bidding cartel is able to distribute the spoils of collusion ex ante,

it can efficiently select the cartel leader using an open knockout auction. In addition,

Mailath and Zemsky (1991) show that efficient collusion can be sustained through appro-

priate ex-post side payments between the cartel members if the values are independent,

while Hendricks et al. (2008) show that this continues to be true if values are affiliated.11

When cartel bidders are symmetric, a simple knockout auction exists that selects the

leader efficiently and balances the budget ex post.

2 Identification under competition

In the baseline competitive model, we consider a standard independent private values

(IPV) setting where there are N bidders participating at an auction. The set of bidders

is denoted as N = {1, ..., N}.

Assumption 1 (IPV). Each bidder i ∈ N draws its value independently from a cumu-

lative distribution Fi(·). We assume that the support [0, v] is the same for all bidders.

The density of Fi is denoted as fi.

In an ascending button auction, only the losing bids are equal to valuations in a

dominant strategy equilibrium. The winning bid only provides a lower bound on the

valuation of the winner. For any bidder i, let Vi denote its value, and let V−i denote

the maximum value of its rivals, V−i = maxj 6=i Vj. The distribution of V−i is denoted as

F−i(·). The indicator variable wi ∈ {0, 1} is equal to 1 if bidder i wins the auction, and

is equal to 0 if he looses. If wi = 0, Vi is observable, while Vi is censored from above by

V−i when wi = 1. Let gi(v|wi = 0) be the density of i’s bids, or equivalently, the values

conditional on losing the auction. It is directly identifiable from the data.

We now show how to recover Fi. Since Vi and V−i are assumed to be independent,

the Bayes rule yields

gi(v|wi = 0) =
fi(v)(1− F−i(v))

P(wi = 0)

11However not if values are common. See Hendricks et al. (2008).
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=⇒ fi(v) =
gi(v|wi = 0)P(wi = 0)

1− F−i(v)
.

Dividing both sides of the last equation by 1− Fi(v), we obtain

fi(v)

1− Fi(v)
=

gi(v|wi = 0)P(wi = 0)

(1− Fi(v))(1− F−i(v))
. (1)

Our key insight is that the function that appears in the denominator above is directly

identifiable. The independence between Vi and V−i implies that

(1− Fi(v))(1− F−i(v)) = P(min{Vi, V−i} ≥ v).

However,

Bi = min{Vi, V−i} = wiV−i + (1− wi)Vi

is in fact equal to bidder i’s actual bid (whether losing or winning), and is directly

observable. Its distribution

Gi(v) ≡ P(Bi ≤ v)

is therefore directly identifiable from the data. Then the result in equation (1) can be

equivalently stated as

fi(v)

1− Fi(v)
=
gi(v|wi = 0)P(wi = 0)

1−Gi(v)
, (2)

where the expression on the right-hand side involves only terms that can be directly

estimated from the data.

It will prove convenient to define

G0
i (b) ≡ P (Bi ≤ b, wi = 0) = Gi(b|wi = 0)P(wi = 0),

and its derivative

g0i (b) ≡
dG0

i (b)

db
.

We can now re-state the identification result in (2) as

−d log(1− Fi(v))

dv
=

g0i (v)

1−Gi(v)
.
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The left-hand side of this equation can be recognized as a full derivative, so we can

integrate this equation and recover the distribution of i’s values Fi(·). The result is

given in the proposition below.

Proposition 1 (Identification under competition). Under Assumption 1, we have

Fi(v) = 1− exp

(

−
ˆ v

0

dG0
i (u)

1−Gi(u)

)

. (3)

This result can be viewed as an adaptation of the well-known Nelson-Aalen estimator

originally developed for cumulative hazard functions (Nelson (1969, 1972), Aalen (1978))

to ascending auctions. The functional that appears on the right-hand side of (3) will be

used repeatedly in the sequel. It is defined, for any two functions H1(·) and H2(·), as12

ψ(H1, H2)(v) = 1− exp

(

−
ˆ v

0

dH1(u)

1−H2(u)

)

. (4)

3 Collusion

In this section, we show that the distributions of bidder valuations are identifiable even

in the presence of collusion. We assume that a subset of bidders potentially forms a

bidding cartel. The identification is shown under a number of assumptions.

First, we assume that the cartel is not all inclusive. That is, it is known to the

researcher that at least one bidder behaves competitively, i.e. bids up to its true value.13

Denote the set of competitive bidders as Ncom.

Assumption 2 (Competitive bidder). There is at least one competitive bidder, i.e. the

set Ncom is non-empty.

We assume that some bidders may be colluding. The colluding bidders are necessarily

contained in

Ncol = N\Ncom.

We shall sometimes refer to Ncol as the suspect set, as this set may also include some firms

that are in fact competitive. It is important to note that the set of actually colluding

bidders C ⊆ Ncol is not a priory known. We also allow for no collusion at all, in which

12 This functional is well-defined when H1 has bounded variation.
13This assumption can be relaxed, as we remark in the sequel.
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case C = ∅. Our identification approach is based on the idea that a cartel firm still

behaves competitively if it is the cartel leader, i.e. the designated highest bidder from

the cartel.

Second, we restrict attention to efficient collusion, where the ring (cartel) leader is

the bidder with the highest valuation of the item.14

Assumption 3 (Efficient collusion). The valuation of the cartel leader is equal to maxk∈C Vk.

Let ℓi = 1 indicate the event that bidder i has the leading (maximum) value in the

suspect set Ncol, otherwise ℓi = 0. This obviously includes the event when bidder i is the

cartel leader under efficient collusion, however also requires i’s value to be higher than

any of the competitive bidders’ values in Ncol. By the Bayes rule,

fi(v|ℓi = 1) =
P(ℓi = 1|Vi = v)fi(v)

P(ℓi = 1)

=⇒ fi(v) =
P(ℓi = 1)fi(v|ℓi = 1)

P(ℓi = 1|Vi = v)
. (5)

Conditional on being a leader, i bids competitively against the competitive fringe Ncom.

This implies that the density fi(v|ℓi = 1) is identifiable using the results in the previous

section, i.e. by considering i’s bids that are both leading (ℓi = 1) and loosing in the

action (wi = 0) against the competitive fringe. Let

Vcom = max
k∈Ncom

Vk

be the maximum value in the competitive fringe Ncom. In parallel to (3) in the previous

section, the distribution of i’s values conditional on leading the cartel,

F ℓ
i (v) ≡ Fi(v|ℓi = 1),

is identifiable through the de-censoring formula

F ℓ
i (v) = ψ

(

G0,ℓ
i , Gℓ

i

)

(v), (6)

14This assumption is a reasonable one in empirical applications, and is frequently made in the litera-
ture. See e.g. Bajari and Ye (2003).
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where the distributions G0,ℓ
i (b) and Gℓ

i(b) are now conditional on being the cartel leader,

G0,ℓ
i (b) = P(bi ≤ b, wi = 0|ℓi = 1), Gℓ

i(b) = P(bi ≤ b|ℓi = 1).

Note that both G0,ℓ
i (b) and Gℓ

i(b) are identifiable from the data.

Continuing the identification argument, the selection probability P(ℓi = 1|Vi = v)

that appears in (5) is not directly identifiable. In order to apply the above result, we

propose a transformation that does not involve P(ℓi = 1|Vi = v). Dividing both sides of

(5) by Fi(v), we get

F ′
i (v)

Fi(v)
=
P(ℓi = 1)fi(v|ℓi = 1)

P(ℓi = 1|Vi = v)Fi(v)
. (7)

Under independence and efficient collusion, the leader selection probability is simply the

product of the CDFs of bidders in Ncol\{i},

P(ℓi = 1|Vi = v) =
∏

j∈Ncol\{i}

Fj(v) (8)

=⇒ P (ℓi = 1|Vi = v)Fi(v) =
∏

j∈Ncol

Fj(v) ≡ Fcol(v) (9)

where Fcol(v) is the distribution of the maximum value Vcol in the suspect set,

Vcol = max
k∈Ncol

Vk.

Since the bidder with valuation Vcol bids competitively against the maximum value

Vcom in competitive fringe Ncom, the distribution Fcol(v) is identifiable by de-censoring

in parallel to (3) from the previous section:

Fcol(v) = ψ(G0
col, Gcol)(v), (10)

where

G0
col(u) = P{min{Vcom, Vcol} ≤ u;wcol = 0}, Gcol(u) = P{min{Vcom, Vcol} ≤ u}.

Note that both G0
col and Gcol are identifiable because min{Vcom, Vcol} is observable.

Substituting (9) into (7), we obtain a differential equation for Fi(v) that only involves

12



identifiable objects,

dFi(v)

Fi(v)
=
dF ℓ

i (v)

Fcol(v)
. (11)

This differential equation can be integrated backwards using the boundary condition

Fi(∞) = 1 to yield a unique solution given in the proposition below, which is our main

result in this section.

Proposition 2 (Identification under efficient collusion). Under Assumptions 1–3, the

distributions Fi(·) are identifiable. The identification of Fi(·) for the known competitive

bidders is unaffected and proceeds according to (3), as before. The identification of {Fi(·) :
i ∈ Ncol} can be performed according to

Fi(v) = exp

(

−
ˆ ∞

v

dF ℓ
i (u)

Fcol(u)

)

, (12)

where the distributions F ℓ
i (v) and Fcol(v) are identifiable from the previous step according

to (6) and (10) respectively.

The intuition behind this identification result can be summarized as follows. First,

even though bidders in the cartel may submit noncompetitive “cover" bids, the cartel

leader bids competitively against any competitive bidder (i.e. any bidder in the set Ncom).

In particular, we use the fact that it bids competitively against the highest bidder in Ncom.

The implication of this observation is that, conditionally on being a cartel leader, the

bidder’s behavior in the auction is in fact competitive. The de-censoring approach can

be used to identify, for any suspect bidder, the distribution of valuations conditionally

on leading the cartel.

Second, under our assumption that the cartel is efficient, the valuation of the cartel

leader is censored from below. We have shown that the de-censoring approach can be

suitably extended to uncover the marginal distribution of bidder values even in this case.

Assumption 2, which requires that there is at least on competitive bidder, can be

relaxed. If the seller is an active participant in the auction, then the seller’s bid can be

used instead of the maximum competitive bid for the purposes of identification, as long

as it is independent of the maximum cartel value. The seller may or may not know that

it is facing a cartel, and may or may not bid optimally. It would only be required that

the seller’s bids have support [b,∞) for some b ≥ 0.
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3.1 Identifying collusion

The result in Proposition 2 can be used as a basis for a test of collusion. Regardless of

whether bidder i ∈ Ncol is colluding or not, and regardless of the potential presence of

an unknown (but efficient) cartel, we can identify the predicted distribution of its bids

if i were competitive. It is assumed that, if there is a cartel, it continues to operate

with bidder i excluded. This (potentially counterfactual) distribution is denoted as

Gpred
i (v). As Vi, V−i are independent if bidder i is competitive, the upper CDF of i’s bid

Bi = min{Vi, V−i} is given by the product

1−Gpred
i (v) = (1− Fi(v))(1− F−i(v)),

=⇒ Gpred
i (v) = 1− (1− Fi(v))(1− F−i(v)). (13)

In this formula, Fi(v) is identifiable according to (12), and F−i(v), the distribution of

the maximum of all bidder values excluding bidder i, is identifiable by analogue to (3):

F−i(v) = ψ(Gi(·|wi = 1)P(wi = 1), Gi(·))(v) (14)

Alternatively, since all the individual CDFs have been identified, one can take

F−i(v) =
∏

j 6=i

Fj(v). (15)

It will be more convenient to use the latter expression for F−i.

The actual behavior of bidder i may be collusive. For a bidder to add value to the

(efficient) cartel in an English auction, it must be the case that when the bidder enters

a cover bid, this bid must be less than the true value with a positive probability. It may,

for example, be the case that the cover bidder bids competitively against a non-cartel

bidder, but when that bidder drops out, it stops bidding. Alternatively, the cover bidder

may continue bidding up to some (possibly stochastic) threshold.

We restrict attention to equilibria in weakly undominated strategies, where no bidder

will ever bid above its valuation. This implies Bi ≤ Vi. Under collusion, we assume that

the dropout price for each bidder in the cartel is strictly less than its true value with a

positive probability.
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Assumption 4 (Cover bids). For any collusive bidder, i ∈ C, P{Bi < Vi} > 0.

The following stochastic dominance result then follows from Theorem 1 in Hanoch

and Levy (1969).15

Proposition 3 (Testable prediction for collusion). Under Assumptions 1–3, the predicted

competitive distribution of i’s bids is identified. Moreover, it stochastically dominates the

distribution of i’s bids if bidder i is collusive: Gi(b) ≥ Gpred
i (b), with strict inequalities

for some b’s.

The actual distribution Gi(b) is directly identifiable from the data, while the coun-

terfactual (predicted) distribution Gpred
i (b) under competition is identifiable according

to (13). Therefore, the result in Proposition 3 can be used as a basis of an econometric

test of collusion. Such a test is developed in the subsequent sections of the paper.

4 Estimation

We consider an i.i.d. sample of L auctions, with each individual auction indexed by

l = 1, ..., L. For simplicity, we assume that all N bidders participate.16 Each auction is

characterized by a vector of valuation draws (v1l, ..., vNl).
17

The bids are denoted as bil. For each bidder i ∈ N , the maximal bid of its rival is

denoted as b−il = max {bjl : j ∈ N\{i}}. For i ∈ N , wil ∈ {0, 1} denotes whether bidder

i is the winner or not: wil = 1 if bil > b−il, and wil = 0 if bil < b−il. In equilibrium,

ties will have zero probability, so the allocation rule adopted for tied bids is immaterial.

Conditional on losing, i.e. on wil = 0, the bidder’s valuation vil is revealed and equal to

15This theorem states that if
´

H(b)dG0(b) ≥
´

H(b)dG(b) for any nondecreasing function H(·), with
a strict inequality for at least one such function, then G0(b) < G(b) for some b. In our case, it is sufficient
to pick the identity function, H(b) = b. Then, since Assumption 4 implies E{Vi} > E{Bi}, we have
´

bdG0 = E{Vi} > E{Bi} =
´

bdG.
16So the set of potential participants is N = {1, ..., N} and is assumed to be the same for all auctions.

A realistic feature of auction data, including the empirical application in this paper, is that not all
bidders participate in all auctions. Moreover, non-participation may be a form of collusion, as some
“cover" bidders may choose not to participate at all, rather than submitting non-serious bids. In this
section, we abstain from these possibilities.

17For now we abstract from auction characteristics (covariates). At least on a conceptual level, it
is not difficult to incorporate covariates, and later in the paper, we show how our approach can be
generalized. In practice, the covariate problem is often finessed by performing a first-stage regression
and then applying the estimators to the residuals of this regression, as recommended by Haile et al.
(2003). This approach is often preferable as it also avoids the curse of dimensionality.
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its bid, while for a winning bid, it is only known that the valuation is at or above the

bid:

vil







= bil, wil = 0

≥ bil, wil = 1

Our estimation strategy will be based on a plug-in method, where the distributions

that appear in the decensoring formulae are replaced by their empirical analogues. The

distributions G0
i , Gi can be consistently estimated as18

Ĝi(b) =
1

L

L
∑

l=1

✶[bil ≤ b], Ĝ0
i (b) =

1

L

L
∑

l=1

✶[bil ≤ b, wil = 0]. (16)

Plugging these estimators into (3), we obtain an estimator for the distribution of valua-

tions of a competitive bidder i:

F̂i(v) = ψ(Ĝi, Ĝ
0
i )(v). (17)

It can be shown, as an application of the continuous mapping theorem, that the

estimator F̂i is consistent on the entire suppport [0, v]. The rate of convergence can

also be established by standard methods. However, we do not pursue this, as weak

convergence results and the bootstrap approach will be our main tool for inferences and

testing.

Our main tool for deriving the asymptotic distributions of the estimators and their

bootstrap approximations will be the Functional Delta Method (FDM).19 Using the

definition of the functional ψ in (4), its functional derivative, at H1 = G0
i and H2 = Gi,

can be computed as

ψ′(h1, h2)(v) = (1− Fi(v))

(
ˆ v

0

dh1(u)

1−Gi(u)
+

ˆ v

0

h2(u)dG
0
i (u)

(1−Gi(u))2

)

. (18)

Standard results for weak convergence of empirical processes imply, jointly for all i’s,

√
L
(

Ĝi −Gi, Ĝ
0
i −G0

i

)

 

(

Gi,G
0
i

)

, (19)

18We use the notation ✶[A] for the indicator function of an event A.
19see e.g. Chapter 20 of van der Vaart (1998).
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where  denotes weak convergence, and Gi and G
0
i are (correlated) tight mean-zero

Gaussian processes on [0, v].20 Their covariance functions of these processes can be

computed as

EGi(v1)Gi(v2) = Gi(v1 ∧ v2)−Gi(v1)Gi(v2),

EG
0
i (v1)G

0
i (v2) = G0

i (v1 ∧ v2)−G0
i (v1)G

0
i (v2), and

EGi(v1)G
0
i (v2) = G0

i (v1 ∧ v2)−Gi(v1)G
0
i (v2). (20)

Consider any proper sub-interval [0, v0] ⊂ [0, v). The functional ψ can be shown to be

Hadamard differentiable on the space of bounded, right-continuous, left-limit (cadlag)

functions on [0, v0] (with the derivative given by (18)). The FDM then implies weak

convergence of the process
√
L(F̂i(v)− Fi(v)), to a tight Gaussian process on [0, v0],

√
L(F̂i(v)− Fi(v)) ψ′(Gi,G

0
i )(v)

= (1− Fi(v))

(
ˆ v

0

dG0
i (u)

1−Gi(u)
+

ˆ v

0

Gi(u)dG
0
i (u)

(1−Gi(u))2

)

. (21)

The estimator F̂i, together with some other estimators defined later using ψ, will

be used as inputs for construction of estimators using the de-censoring formula under

collusion in (12). Because in (12) the integral under the exponent extends up to the upper

boundary of the support v, this requires that the input estimators weakly converge on

the entire support [0, v]. However, the main difficulty in obtaining such results is that

the denominator 1 − Gi(u) in (3) tends to 0 as u approaches v, and consequently, the

functional ψ is not Hadamard differentiable on the space of functions defined on the

entire support [0, v].

In order to overcome this difficulty, we propose a trimmed version of the estimator.

The trimmed estimator is denoted as F̃i(v) and is defined as

F̃i(v) ≡ F̂i(v ∧ v̂L),

where v̂L ↑ v is the trimming sequence and the convergence of v̂L is in probability. We

define v̂L through a quantile transformation Ĝ−1
i (tL),

21 where tL ↑ 1. In other words,

20See also Lemma B.3 in the Appendix.
21We use the standard definition of quantile transformations: For a CDF H, H−1(t) = inf{v : H(v) ≥

t}, where t ∈ (0, 1). In fact, since we considering distributions with compact supports, (0, 1) can be
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we trim values v using a sequence of extreme quantiles of the estimated distribution of

bids. Such a trimming scheme is convenient as it does not require estimation of the

upper bound of the support of the distribution of valuations. The trimming parameter

v̂L has to approach the upper bound of the support at a rate faster than L−1/2 to avoid

an asymptotic bias. At the same time the rate has to be sufficiently slow to (uniformly)

control the approximation error in the FDM. The assumption below prescribes sufficient

bounds on the rate.

Assumption 5. The trimming sequence satisfies

v̂L = Ĝ−1
i (tL), tL = 1− L−β,

1

2
< β <

3

4
.

We also make the following smoothness assumption.

Assumption 6. The CDFs Fi’s have densities fi’s, which are smooth (belong to C∞)

and bounded away from zero on the support [0, v̄].

With these assumptions, the result in (21) can be strengthened to hold over the entire

support [0, v].

Proposition 4 (Weak convergence under competition). Under Assumptions 1–6, the

following weak convergence holds for the trimmed estimators F̃i jointly for all i, over the

entire support [0, v],

√
L(F̃i − Fi) ψ′(Gi,G

0
i ).

We now turn to estimation of the distribution of bidder valuations under collusion.

Our estimation strategy again follows the plug-in approach. It is convenient to define

the expression appearing on the right-hand side of collusion de-censoring formula (12)

as a functional:

ψcol(H1, H2)(v) = exp

(

−
ˆ ∞

v

dH1(u)

H2(u)

)

.

The identification result in Proposition 2 can now be stated as a functional of F ℓ
i (·) and

Fcol(·):
Fi(v) = ψcol(F

ℓ
i , Fcol)(v),

changed to [0, 1].
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where F ℓ
i ≡ ψ(G0,ℓ

col, G
ℓ
i) and Fcol ≡ ψ(G0

col, Gcol).

The distributions F ℓ
i and Fcol are estimated as follows. First, we estimate the distri-

butions Gℓ
i and G0,ℓ

i as the empirical averages in parallel to (16), however, conditional

on the event that i is the leader, ℓi = 1:

Ĝℓ
i(b) =

∑L
l=1 ✶(bil ≤ b, ℓil = 1)
∑L

l=1 ✶(ℓil = 1)
, Ĝ0,ℓ

i (b) =

∑L
l=1 ✶(bil ≤ b, wil = 0, ℓil = 1)

∑L
l=1 ✶(ℓil = 1)

. (22)

We similarly estimate the distributions for the maximum bid bl in Ncol:

Ĝcol(b) =
1

L

L
∑

l=1

✶(b∗l ≤ b), Ĝ0
col(b) =

1

L

L
∑

l=1

✶(b∗l ≤ b, wl = 0). (23)

These estimators are then plugged in to obtain consistent estimators F̂ ℓ
i,L and F̂col:

F̂ ℓ
i = ψ(Ĝ0,ℓ

i , Ĝℓ
i,L), F̂col = ψ(Ĝ0

col, Ĝcol). (24)

Using the trimmed estimators

F̃ ℓ
i (v) ≡ F̂ ℓ

i (v ∧ v̂L), F̃col ≡ F̂col(v ∧ v̂L), (25)

the estimator of Fi under collusion is defined by the plug-in approach as

F̃ col
i = ψcol(F̃

ℓ
i , F̃col). (26)

In parallel to the result in Proposition 4, one can show the weak convergence on the

entire support [0, v] of the empirical processes for F̃ ℓ
i and F̃col to tight Gaussian processes,

denoted respectively as F
ℓ
i and Fcol:

√
L(F̃ ℓ

i − F ℓ
i ) F

ℓ
i ≡ ψ′(G0,ℓ

i ,Gℓ
i),

√
L(F̃col − Fcol) Fcol ≡ ψ′(G0

col,Gcol), (27)

where
(

G
0,ℓ
i ,Gℓ

i ,G
0
col,Gcol

)

are (correlated) Gaussian processes that arise in the weak

convergence of the corresponding estimators:

√
L(Ĝ0,ℓ

i −G0,ℓ
i , Ĝℓ

i −Gℓ
i , Ĝ

0
col −G0

col, Ĝcol −Gcol) 
(

G
0,ℓ
i ,Gℓ

i ,G
0
col,Gcol

)

, (28)

and the weak convergence holds jointly with that in (19) and across i’s. The correspond-
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ing covariances are defined similarly to those in (20). The functional derivative of ψcol,

at H1 = F ℓ
i and H2 = Fcol, can be computed as

ψ′
col(h1, h2)(v) = Fi(v)

(

−
ˆ v

v

dh1(u)

Fcol(u)
+

ˆ v

v

h2(u)dF
ℓ
i (u)

F 2
col(u)

)

.

The following proposition establishes a result analagous to that in Proposition 4, but

under collusion.

Proposition 5 (Weak convergence under collusion). Under Assumptions 1–6, the follow-

ing weak convergence holds jointly for all i’s, over any proper subinterval [v0, v] ⊂ (0, v].

√
L(F̃ col

i − Fi) ψ′
col(F

ℓ
i ,Fcol),

where F
ℓ
i and Fcol are defined in (27).

Remark 1. The weak convergence in Proposition 5 is over any compact interval that

excludes 0, the lower boundary of the support. The reason for this is that Fcol(u) → 0 as

u ↓ 0, which creates a “small denominator” problem: the functional ψcol is not Hadamard

differentiable on the space of functions defined on the entire support [0, v]. However, it

is Hadamard differentiable on any sub-interval with a strictly positive lower bound. This

is the same difficulty encountered for the estimator F̂i under competition, which we

resolved by trimming the support of valuations from above. We conjecture that a similar

trimming approach, now from below, would work here as well, but we do not pursue

such an extension. In finite samples, it is unlikely to observe a cartel leader with a very

small valuation. Therefore, the estimator F̂ col
i will suffer from a substantial small sample

bias for valuations v near zero. Thus, extending Proposition 5 to the lower bound of the

support is not practical.

4.1 Econometric test of collusion

We begin by testing the null hypothesis that bidder i bids competitively. The null can

be stated as H0,i : Gi(b) = Gpred
i (b) for all b. The corresponding alternative hypothesis is

collusive behavior of bidder i, which can be stated as H1,i : Gi(b) ≥ Gpred
i (b) with strict

inequalities for some b’s.

The basis of the test will be the deviation of the actual CDF of bids submitted in the

auction Gi(b) from the predicted competitive CDF of i’s bids Gpred
i (b). Pick a compact
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proper sub-interval [v0, v] ⊂ (0, v], and consider a maximum deviation statistic

T̂i = max
b∈[v

0
,v]

[

∆̂i(b)
]

+
(29)

where

∆̂i(b) ≡ Ĝi(b)− Ĝpred
i (b)

denotes the difference between the estimated distribution of bids of bidder i and the

estimated predicted distribution of bids for bidder i under competition, and

[x]+ =







x if x > 0,

0 otherwise.

Large values of this statistic will be indicative of collusion.

Using (13) and (15), we can express the predicted (or counterfactual) CDF of bids

for suspect bidder i under competition as a functional

Gpred
i =ψi,pred

(

Fi, {Fj}j∈Ncol\{i}, {Fj}j∈Ncom

)

≡1− (1− Fi)



1−
∏

j∈Ncol\{i}

Fj

∏

j∈Ncom

Fj



 . (30)

The functional ψi,pred involves only products of CDFs and, consequently, is Hadamard dif-

ferentiable. We denote its Hadamard derivative by ψ′
i,pred

(

hi, {hj}j∈Ncol\{i}, {hj}j∈Ncom

)

.

Note that for j ∈ Ncol, Fj = ψcol(F
ℓ
j , Fcol). Similarly for j ∈ Ncom, Fj = ψ(G0

j , Gj).

Therefore, under the null of competition, a repeated application of the FDM together

with Propositions 4 and 5 implies that the difference between the estimated distributions

Ĝi and Ĝpred
i converges weakly to a mean-zero Gaussian process on [v0, v]:

√
L∆̂i(b) =

√
L(Ĝi − Ĝpred

i ) Gi −G
pred
i ,

where

G
pred
i = ψ′

i,pred

(

ψ′
col(F

ℓ
i ,Fcol),

{

ψ′
col(F

ℓ
j,Fcol)

}

j∈Ncol\{i}
,
{

ψ′(G0
j ,Gj)

}

j∈Ncom

)

. (31)

The Continuous Mapping Theorem then implies that under the null of competition, the
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statistic
√
LT̂i also converges weakly:

√
LT̂i  max

b∈[v
0
,v]
[Gi(b)−G

pred
i (b)]+. (32)

At the same time according to Assumption 4, the statistic
√
LT̂i is divergent if bidder i

participates in the cartel.

In principle, the limiting distribution of
√
LT̂i that appears above could be computed

through the simulation of the Gaussian processes Gi(b) and G
pred
i (b). However, since the

covariance structure of the limiting process is complicated due to the multistep nature

of our estimator, we propose to approximate the null distribution of our test statistic by

the bootstrap.

The bootstrap samples are generated by drawing randomly with replacement L auc-

tions from the original sample of L auctions. Let {(b†1l, . . . , b†Nl) : l = 1, . . . , L} be

a bootstrap sample, and M be the number of bootstrap samples. In each bootstrap

sample, we construct Ĝ†
i and Ĝ0,†

i , which are the bootstrap analogues of Ĝi and Ĝ0
i

respectively. The bootstrap version of the trimmed estimator F̃i is given by

F̃ †
i (v) = ψ(Ĝ0,†

i , Ĝ†
i )(v ∧ v̂†L),

where v̂†L = (Ĝ†
i )

−1(tL), where the trimming parameter tL is defined in Assumption 5.

We can similarly define the bootstrap estimators corresponding to the decensoring

formula under collusion. Our functional notation allows to define those estimators conve-

niently as follows. Let Ĝℓ,†
i , Ĝ0,ℓ,†

i , Ĝ†
col, and Ĝ0,†

col be the bootstrap analogues of Ĝℓ
i , Ĝ

0,ℓ
i ,

Ĝcol, and Ĝ0
col respectively, see equations (22) and (23). As in equations (24) and (25),

we have F̃ ℓ,†
i (v) = ψ(Ĝ0,ℓ,†

i , Ĝℓ,†
i )(v ∧ v̂†L), and F̃ †

col(v) = ψ(Ĝ0,†
col, Ĝ

†
col)(v ∧ v̂†L). Moreover,

following equation (26), the bootstrap estimator of the distribution Fi under potential

collusion is F̃ col,†
i = ψcol(F̃

ℓ,†
i , F̃ †

col). We can now define the bootstrap analogue of the

counterfactual (predicted) distribution of bids of bidder i:

Ĝpred,†
i = ψi,pred

(

F̃ col,†
i , {F̃ col,†

j }j∈Ncol\{i}, {F̃ †
j }j∈Ncom

)

.

Lastly, we construct the bootstrap analogue of T̂i:

T̂ †
i = max

b∈[v
0
,v]

[

∆̂†
i (b)− ∆̂i(b)

]

+
,
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where

∆̂†
i (b) = Ĝ†

i (b)− Ĝpred,†
i (b)

is the bootstrap analogue of ∆̂i(b).
22

Let {T̂ †
i,m : m = 1, . . .M} be the collection of the bootstrap test statistics computed

in bootstrap samples 1 through M. The critical value ĉi,1−α is the (1− α)-th sample

quantile of {T̂ †
i,m : m = 1, . . .M}, where α is the desired asymptotic significance level.

The null hypothesis of competitive behaviour for bidder i is rejected when T̂i > ĉi,1−α.

Our next proposition establishes the validity of the bootstrap procedures.

Proposition 6. Under Assumptions 1–6, the following results hold jointly:

√
L(F̃ †

i − F̂i) ψ′(Gi,G
0
i ), v ∈ [0, v], (33)

√
L(F̃ col,†

i − F̃ col
i ) ψ′

col(F
ℓ
i ,Fcol), v ∈ [v0, v], (34)

√
L(∆̂†

i − ∆̂i) Gi −G
pred
i , b ∈ [v0, v]. (35)

Moreover, the results also hold jointly across i’s.

Remark 2. The proof of Proposition 6 relies on the strong approximation results for

the bootstrap in Chen and Lo (1997). The Gaussian processes Gi, G
0
i , F

ℓ
i , Fcol, and G

pred
i

in Proposition 6 should be viewed as independent copies of the corresponding processes

appearing in Propositions 4, 5, and equation (31).

The validity of the bootstrap test now follows from (35) as an application of the

Continuous Mapping Theorem.

Corollary 1. Under Assumptions 1–6,

√
LT̂ †

i  max
b∈[v

0
,v]
[Gi(b)−G

pred
i (b)]+. (36)

Remark 3. The processes Gi and G
pred
i should be viewed as independent copies of those

in (32). Consistency of the bootstrap testing procedure follows from (32) and (36) by

Polýa’s Theorem, i.e. P(
√
LT̂i > ĉi,1−α) → α when H0,i : Gi(b) = Gpred

i (b) is true.

22Note that to ensure a valid bootstrap approximation, we must re-center ∆̂†
i
(b) by ∆̂i(b). The re-

centering is needed to ensure that the bootstrap version of the test statistic is generated under the
null.
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Our collusion test can be applied bidder by bidder to construct an estimated set of

colluders (a cartel set). However, due to the multiple hypothesis nature of this procedure,

it is necessary to control the overall probability of falsely implicating a competitive firm.

This can be achieved, for example, by using the Holm-Bonferroni sequential testing pro-

cedure that we now describe. Let α denote the overall significance level. The procedure

is performed by ordering the individual p-values from smallest to largest,

p(1) ≤ ... ≤ p(K),

where K is the number of suspects.

Step 1 The firm with the smallest p-value is included in the cartel set if

p(1) < α/K,

after which one proceeds to Step 2. Otherwise the procedure stops and none of the

firms are included in the cartel.

Step 2 The firm with the second-smallest p-value is tested next. It is included in the

cartel if

p(2) < α/(K − 1),

after which one proceeds to the next step. Otherwise the procedure stops and none

of the firms are included in the cartel. (The first firm that was included is now

excluded as there can never be a single-firm cartel.)

Step 3 The firm with the third-lowest p-value is tested and is included in the cartel if

p(3) < α/(K − 3),

after which one proceeds to the next step. Otherwise, the procedure stops with

the two-firm cartel (firms 1 and 2).

And so on until termination.

Once the composition of the cartel C has been estimated, we can investigate the

damage caused by collusion. The predicted auction price under competition is distributed
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as the second-order statistic:

Gpred(p) ≡
∑

j∈N

∏

i∈N\{j}

Fi(p)(1− Fj(p)) +
∏

i∈N

Fi(p).

This distribution can be estimated by the plug-in approach using the estimates of Fi(p)

under competition for i ∈ N\Ĉ, and the estimates under collusion for i ∈ Ĉ under

collusion, where Ĉ denotes the estimated cartel set.

Remark 4 (Heterogeneity). We have focussed on the case where the same object is

auctioned. In many applications, auction-specific heterogeneity is important. Following

Haile et al. (2003), the standard approach in the literature is to control for heterogeneity

through a first-step regression,

bil = m(xl; θ) + εil,

where the error terms εil are independent of the object characteristics xl (and are also

independent across bidders). This regression can be estimated parametrically as in Haile

et al. (2003). Our estimators can be applied to the homogenized bids ε̂il resulting from

this regression, and our bootstrap test of collusion can be similarly performed with the

homogenized bids.

5 Monte Carlo experiment

In this section, we investigate the small-sample performance of our individual test in a

Monte Carlo experiment. We consider a setting with 3 bidders who draw values inde-

pendently from the same distribution, specified as lognormal, log Vi ∼ N(0, 1). Bidder

1 is always competitive, while bidders 2 and 3 may collude. We assume that collusion

takes the following form: bidders 2 and 3 are aware of the presence of the competitive

bidder, and do not compete with each other if the competitive budder has dropped out.

Thus, if the maximal cartel valuation max{V2, V3} > V1, the bidding stops at the price

equal to the competitive bidder’s valuation V1 even if min{V2, V3} > V1 and the price

under competition would be V2. Otherwise, if max{V2, V3} ≤ V1, then the competitive

bidder wins the auction at the price equal to the cartel leader’s valuation max{V2, V3}.
The estimated predicted competitive distribution when the data are generated under

collusion is reported in Figures 1 and 2. All figures contain the plots of the estimated
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Cartel bidder: CDF of bids vs. their predicted CDF under competition
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Figure 1: Suspect cartel bidder; the data are generated under collusion. The sample size
is 100 auctions.
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Figure 2: Suspect cartel bidder; the data are generated under collusion. The sample size
is 400 auctions.
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Figure 3: Suspect cartel bidder; the data are generated under competition. The sample
size is 400 auctions.

actual bid distribution, the true predicted competitive bid distribution, and the estimated

predicted competitive bid distributions. For the smaller sample size L = 100, both small

sample bias and sample variation are clearly present. Still, even though the estimated

predicted bid distribution is not too close to the true one, for most values it is below

the actual bid distribution (i.e. shifted towards higher bids). This suggests that even in

small samples, collusion might be detectable. The situation improves dramatically for

the larger sample, L = 400 auctions. Indeed, it is remarkable how close the estimated

predicted distribution is to the true population distribution. If the data instead are

generated under competition, then the three curves are very close to each other for the

sample of L = 400 auctions; see Figure 3.

To evaluate size properties of our testing procedure, we simulated bids data under

competition, i.e. for all three bidders their bids are generated as

Bi = min{Vi,max
j 6=i

{Vj}}, i = 1, 2, 3.

However, when applying the de-censoring formulas and computing the test statistics in

the original and bootstrap samples, we proceeded under the assumption that bidders 2

and 3 were collusive. We expect that in this case there should not be any significant

differences between the CDF of bids for a suspected cartel member (Ĝ) and the predicted

CDF of bids under competition (Ĝpred).
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Table 1: Average rejection rates of the bootstrap test for collusion for different significance
levels and sample sizes (L)

significance level L = 100 L = 400 L = 100 L = 400

Competition (H0) Collusion (H1)

0.01 0.009 0.008 0.403 0.934
0.05 0.030 0.043 0.626 0.981
0.10 0.067 0.080 0.732 0.994

For power computations, bids for cartel members (bidders 2 and 3) were generated

as described in the beginning of the section:

Bi = min{Vi, V1}, i = 2, 3.

In this case, we expect to see the CDF of bids for a suspected cartel member (Ĝ) to

be positioned above the predicted CDF of bids under competition (Ĝpred), i.e. our test

should reject the null of competitive behaviour for bidders 2 and 3 with high probability.

The results of our Monte Carlo study are summarized in Table 1. The table reports

average rejection rates for 1,000 Monte Carlo repetitions. To compute bootstrap critical

values, we used 1,000 bootstrap samples (at each Monte Carlo replication).

The test is slightly undersized in small samples of 100 auctions. However, in moderate

size samples of 400 auctions, the rejection rates under the null of competitive behaviour

are very close to the nominal levels. The test also has very good power properties. For

example in the case of collusive behaviour for bidders 2 and 3, the 5% test rejects the

null with probabilities exceeding 60% in small samples and 98% in moderate samples.23

23The test was performed for bidder 2.
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6 Empirical application: Internet GIC auctions

6.1 The municipal derivative market

Governments, states, municipalities and para-governmental organizations regularly issue

municipal bonds to fund diverse capital projects, such as construction of roads, power

plants, bridges, schools, or other public facilities. According to the Securities Indus-

try and Financial Markets Association, approximately $670 billion worth of municipal

bonds were issued in 2010. The total US municipal bond market is currently valued at

approximately $3.7 trillion, being one of the world’s largest security markets.

Municipal bonds are initially sold either through negotiated sales, or through auc-

tions.24 The municipal bond’s issuer gets a cash inflow at the time of issuance, while

agreeing in exchange to pay back the principal plus the accrued interest to the bond

holders over time. When these bonds are issued, the respective funds are obtained im-

mediately and are deposited into three types of funds: (i) project fund, used to pay

for the actual construction or repair work; (ii) sinking fund, used for making principal

and interest payments to bond holders; (iii) debt service reserve fund, used to pay debt

obligations in case of unforeseen contingencies.

However, the development of a project cannot always be timed perfectly with the

expenditure plan (for instance, there may be unpredicted delays in the construction due

to external factors). As a solution, once government obtains the proceeds from bonds,

it will typically invest it in municipal derivatives until the proceeds are needed to be

expensed or paid out to bond holders.

The most common type of instrument is called a guaranteed investment contract

(GIC). A GIC is comparable to a hybrid of a certificate of deposit and a savings account.

As a result, the issuer can earn returns on bond proceeds (which are higher than if the

funds were placed in a traditional savings account), and maintain liquidity required for

the repayment of the bond’s principal and interest accrued.

GICs are usually provided by large financial institutions such as AIG, Citicorp, UBS,

Morgan Stanley, Bank of America, MBIA, Goldman Sachs, and others. The government

requires each bidder to submit a bid, offering an interest rate – the highest interest rate

bid gets to be the winner and acquires the funds in the course of competitive bidding

in an auction. In addition, GIC bids are thoroughly analyzed either internally or by

24Municipal bond auctions have been studied within the structural paradigm by Shneyerov (2006)
and Tang (2011).
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external advisors, to be certain that the complex terms of the contracts are suitable to

issuer’s specifications and requirements. Finally, the winning GIC bidder should get the

contracts issued timely and in conformity with the bid proposal.

6.2 Collusion in GIC auctions

There have been alleged complaints and subsequent investigations that the competitive

bidding process is rigged as firms colluded to manipulate the bidding process in violation

of antitrust laws. Banks and firms allegedly took part in an illegal conspiracy to pay

state and local governments below-market rates on GICs purchased with municipal bond

proceeds, to illegally obtain excessive profits.

Federal investigations of collusion in the municipal derivatives market have com-

menced in the early 1990s. However, only after the Internal Revenue Service (IRS) has

found evidence of collusion while pursuing other illegal behaviours in the industry, such

as “yield-burning” and “black box” deals, a full-fledged investigation of collusion in the

municipal bond industry began. This investigation ultimately exposed extensive collu-

sive behaviour in the municipal derivative market. At that time, IRS conducted over

twenty investigations, which revealed pervasive collusion in the industry. In December

of 2006, Charles Anderson of the IRS stated that regulators “think [they] have evidence

of bid rigging”. Anderson went on to say that, “[p]eople were winning GICs at below

fair market values and there were obviously deliberate losing bids by the losing bidders,

thereby allowing the winner to win a sweetheart deal”.25

Following the IRS investigation, several US municipalities filed individual antitrust

complaints with the Department of Justice (DoJ). The leading complaint was filed by

the City of Los Angeles, and contained allegations against 37 provider defendants and 9

broker defendants, including CDR, IMAGE and Sound Capital. Since the allegations in

these complaints were similar in nature, many of these complaints were later integrated

in a single Class Action Complaint (CAC), that was filed in August 2008 against more

than 40 corporate defendants. The complaint was dismissed by the court, however, citing

insufficient factual evidence.26 Subsequently, a Second Class Action Complaint (SCAC)

25See an article on the website of bloomberg.com published on December 7, 2006 and available at
http://www.bloomberg.com/apps/news?pid=newsarchive&sid=awq77C8cUwZA.

26The original CAC complaint relied heavily on statistical analyses of bidding patterns, in particular
using the IRS shortcut that a bid may be a sham bid if it falls below 100 to 150 basis points below the
winning bid. Evidently, the court adopted a more stringent standard in its investigation, putting more
emphasis on documented communication between the conspirators.
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Table 2: Timeline

November, 2006 FBI allegedly rides the offices and seizes documents of financial broker firms
Rubin/Chambers, Dunhill Insurance Services (CDR), Investment Management
Advisory Group (IMAGE), and Sound Capital Management Inc.

December, 2006 DOJ Antitrust brought their case to the Southern District Court of New York
(S.D.C.N.Y.).

January, 2007 One of the defendants, Bank of America, enters into the DOJ leniency program.
Subsequently, several municipalities filed complaints to various courts.

August, 2008 Consolidated Class Action Complaint (CAC) filed against more than 40 corpo-
rate defendants. However, the defendants almost immediately filed a motion
to dismiss.

April, 2009 The S.D.C.N.Y. granted the defendants their motion, citing lack of factual
evidence.

June, 2009 The CAC plaintiffs filed Second Class Action Complaint (SCAC) against a
smaller list of defendants. The defendants immediately respondent with a
motion to dismiss.

September, 2009 The City of Los Angeles files a first amended complaint against a number of
corporate defendants, including both GIC providers and brokers.

March, 2010 The S.D.C.N.Y. denied the SCAC defendants’ motion.

December, 2010 Bank of America settles for $137 million.

May, 2011 One of the defendants in SCAC, UBS AG, agrees to settle and pay $160 million
for its anticompetitive conduct in the municipal derivative market.

July, 2011 Defendant JP Morgan Chase Inc., agrees to settle and pay $228 million for its
anticompetitive conduct in the municipal derivative market.

December, 2011 Defendant GE Funding Capital Market Services Inc. agrees to settle and pay
$70 million for its anticompetitive conduct in the municipal derivative market.

January, 2012 An executive and former executive of CDR pleaded guilty for participating in
bid rigging.

was filed against a smaller list of defendants.27

27See a recent article in Bond Buyer, available here http://www.bondbuyer.com/issues/122_1/

will-market-see-more-big-rigging-cases-in-2013-1047224-1.html?zkPrintable=true, sum-
marizes the state of the investigations and the resulting trials and convictions as of December 31,
2012.
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Up to date, 20 individuals and several corporate defendants have been indicted,

including the executives of CDR, the largest broker. These indictments resulted in

significant recent settlements, by the defendants Bank of America ($137 million), UBS

AG ($160 million), JP Morgan Chase ($228 million), and GE Funding Capital Market

Services ($70 million). See Table 2 for the timeline of the investigations.

Several court documents describe the alleged bid rigging schemes in more detail. For

example, in the complaint filed by the SEC against J.P. Morgan Securities LLC (JPMS)

in a district court in July, 2011, the plaintiff alleges that JPMS, over an eight-year period,

“rigged at least 93 transactions concerning the reinvestment of proceeds from the sale

of over $14.3 billion of underlying municipal securities, generating millions of dollars in

ill-gotten gams”.28 This rigging allegedly took several forms. First, JPMS was able to

win some of these auctions because it obtained advance information from a bidding agent

on the bids placed by other participants (the so-called “last looks” allegation). In one

transaction,

“Municipality C, a New Jersey entity, issued $690,000,000 of municipal bonds

for the purpose of, among other things, funding a portion of the state trans-

portation system costs. In connection with the temporary investment of the

proceeds from these bonds, Municipality C also retained the services of Bid-

ding Agent B to bid out the FPA [forward purchase agreement] for a project

fund. JPMS — with the help of Bidding Agent B — won this tainted bid

through Last Looks. [...] On the morning of the bid date, a telephoned

discussion ensued between a Bidding Agent B representative and a JPMS

Marketer, in which the JPMS Marketer asked the representative if he had

heard "anything in terms of a rate?" Bidding Agent B’s representative re-

sponded that he hoped it would be 2.5% or better and that "I will give you

as much help as I can with this trade." [...] Bidding Agent B’s representative

stated that the highest bid that he had received to date was 2.7%.”

Second, JPMS participated in an arrangement where it was pre-selected as the auc-

tion winner, and the bidding agent solicited non-winning, or courtesy, bids from some

other GIC providers in order to make the process appear competitive. Citing another

transaction in the SEC complaint,

28This complaint can be accessed on the SEC website, at http://www.sec.gov/litigation/

complaints/2011/comp22031.pdf.
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“In the fall of 2001, Municipality B sought a new FPA for the debt service

reserve fund, which its board decided would be awarded through the com-

petitive bidding process to the Provider submitting the bid with the highest

upfront payment. JPMS, however, acting both as agent for the Provider

and essentially as the de facto Bidding Agent, rigged this bid so that it

would win the FPA, by, among other things, limiting the bid list to poten-

tial Providers who agreed in advance to submit purposely non-winning bids.

JPMS, in order to rig this bid for itself, took advantage of the fact that the

Municipality B’s chief financial officer ("CFO") did not want to pay fees to a

Bidding Agent and instead preferred that the prospective Providers submit

their bids directly to him. However, JPMS — with the aid of Bidding Agent

B —surreptitiously assumed the role of the Bidding Agent. Indeed, JPMS

drafted the bid specifications and with the help of Bidding Agent B, created

a list of prospective Providers who agreed, in advance, to submit purposely

non-winning bids.”

In addition, JPMS itself allegedly participated in submitting courtesy bids for bidding

agents, thereby allowing other providers to win:

“Transaction F was a purposely non-winning bid. A certain firm underwrote

a $145,000,000 offering of revenue bonds and, on October 23, 2001, arranged

for its related commercial bank to win, through the mechanism of a fraudulent

set-up, the bid for one of the instruments in which the offering proceeds would

be invested. To facilitate the rigging of this transaction, Bidding Agent A

secured a purposely non-winning bid from JPMS. JPMS knew it was being

asked to submit a non-winning bid, and, a JPMS Marketer needed Bidding

Agent A’s help to formulate its bid not only to ensure its bid was in an

appropriate range, but also to ensure its bid would not win.”

A bidding agent, or broker, acts on the behalf of the municipality and administers the

auction process. In particular, in order to preserve a tax-exempt status of the investment

income, IRS regulations require that the investment be purchased at a fair market value.

The role of the bidding agent is to ensure that this is in fact the case. In particular, the

aforementioned regulations stipulate that, in order for the bidding process to be deemed

competitive, at least three serious bids should be available. Moreover, the solicitation

should be made in good faith. But in the allegations, the bidding agents sometimes
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facilitated collusion rather than enhanced competition. In the JPSM case, the above

mentioned SEC complaint alleged that:

“In July 2000, JPMS underwrote a $55,000,000 offering of revenue bonds

and caused Municipality A, a California entity, to select Bidding Agent A as

its Bidding Agent. As agreed upon with JPMS, in return for this business,

Bidding Agent A restricted the list of prospective bidders and afforded JPMS

Last Looks with respect to two bids for the temporary investment of proceeds

of the aforementioned bonds.[...] In addition, in October 2000, after the

responsible JPMS banker had left JPMS’s employ, Bidding Agent A paid him

approximately $19,600 in cash for causing Municipality A to select Bidding

Agent A as the Bidding Agent.”

The evidence contained in the court documents indicates that the pattern of collu-

sion is consistent with the operation of a cartel, but that the cartel was probably not

all-inclusive, with competitive bids also playing a large role. It is reasonable to conjecture

that GIC brokers played a major role in coordinating the cartel, and they themselves

might have been pre-selected by the cartel taking into account preferences of the munic-

ipalities. If the competitive “fringe” were small and unimportant, while the cartel had

had overwhelming market power, there would be little need to resort to tactics such as

last bid lookups. It may have been sufficient for the cartel to pre-select the winner, and

then force the minimal interest rate acceptable to the municipality by soliciting several

courtesy bids in order for the solicitation be deemed competitive. The presence of the

last lookup in the cases identified in the court documents indicates that, at least in some

cases, the solicitations also involved competitive bids. In other words, both competition

and collusion likely played an important role.

In the collusive schemes identified in the court documents, the auction was (or should

have been) conducted according to the first-price, sealed-bid format. The winning bidder

always paid its bid. The alleged coordination of bids by brokers, in the presence of some

competitive (non-cartel) bids, required at times frequent updating of cartel bids to ensure

that the cartel would win at the lowest possible rate, while the courtesy bids would

remain within a certain range (within 100 basis points would provide a safe harbour to

the issuers).

Our dataset, described in more detail in the next section, involves open auctions con-

ducted over the Internet, rather than sealed-bid auctions coordinated through a broker.
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The open nature of such auctions is meant to attract more competition. In some allega-

tions29, brokers actively sought to restrict competition by artificially raising the cost of

entry.

As any prospective bidder may simply register through the website, rather than

through the broker, the barriers to entry are likely to be lower in Internet open auctions.

Also, Grant Street Group implements the closed-exit rule, according to which the bidders

only see the status of their bid (winning or not), but not the bids of other bidders. This

rule makes operating the cartel more difficult since should a deviation occur, it would

not be detectable in the current auction.

It could still be possible to collude in open Internet GIC auctions. First, all bids

are publicly disclosed after the auction. So a deviation could be detected after the

auction and the deviator could be punished in a repeated game. Second, even though

bidders might not be able to coordinate their bids on the auction website, they could

still use other means of communication such as telephone or email. Ultimately, whether

or not the open Internet auctions have succeeded in overcoming potential collusion is an

empirical question. In the next section, we show how our tests can be used to answer

this important question.

6.3 Dataset

We employ a dataset of 215 Internet GIC auctions conducted over the period October

2000 – December 2008. Thus the dataset covers both the pre-investigation period and two

years into the investigation. This dataset was obtained from the website of Grant Street

Group that administers these auctions on behalf of bond issuers. For each auction, our

data include the following information: Issuer’s name, brief description of the contract,

auction date, bidder name/ticker, bid rate offered, principal amount. In our empirical

exercise, however, we control for the heterogeneity by estimating a fixed-effects regression,

and only use the data on bids and bidder identities.

The auctions are conducted as ascending-bid and closed-exit. This means that the

participants only observe the current status of their bids, either winning or losing. A

losing bid is automatically rejected, but can be updated to a higher bid at any future

instance. If a bidder enters a bid higher than the current winning bid, then this bidder

becomes the current winner and is informed of this fact. However, other bidders do not

29cite the CDR case
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Figure 4: A tight GIC bidding race.

observe the current winning bid, nor are they informed about the identity of the current

winner.

The auction format provide incentives for bidders to bid up to their values. In-

deed, it is easy to see that that the closed-exit format matches exactly the button-, or

thermometer-auction paradigm first proposed in Vickrey (1961), where bidding own val-

uation is a weakly-dominant strategy. Moreover, the closed-exit rule ensures that this

equilibrium is unique.

The data indicate that bidders in the GIC auctions are cognizant of their incentives.

Indeed, the wide majority of these auctions result in tight races where bids are raised by

the smallest allowable increment. See Figure 4 for one example of such a race.30 Three

bidders participated: Aegon NV, a major Dutch financial services company, Rabobank,

a major Dutch-based international bank, and Trinity LLC, owned by the financial arm

of General Electric Inc. The auction was was won by Trinity LLC. Two facts are notable.

First, not all bids are submitted in the smallest increments. The initial bids by Aegon

NV have large increments. However, these are essentially non-serious bids as they would

have little chance of winning in the prevailing market conditions. The majority of serious

30The image containing the figure was downloaded from the Grant Street Group’s website, http:

//www.grantstreet.com/auctions/results.
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bids are in fact submitted in the smallest increments. This particular auction illustrates

a general phenomenon observed in GIC Internet auctions: the wide majority of these

auctions conform closely to the button model.

The total raw number of participants is equal to 43. However, these raw bidders were

aggregated since several bidder groups in fact belonged to a single corporate entity. As

a result of this aggregation, the final list of bidders, reported in Table 3, contained 30

bidders. Table 3 exhibits the identities of the bidders, along with the number of bids

submitted. The average bid rate is 3.87 with a standard deviation of 1.42. The maximum

bid is 6.55. The minimum number of bidders in an auction is 2, and the maximum is 13,

with the average being 7 bids.

6.4 Empirical Results

In order to implement our collusion test, we need to know the identity of at least one

competitive bidder. In order to increase the precision of our estimates, it is in fact

desirable to have several competitive bidders, so that the highest bid among them reveals

the valuation of the loosing cartel leader relatively often. In Table 3, we identify for each

bidder whether or not it was on the defendant list in (i) CAC, (ii) SCAC and (iii) the

Los Angeles complaint. As can be seen, the Los Angeles complaint provides the most

extensive list, overlapping to some extent with the list on CAC complaint. The SCAC

list, on the other hand, is much smaller subset of CAC.

For the purposes of our collusion test, we decided to use the list of firms in any of the

complaints mentioned in Table 3 as our collusive superset Ncol. In order to remove the

effect of auction heterogeneity„ both observed and unobserved, we follow Bajari et al.

(2010) and Bajari et al. (2014) and estimate a fixed-effects regression with auction-level

fixed effects. We then apply our procedure to the residuals of this regression.

To begin illustrating our procedure, we have picked Rabobank as the alleged conspir-

ator, as the bank that has submitted most bids among all alleged conspirators. Figure

5 shows the estimated CDFs for Rabobank. The blue curve is the empirical CDF of

Rabobank’s estimated residuals in the fixed-effect regression. The red curve is the pre-

dicted CDF assuming Rabobank is competitive, estimated by following our approach.

The figure shows that the CDFs are actually quite close to each other, and cross several

times. There is no visual evidence of stochastic dominance as would be if Rabobank

colluded. Our test of collusion has a p value of 0.26, which implies that the hypothesis
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Table 3: Internet Auction Participants

Complaints:

Bidder Number of bids CAC SCAC Los Angeles

ABN AMRO 4
AEGON 144
AMBAC Capital Funding 14
American Internation Group, Inc. 140 X X
Bank of America 8 X X X
Bayerische Landesbank 103 X
Bear Stearns Inc. 11 X X
Citigroup 2 X
Credit Agricole 42
DEPFA Bank 82
Financial Guaranty Insurance Co. LLC 22 X X
Financial Security Assurance Ltd. 49 X X
First Union National Bank 8
GE Funding Capital Market Services, Inc. 20 X
HSBC Bank 11
Hypo Real Estate Bank 63
ING Bank 9
JP Morgan Chase 13 X X X
Lehman Brothers 4
MBIA Inc. 70 X
Merrill Lynch Inc. 10 X X
Morgan Stanley 30 X X X
Natixis S.A. 48 X X X
Rabobank 138 X
Royal Bank of Canada 8
Societe Generale SA 49 X X X
UBS AG 1 X X X
Wells Fargo 7 X
Westdeutsche Landesbank 11
XL Capital 42 X X

of the competitive behavior for Rabobank cannot be rejected at the customary levels of

confidence.

Next, we have implemented the Holm-Bonferoni test. Numerically, we have found

our estimator to be unreliable for banks that have submitted fewer than 40 bids, so only

9 banks with the number of bids above this threshold were included. The test results

are shown in Table 4. There is one participant (XL Capital with a p-value = 3%) for
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Figure 5: Rabobank: Predicted competitive (red) vs. actual (blue) CDFs of bids.

Table 4: Test Results

Bidder name p-value Holm-Bonferroni cutoff

XL Capital 0.03 0.006
Rabobank 0.24 0.006
American International Group Inc. 0.33 0.007
Natixis 0.35 0.008
FSA 0.38 0.010
Bayerische Landesbank 0.52 0.013
Salomon 0.71 0.017
MBIA 1 0.025
Morgan Stanley 1 0.050

whom the p-value is individually significant at the 5% level. However, it does not pass

the rejection cutoff of the Holm-Bonferroni procedure. At customary significance levels,

the test does not reject competition.31

31The Holm-Bonferroni adjusted p-value is 0.27.
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7 Concluding remarks

The research in this paper can be extended in a number of directions. Below, we discuss

three important but challenging extensions.

First, we restrict attention to English auctions. Can our approach be extended to

another popular format, first-price auctions (FPA)? In English auctions, bidders stay

in the auction up to their valuations. As we have shown, this crucial feature allows

one to identify the the distribution of valuations of a given bidder regardless of whether

other bidders are colluding and who participates in the cartel. In FPAs, bidders bid less

than their values, and the competitive bids depend on whether there is a cartel, and

on the cartel composition. A combination of our approach with the identification and

estimation methodology for first-price auctions proposed in Guerre et al. (2000) is clearly

desirable.

The second extension concerns relaxation of the efficient cartel hypothesis. While

many papers in the empirical auction literature assume efficient collusion, this is obvi-

ously a limitation. As Asker (2010) has demonstrated for a postal stamp cartel, a cartel

large enough to exercise market power may include bidders that are quite different, and

may adopt a knockout auction that leads to inefficient allocation. If the form of the

knockout auction is known to the researcher, one could use this information to extend

our approach. This extension is left for future research.

Third, our approach relies on the button model of the English auction, which as we

have argued, is applicable to recent Internet auction designs with minimal information

disclosure, where bidders only see the status of their bid (winning or losing). In partic-

ular, the model is suitable for our empirical application. In this model, it is a dominant

strategy for a bidder to drop out at its valuation. Haile and Tamer (2003) argue that

this assumption is unrealistic in traditional English auctions and develop sharp nonpara-

metric bounds on the distributions of valuations when it does not hold. Whether or not

their bounding approach could be extended to collusion is an open question also left for

future research.
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A Appendix: Extended Functional Delta Method

The following lemma is an extension of the FDM (van der Vaart, 1998, Theorem 20.8)

and allows for functionals that depend on the sample size L. This includes functionals

with sample-size-dependent trimming.

Lemma A.1 (Extended Functional Delta Method). Let D and E be normed linear spaces.

Suppose that:

(i) rL‖φL(F )− φ(F )‖ → 0, where rL → ∞ as L→ ∞, and φL, φ : D → E.

(ii) There is a continuous linear map φ′
F,L : D → E such that, for every compact

D ∈ D0 ⊂ D,

sup
h∈D:F+h/rL∈D

∥

∥

∥

∥

φL(F + h/rL)− φL(F )

1/rL
− φ′

F,L(h)

∥

∥

∥

∥

→ 0.

(iii) ‖φ′
F,L(hL) − φ′

F (h)‖ → 0 for all hL such that ‖hL − h‖ → 0 with h ∈ D0, where

φ′
F : D0 → E is a continuous linear map.

(iv) GL = rL(FL − F ) G, where P (G ∈ D0) = 1.

Then, rL(φL(FL)− φ(F )) φ′
F (G).

Proof. First, rL(φL(FL) − φ(F )) = rL(φL(FL) − φL(F )) + rL(φL(F ) − φ(F )), where

the second term is o(1) by Condition (i) of the Lemma. Next, rL(φL(FL) − φL(F )) =

rL(φL(F +GL/rL)−φL(F )) = (φL(F +GL/rL)−φL(F ))/(1/rL)−φ′
F,L(GL)+φ

′
F,L(GL) =

op(1)+φ
′
F,L(GL), where the last equality is by (ii), and the op(1) term converges in outer

probability. The result now follows by (iii), (iv) and the Extended Continuous Mapping

Theorem (CMT) (van der Vaart, 1998, Theorem 18.11(i)).

B Appendix: Proofs of the main results

For the reasons that will be explained shortly, it will prove convenient to re-state our de-

censoring formulas using quantile transformations. For a CDF function G(·), let G−1(τ)
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denote its quantile function, τ ∈ (0, 1). We introduce the following additional notation.

Given a value v, we define

t = Gi(v),

Si(t) = Fi(G
−1
i (t)) (37)

=⇒ Fi(v) = Si(Gi(v)). (38)

In addition, we define the following quantile transformation of G0
i (v) = P (Bil ≤ v, wil =

0):

µi(τ) = G0
i (G

−1
i (τ)). (39)

Using those definitions, equation (3) implies the following expression for the quantile

transformation Si(t):

Si(t) = 1− exp

(

−
ˆ t

0

dµi(τ)

1− τ

)

. (40)

The estimated version of Si(t) can be stated analogously. With Ĝi and Ĝ0
i denoting

the estimated versions Gi and G0
i respectively, we define µ̂i(τ) = Ĝ0

i (Ĝ
−1
i (τ)). We have

now

Ŝi(t) = 1− exp

(

−
ˆ t

0

dµ̂i(τ)

1− τ

)

,

where Ŝi is the estimated version of Si. Thus, our quantile transformation eliminates

the random denominator in the integral expression for the estimated CDF. Note that

the estimator F̂i(v) in (17) can be equivalently written via (38), as F̂i(v) = Ŝi(Ĝi(v)).

Moreover, one can define the trimmed version of the estimator Ŝi(t), where in view of

Assumption 5, the trimming is applied using the sequence tL:

S̃i(t) = Ŝi(t ∧ tL)
= F̂i(Ĝ

−1
i (t) ∧ Ĝ−1

i (tL))

= F̂i(Ĝ
−1
i (t ∧ tL))

= 1− exp

(

−
ˆ t∧tL

0

dµ̂i(τ)

1− τ

)

.
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The following notion of continuity plays an important role in the proofs:

Definition 1. A real-valued function h is α-Hölder continuous, denoted h ∈ Hα, if there

are constants C > 0 and α > 0 such that |h(x) − h(y)| ≤ C|x − y|α for all x and y in

the domain of h.

The following lemma shows that the derivative of the measure µi is α-Hölder contin-

uous with α = 1/2.

Lemma B.2. Let g0 be the derivative (density) of G0. The function

µ′
i(t) =

g0i (G
−1
i (t))

gi(G
−1
i (t))

is bounded from above and away from zero, continuously differentiable on [0, 1), and

α-Hölder continuous at t = 1 with α = 1/2.

Proof of Lemma B.2. It is convenient to write

µ′
i(t) = ri(G

−1
i (t)),

where

ri(v) ≡
g0i (v)

gi(v)
. (41)

We first show that ri(·) is continuously differentiable on the entire support [0, v], including

the upper boundary v. We have

ri(v) =
fi(v)(1− F−i(v))

fi(v)(1− F−i(v)) + f−i(v)(1− Fi(v))

=
fi(v)

1−F−i(v)
v−v

fi(v)
1−F−i(v)

v−v
+ f−i(v)

1−Fi(v)
v−v

=
fi(v)h−i(v)

fi(v)h−i(v) + f−i(v)hi(v)
,

where we denoted

hi(v) =
1− Fi(v)

v − v
, h−i(v) =

1− F−i(v)

v − v
.

Our assumption that the distributions Fi(·) have densities fi(·), smooth (C∞) and

bounded away from 0 on the support [0, v], implies that hi(·) and h−i(·) are also smooth
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and positive on [0, v]. It follows that ri(·) is smooth on [0, v] (including the upper bound-

ary v).

Next, we show that G−1
i (t) is Hölder α-continuous with α = 1/2. Since

1−Gi(v) = (1− Fi(v)(1− F−i(v)) = hi(v)h−i(v)(v − v)2,

it follows that G′
i(v) = 0 and G′′

i (v) = −2hi(v)h−i(v) < 0. Using our assumption

that the densities fi(·) are C∞ on [0, v], the Morse Lemma32 implies that there exists a

diffeomorphism q : [0, v] → [0, 1] (a smooth function with a smooth inverse) such that

1−Gi(v) = q(v − v)2.

Inverting this relationship yields

G−1
i (t) = v − q−1(

√
1− t),

which implies that G−1
i (t) is Hölder α-continuous with α = 1/2 as a composition of a

smooth function and
√
1− t. Finally, µ′

i(t) = ri(G
−1
i (t)) is also Hölder 1/2-continuous

as a composition of a continuous ri(·) and Hölder 1/2-continuous G−1
i (t).

The population functions Fi, Si, Gi, G
0
i , and µi as well as their estimators can be

viewed as elements of the metric space D of cadlag functions equipped with the uniform

norm ‖·‖. Our estimation procedure is driven by Ĝi, Ĝ
0
i , and other empirical distributions

involving the bids {Bil}. The following lemma presents important properties of those

estimators, as well as those of µ̂i. Let  denote the weak convergence.

Lemma B.3. The following results hold jointly for all i’s.

(a)
(√

L(Ĝi,L − Gi),
√
L(Ĝ0

i,L − G0
i )
)

 

(

Gi,G
0
i

)

, where Gi and G
0
i are two correlated

Gaussian processes on [0, v].

(b)
√
L(µ̂i,L − µi) Mi, where for t ∈ [0, 1],

Mi(t) = G
0
i (G

−1
i (t))−Gi(G

−1
i (t))µ′

i(t).

Furthermore, P (Mi(·) ∈ Hα) = 1 for any α < 1/2.

32See Guillemin and Pollack (1974), p. 42.
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(c) There exists a Brownian bridge process Mi,L such that for any α < 1/2,

lim sup
L→∞

Lα/2
∥

∥

∥

√
L(µ̂i,L − µi)−Mi,L

∥

∥

∥ <∞ a.s.

Remark 5.

1. Part (a) of Lemma B.3 is a standard Functional CLT result for Empirical Processes,

see van der Vaart (1998), Theorem 19.5. In fact, the result holds jointly with the

weak convergence in (28) for other empirical distributions involving the bids {Bil}.

2. The first claim in part (b) of the lemma follows from part (a) by the FDM, see

van der Vaart (1998), Lemma 20.10 and Lemma 21.3 for quantile functions. Note

that Lemma B.2 implies that µ′
i is a bounded function. The α-Hölder continuity

result holds by (i) the α-Hölder continuity for of µ′
i with α = 1/2 shown in Lemma

B.2, and (ii) because the sample paths of Gi and G
0
i are α-Hölder continuous with

probability one for any α < 1/2, see for example Revuz and Yor (1999), Theorem

2.2.

3. Part (c) uses a point-wise approximation of empirical processes by Gaussian pro-

cesses, see van der Vaart (1998), page 268, and Hölder continuity of µ′
i in Lemma

B.2.

Proof of Lemma B.3. To simplify the notation, we omit bidder’s index i in whenever

there is no risk of confusion.

To show part (b), for a CDF G, let q(G) = G−1 be the quantile transformation. By

Lemma 21.3 in van der Vaart (1998), the Hadamard derivative of q (tangentially to the

set of continuous functions h), is q′G(h) = −h(G−1)/g(G−1), where g is the PDF of G.

We have:

1

δL

(

(G0 + δLh
0
L)(q(G+ δLhL))−G0(q(G))

)

= h0L(q(G+ δLhL)) +
1

δL

(

G0(q(G+ δLhL))−G0(q(G))
)

→ h0(q(G)) + g0(q(G))q′G(h)

= h0(G−1)− g0(G−1)

g(G−1)
h(G−1),
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where the convergence holds in the uniform norm for all (h0L, hL) → (h0, h) as δL → 0

tangentially to the set of continuous functions h. This concludes the proof of the first

claim in part (b).

To show the α-Hölder continuity result in (b), write M(t+ δ)−M(t) = G
0(G−1(t+

δ))−G
0(G−1(t)) +G(G−1(t))(µ′(t)− µ′(t+ δ))− (G(G−1(t+ δ))−G(G−1(t)))µ′(t+ δ).

For any α < 1/2,

|G0(G−1(t+ δ))−G
0(G−1(t))| ≤ C1|G−1(t+ δ)−G−1(t+ δ)|α ≤ C1C

α
2 |δ|α,

where the first inequality follows because G
0 ∈ Hα for any α < 1/2 by Theorem 2.2

in Revuz and Yor (1999), and the second inequality holds because G−1 is continuously

differentiable and, therefore, Lipschitz. By Lemma B.2,

|G(G−1(t))(µ′(t+ δ)− µ′(t))| ≤ C|δ|1/2 supv∈[0,v] |G(v)|.

Lastly, for any α < 1/2,

|µ′(t+ δ)(G(G−1(t+ δ))−G(G−1(t)))| ≤ C|δ|α sup
t∈[0,1]

|µ′(t)|,

where supt∈[0,1] |µ′(t)| <∞ by Lemma B.2.

To show part (c), recall that both Ĝi and Ĝ0
i are driven by the same random variable

Bil. Let δL = 1/
√
L, and ρL = δL(logL)

2. By the last result on page 268 in van der

Vaart (1998), there are Brownian bridges G and G
0 such that:

lim sup
L→∞

ρ−1
L

∥

∥

∥

√
L(Ĝ−G)−G

∥

∥

∥
< ∞ a.s., (42)

lim sup
L→∞

ρ−1
L

∥

∥

∥

√
L(Ĝ0 −G0)−G

0
∥

∥

∥
< ∞ a.s.. (43)

Define Ĝ =
√
L(ĜL −G), and Ĝ

0 =
√
L(Ĝ0

L −G0).

√
L(µ̂− µ) =

√
L(Ĝ0(Ĝ−1)−G0(G−1))

=
1

δL

(

(G0 + δLĜ
0)(q(G+ δLĜ)−G0(q(G))

)

= Ĝ
0(q(G+ δLĜ)) + g0(q(G+ δ∗LĜ))

1

δL
(q(G+ δLĜ)− q(G)), (44)
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where 0 ≤ δ∗L ≤ δL denotes a generic mean value.

For 0 < α < 1/2, pick ǫL = O(ρ
1/α
L ). As in the proof of Lemma 21.3 in van der Vaart

(1998),

(G+ δLĜ)(q(G+ δLĜ)− ǫL)) ≤ G(q(G)) ≤ (G+ δLĜ)(q(G+ δLĜ)).

Moreover,

∥

∥

∥
Ĝ(q(G+ δLĜ)− ǫL))− Ĝ(q(G+ δLĜ)))

∥

∥

∥

≤ 2
∥

∥

∥Ĝ−G

∥

∥

∥+
∥

∥

∥G(q(G+ δLĜ)− ǫL))−G(q(G+ δLĜ)))
∥

∥

∥

= Op(ρL) + C
∥

∥

∥
q(G+ δLĜ)− ǫL)− q(G+ δLĜ))

∥

∥

∥

α

= Op(ρL),

where the equality in the line before the last holds by the definition of ǫL, (42) and

α-Hölder continuity of the Brownian bridge and because q is Lipschitz. Therefore,

Ĝ(q(G+ δLĜ))) +Oa.s.(ρL) ≤ G(q(G))−G(q(G+δLĜ))
δL

≤ Ĝ(q(G+ δLĜ)),

or

q(G+ δLĜ)− q(G)

δL
= −Ĝ(q(G+ δLĜ)))

g(q(G+ δ∗LĜ))
+Op(ρL). (45)

Let r(·) be as in (41). Using (44) and (45), we obtain:

∥

∥

∥

√
L(µ̂− µ)−M

∥

∥

∥
≤

∥

∥

∥
Ĝ

0(q(G+ δLĜ))−G
0(q(G))

∥

∥

∥

+
∥

∥

∥r(q(G+ δ∗LĜ))Ĝ(q(G+ δLĜ)))− r(q(G))G(q(G))
∥

∥

∥ .

The first term on the right-hand side can be bounded by

∥

∥

∥G
0(q(G+ δLĜ))−G

0(q(G))
∥

∥

∥+Op(ρL) = Op(δ
α
L + ρL),

for any α < 1/2, where we used ‖Ĝ‖ ≤ ‖G‖+Op(ρL). The second term can be bounded
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by

∥

∥

∥r(q(G+ δ∗LĜ))− r(q(G))
∥

∥

∥
‖Ĝ‖+

∥

∥

∥Ĝ(q(G+ δLĜ)))−G(q(G))
∥

∥

∥
‖r‖

= Op

(

δ
1/2
L + δαL

)

.

The result in part (c) follows from the last three displays.

The following lemma establishes the weak convergence of the trimmed quantile-

transformed estimator S̃i(t) = Ŝi(t ∧ tL).

Lemma B.4. For t ∈ [0, 1], let

φ(µi)(t) = 1− exp

(

−
ˆ t

0

dµi(τ)

1− τ

)

,

φ′(h)(t) = (1− Si(t))

ˆ t

0

dh(τ)

1− τ
,

where φ′ is the functional (Hadamard) derivative of φ corresponding to µi. Define further

φL(µi)(t) = φ(µi)(t ∧ tL), φ′
L(h)(t) = φ′(h)(t ∧ tL). Lastly, let

D0 = {h ∈ D[0, 1] : h ∈ Hα for any α < 1/2, h(0) = 0} . (46)

The following results hold jointly for all i’s:

(a) For all sequences hL such that ‖hL − h‖ = O(δαL) for some h ∈ D0 and 0 < α < 1/2,

∥

∥

∥

∥

φL(µi + δLhL)− φL(µi)

δL
− φ′

L(hL)

∥

∥

∥

∥

→ 0, (47)

provided that as δL → 0 and 1− tL → 0,

δ1+α
L

1− tL
= O(1),

δL
(1− tL)1−α

= O(1). (48)

(b) ‖S̃i − Si‖ →p 0 and
√
L(S̃i − Si) φ′(Mi), provided that tL satisfies the conditions

in (48) with δL = 1/
√
L, and (1− tL)

√
L→ 0.

Remarks.
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1. The modulus of continuity condition for h in the definition of D0 in (46) can be

imposed by part (b) of Lemma B.3.

2. The result in part (a) of Lemma B.4 is Hadamard differentiability tangentially to

D0 for trimmed functionals with a sample-dependent trimming. In this result, the

linearization error is effectively controlled and negligible on the expanding interval

[0, tL]. Furthermore, unlike the standard tangential Hadamard differentiability, we

require that the sequences hL converge to elements of D0 at a sufficiently fast rate,

which is justified by the strong approximation rate in Lemma B.3 (c).

3. The results in parts (b) of Lemma B.4 are the uniform consistency of the trimmed

estimator of Si for its untrimmed population counterpart, and the weak convergence

of the trimmed estimator of Si. Note that, in the weak convergence result, we use

the untrimmed population object for re-centering. Similarly, the limiting process

involves the untrimmed functional φ′. Thus, the trimming has no asymptotic effect

on estimation. This is in part due to the condition
√
L(1− tL) → 0, which implies

that the trimming parameter tL must approach 1 at a rate faster than
√
L.

4. The conditions on the trimming parameter tL in part (b) ensure that the approx-

imation error in the definition of Hadamard differentiability in (47) is negligible.

The rate in the first condition is determined by the approximation of the empir-

ical process by Mi in Lemma B.3(c). The second rate is driven by the α-Hölder

continuity of the limiting process Mi.

5. All the conditions imposed on tL in Lemma B.4 can be satisfied, for example, by

choosing

1− tL = L−β, with 1/2 < β < 3/4.

as in Assumption 5. With such a choice, (1 − tL)
√
L = L−β+1/2 → 0. The first

condition in (48) holds as L−1/2(1+α)+β → 0 or β ≤ (1+α)/2, since α can be chosen

arbitrarily close to 1/2. The second condition in (48) implies β ≤ 1/(2(1−α)) < 1,

where the last inequality is again due to the fact that α can be chosen arbitrarily

close to 1/2. Hence, the second condition in (48) is non-binding. Thus, the rate of

convergence on the trimming parameter is driven mainly by the approximation in

Lemma B.3(c).

Proof of Lemma B.4. To simplify the notation, we omit bidder’s index i.
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For part (a), direct calculations show:

1

δL
(φL(µ+ δLhL)(t)− φL(µ)(t))

= exp

(

−
ˆ t∧tL

0

dµ(τ)

1− τ

)

1

δL

(

1− exp

(

−δL
ˆ t∧tL

0

dhL(τ)

1− τ

))

= (1− S(t ∧ tL))
ˆ t∧tL

0

dhL(τ)

1− τ

+0.5 (1− S(t ∧ tL)) δL
(
ˆ t∧tL

0

dhL(τ)

1− τ

)2

exp

(

−δ∗L
ˆ t∧tL

0

dhL(τ)

1− τ

)

, (49)

where the second equality follows by the mean-value expansion of 1− exp(−sx) around

s = 0, and δ∗L is the mean-value: 0 ≤ δ∗L ≤ δL.

Using integration by parts,

ˆ t∧tL

0

dhL(τ)

1− τ
=

hL(t ∧ tL)
1− t ∧ tL

−
ˆ t∧tL

0

hL(τ)d

(

1

1− τ

)

=
h(t ∧ tL)
1− t ∧ tL

−
ˆ t∧tL

0

h(τ)d

(

1

1− τ

)

+O

(

δαL
1− t ∧ tL

)

=

ˆ t∧tL

0

dh(τ)

1− τ
+O

(

δαL
1− t ∧ tL

)

, (50)

where the big-O term is uniform in t and we used the condition ‖hL − h‖ = O(δαL).

Moreover, since h ∈ Hα for any α < 1/2 and h(1) = 0,

ˆ t∧tL

0

dh(τ)

1− τ
= −h(1)− h(t ∧ tL)

1− t ∧ tL
+

ˆ t∧tL

0

(1− τ)α
h(1)− h(τ)

(1− τ)α
d

(

1

1− τ

)

+h(1)

(

1

1− t ∧ tL
−
ˆ t∧tL

0

d

(

1

1− τ

))

= O

(

1

(1− t ∧ tL)1−α

)

+O(1)

ˆ t∧tL

0

(1− τ)α−2dτ + h(1)

= O

(

1 +
1

(1− t ∧ tL)1−α

)

, (51)

where the O(1) terms are uniform in t. Also, since S is differentiable,

sup
t∈[0,1]

∣

∣

∣

∣

1− S(t ∧ tL)
1− t ∧ tL

∣

∣

∣

∣

= O(1). (52)
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By (50), (51), and (52),

(1− S(t ∧ tL))δL
(
ˆ t∧tL

0

dhL(τ)

1− τ

)2

= δLO(1− t ∧ tL)O
(

1 +
δαL

1− t ∧ tL
+

1

(1− t ∧ tL)1−α

)2

= O

(

δ
1/2+α
L

(1− t ∧ tL)1/2
+

δ
1/2
L

(1− t ∧ tL)1/2−α

)2

,

and, since 1− tL → 0,

sup
t∈[0,1]

∣

∣

∣

∣

∣

(1− S(t ∧ tL))δL
(
ˆ t∧tL

0

dhL(τ)

1− τ

)2
∣

∣

∣

∣

∣

= O

(

δ
1/2+α
L

(1− tL)1/2
+

δ
1/2
L

(1− tL)1/2−α

)2

,(53)

where the first term in the O-expression is due to approximation of the empirical process

by the Brownian bridge, and the second term is due to the α-Hölder continuity of the

limiting process. Next, consider the exponential term in (49). By (50) and (51),

sup
t∈[0,1]

∣

∣

∣

∣

δL

ˆ t∧tL

0

dhL(τ)

1− τ

∣

∣

∣

∣

= O

(

δL

(

1 +
1

(1− tL)1−α

)

+
δ1+α
L

1− tL

)

. (54)

Here, the first term in the O-expression is due to α-Hölder continuity of the limiting

process, and the second term is due to the approximation of hL by a Brownian bridge.

Lastly, by (49), (53), and (54), for hL’s such that ‖hL − h‖ = O(δαL) and h ∈ D0,

∥

∥

∥

∥

1

δL

(

φL(µ+ δLhL)(t)− φL(µ)(t)
)

− (1− S(t ∧ tL))
ˆ t∧tL

0

dhL(τ)

1− τ

∥

∥

∥

∥

= O

(

δ
1/2+α
L

(1− tL)1/2
+

δ
1/2
L

(1− tL)1/2−α

)2

exp

(

O

(

δL +
δL

(1− tL)1−α
+

δ1+α
L

1− tL

))

= o(1) exp (O(1)) ,

where the last equality holds by (48).

To show the uniform consistency in part (b), in place of hL we use M̂ =
√
L(µ̂− µ),

which satisfies the conditions imposed on hL in part (a) of the lemma.

∥

∥

∥
S̃L − S

∥

∥

∥
=

∥

∥

∥
φL(µ+ L−1/2

M̂)− φ(µ)
∥

∥

∥

≤
∥

∥

∥
φL(µ+ L−1/2

M̂)− φL(µ)
∥

∥

∥
+ ‖φL(µ)− φ(µ)‖
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≤ L−1/2
∥

∥

∥
φ′
L(M̂)

∥

∥

∥
+ sup

t∈[tL,1]

(S(t)− S(tL)), (55)

where the inequality in the last line holds by part (a) of the lemma (for the first term)

and because φL(t) = φ(t) for t ≤ tL (for the second term). Since S is differentiable with

a bounded derivative, and because for t ≥ tL we have t − tL ≤ 1 − tL, the second term

in (55) is of order

sup
t∈[tL,1]

(S(t)− S(tL)) = O(1− tL) = o(1). (56)

Moreover, for hL that satisfies the conditions from part (a) of the lemma, by (50) and

(52) we have

sup
t∈[0,1]

∣

∣

∣

∣

(1− S(t ∧ tL))
(
ˆ t∧tL

0

dhL(τ)

1− τ
−
ˆ t∧tL

0

dh(τ)

1− τ

)∣

∣

∣

∣

= O (δαL) . (57)

It follows from (51), (52), and (57) that φ′
L(M̂)(t) in (55) of order

δLO(1− t ∧ tL)Op

(

1

1− t ∧ tL

)1−α

= op(1)

uniformly in t, which concludes the proof of the uniform consistency in part (b).

To show the weak convergence result in part (b), we verify the conditions of Lemma

A.1 with rL = 1/δL =
√
L. For condition (i), as in (55) and (56),

√
L‖φL(µ)− φ(µ)‖ =

O(
√
L(1− tL)) = o(1), where the second equality is by the conditions imposed on tL in

part (b) of Lemma B.4. Condition (ii) of Lemma A.1 has been established in part (a) of

Lemma B.4. Condition (iv) holds by Lemma B.3(b).

To show that condition (iii) of Lemma A.1 holds, first note that ‖φ′
L(hL)−φ′

L(h)‖ → 0

for ‖hL − h‖ = O(δαL), where the latter condition is satisfied by M̂ with probability

approaching one due to Lemma B.3(c) with δL = 1/
√
L:

‖φ′
L(hL)− φ′

L(h)‖ = sup
t∈[0,tL]

∣

∣

∣

∣

(1− S(t ∧ tL))
ˆ t∧tL

0

d(hL(τ)− h(τ))

1− τ

∣

∣

∣

∣

= O(δαL),

where the equality in the second line holds by (52). Next, φ′
L(h)(t) − φ′(h)(t) = 0 for
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t ≤ tL. For t ≥ tL,

φ′
L(h)(t)− φ′(h)(t) = (1− S(tL))

ˆ tL

0

dh(τ)

1− τ
− (1− S(t))

ˆ t

0

dh(τ)

1− τ

= (S(t)− S(tL))

ˆ tL

0

dh(τ)

1− τ
− (1− S(t))

ˆ t

tL

dh(τ)

1− τ

= O (1− tL)
α − (1− S(t))

ˆ t

tL

dh(τ)

1− τ
,

where the equality in the last line holds by (51) and (56), and the big-O term is uniform

in t. For the second term in the last display, consider

sup
t∈[tL,1]

∣

∣

∣

∣

(1− S(t))

ˆ t

tL

dh(τ)

1− τ

∣

∣

∣

∣

=

∣

∣

∣

∣

(1− S(t∗L))

ˆ t∗
L

tL

dh(τ)

1− τ

∣

∣

∣

∣

for some t∗L such that tL ≤ t∗L ≤ 1. If t∗L < 1,

∣

∣

∣

∣

(1− S(t∗L))

ˆ t∗
L

tL

dh(τ)

1− τ

∣

∣

∣

∣

≤
∣

∣

∣

∣

(1− S(t∗L))

ˆ t∗
L

0

dh(τ)

1− τ

∣

∣

∣

∣

+

∣

∣

∣

∣

(1− S(t∗L))

ˆ tL

0

dh(τ)

1− τ

∣

∣

∣

∣

(58)

= O (1− t∗L)
α +O (1− tL)

α . (59)

If t∗L = 1, take the limit of the expression in (58) as t∗L → 1 to obtain convergence to zero

due to (59), which concludes the proof of part (b).

We can now state the proof of Proposition 4.

Proof of Proposition 4. Again, to simplify the notation, we omit bidder’s index i.

Write F (v) = ϕ(S,G)(v) ≡ S(G(v)). The functional ϕ is Hadamard differentiable,

and its Hadamard derivative is equal to

ϕ′
S,G(hS, hG)(v) = hS(G(v)) + S ′(G(v))hG(v),

where S ′(t) denotes the derivative (density) of S at t. Therefore,

√
L(F̃ − F )(·) =

√
L(ϕ(S̃, Ĝ)− ϕ(S,G))

 φ′(M)(G(·))− S ′(G(·))G(·)

= φ′(M)(G(·))− f(·)G(·)
g(·) , (60)
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where the result in the second line holds by Lemma B.4(b) and Lemma B.3(a). The

result in the last line holds since S(t) = F (G−1(t)) and therefore S ′(G(v)) = f(v)/g(v)

Next,

φ′(M)(G(v)) = (1− S(G(v))

ˆ G(v)

0

dM(τ)

1− τ

= (1− F (v))

ˆ v

0

dM(G(u))

1−G(u)
, (61)

where the equality in the second line holds by a change of variable u = G−1(τ). By the

definition of Mi in Lemma B.3(b),

ˆ v

0

dM(G(u))

1−G(u)
=

ˆ v

0

dG0(u)

1−G(u)
−
ˆ v

0

d (G(u)µ′(G(u)))

1−G(u)

=

ˆ v

0

dG0(u)

1−G(u)
− G(v)µ′(G(v))

1−G(v)
+

ˆ v

0

G(u)µ′(G(u))dG(u)

(1−G(u))2
, (62)

where the equality in the second line holds by integration by parts. Since µ(t) =

G0(G(u)), µ′(G(u)) = g0(u)/g(u) and therefore,

µ′(G(u))dG(u) = dG0(u). (63)

Lastly, by our basic decensoring formula (2),

µ′(G(v))

1−G(v)
=

g0(v)

g(v)(1−G(v))
=

f(v)

(1− F (v))g(v)
. (64)

The result of the proposition now follows from (60)–(64).

Proof of Proposition 6. We omit bidder’s index i when there is no risk of confusion.

We show (33) first. Following the definition of µ in (39), we define

µ̂†(t) = Ĝ0,†((Ĝ†)−1(t)).

Following the definition of S in (37) and (40), we also define

Ŝ†(t) = F̂ †((Ĝ†)−1(t)) = 1− exp

(

−
ˆ t

0

dµ̂†(τ)

1− τ

)

,
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and a trimmed bootstrap estimator

S̃†(t) = Ŝ†(t ∧ tL) = 1− exp

(

−
ˆ t∧tL

0

dµ̂†(τ)

1− τ

)

.

By adapting the proof of Lemma 21.3 in van der Vaart (1998) and as in the proof of

Lemma B.3(b), we can write

√
L(µ̂− µ) =

√
L
(

Ĝ0(G−1)−G0(G−1)
)

− g0(G−1)

g(G−1)

√
L
(

Ĝ(G−1)− τ
)

+op

(√
L
(

Ĝ0(G−1)−G0(G−1)
)

+
√
L
(

Ĝ(G−1)− τ
))

, (65)

√
L(µ̂† − µ) =

√
L
(

Ĝ0,†(G−1)−G0(G−1)
)

− g0(G−1)

g(G−1)

√
L
(

Ĝ†(G−1)− τ
)

+op

(√
L
(

Ĝ0,†(G−1)−G0(G−1)
)

+
√
L
(

Ĝ†(G−1)− τ
))

,

where the op term is uniform in τ , and therefore,

√
L(µ̂† − µ̂) =

√
L
(

Ĝ0,†(G−1)− Ĝ0(G−1)
)

− g0(G−1)

g(G−1)

√
L
(

Ĝ†(G−1)− Ĝ(G−1)
)

+op

(√
L
(

Ĝ0,†(G−1)− Ĝ0(G−1)
)

+
√
L
(

Ĝ†(G−1)− Ĝ(G−1)
))

.(66)

Let G̃ and G̃0 denote estimators constructed using independent copies of the original

data. By Proposition 3.1 in Chen and Lo (1997),

‖Ĝ† − Ĝ− G̃+G‖ = Oa.s.(L
−3/4(logL)3/4),

‖Ĝ0,† − Ĝ0 − G̃0 +G0‖ = Oa.s.(L
−3/4(logL)5/4).

Let µ̃ = G̃0(G̃−1), and note that µ̃ is an independent copy of µ̂. By taking the difference

between (66) and the same expansion as in (65) applied to µ̃, and applying the result of

Chen and Lo (1997), we obtain that

√
L‖µ̂† − µ̂− µ̃+ µ‖ = Oa.s.(L

−1/4(logL)5/4). (67)

Let h†L =
√
L(µ̂† − µ̂). As in equation (49) in the proof of Lemma B.4(a),

√
L(S̃†(t)− S̃(t))
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= (1− S̃(t))

ˆ t∧tL

0

dh†L(τ)

1− τ

+0.5
(

1− S̃(t)
)

δL

(

ˆ t∧tL

0

dh†L(τ)

1− τ

)2

exp

(

−δ∗L
ˆ t∧tL

0

dh†L(τ)

1− τ

)

. (68)

Next, let h̃L =
√
L(µ̃− µ) and ǫL = h†L − h̃L.We have:

ˆ t∧tL

0

dh†L(τ)

1− τ
=

h†L(t ∧ tL)
1− t ∧ tL

−
ˆ t∧tL

0

h†L(τ)dτ

(1− τ)2

=

ˆ t∧tL

0

dh̃L(τ)

1− τ
+
ǫL(t ∧ tL)
1− t ∧ tL

−
ˆ t∧tL

0

ǫL(τ)dτ

(1− τ)2

=

ˆ t∧tL

0

dh̃L(τ)

1− τ
+Oa.s.

(

(logL)5/4

L1/4(1− t ∧ tL)

)

, (69)

where the equality in the last line is due to the definition of ǫL and by (67), and the Oa.s.

term is uniform in t.

Since
√
L(S̃−S) φ′(M) by Lemma B.4(b), φ′ is linear, M is Gaussian and α-Hölder-

continuous for α < 1/2, and M(1) = 0, it follows that
√
L(S̃(t) − S(t))/(1 − t ∧ tL)α =

Op(1) uniformly in t for α < 1/2, and

1− S̃(t) = (1− S(t ∧ tL))
(

1−
√
L(S̃(t)− S(t ∧ tL))√
L(1− S(t ∧ tL))

)

= (1− S(t ∧ tL))
(

1 +Op

(

1√
L(1− t ∧ tL)1−α

))

= (1− S(t ∧ tL))(1 + op(1)).

The equality in the last line holds by 1 − tL = L−β with β < 3/4 and since α can be

chosen arbitrarily close to 1/2; moreover the op term is uniform in t. Hence, by (69),

(1− S̃(·))
ˆ ·∧tL

0

dh†L(τ)

1− τ
= (1 + op(1))(1− S(· ∧ tL))

ˆ ·∧tL

0

dh̃L(τ)

1− τ
+Op

(

L−1/4(logL)5/4
)

 φ′(M†(·)), (70)

where M
† is an independent copy of M since µ̃ is an independent copy of µ̂.
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Similarly to (53) in the proof of Lemma B.4(b), since δL = 1/
√
L, and by (69),

sup
t∈[0,1]

∣

∣

∣

∣

∣

∣

(1− S(t ∧ tL))δL
(

ˆ t∧tL

0

dh†L(τ)

1− τ

)2
∣

∣

∣

∣

∣

∣

= Op

(

δ
1/2+α
L

(1− tL)1/2
+

δ
1/2
L

(1− tL)1/2−α
+

(logL)5/4

L1/2(1− tL)1/2

)2

= op(1). (71)

Similarly to (54) in the proof of Lemma B.4(b) and by (69),

sup
t∈[0,1]

∣

∣

∣

∣

∣

δL

ˆ t∧tL

0

dh†L(τ)

1− τ

∣

∣

∣

∣

∣

= Op

(

δL
(1− tL)1−α

+
δ1+α
L

1− tL
+

(logL)5/4

L3/4(1− tL)

)

= op(1), (72)

where the equality in the last line holds since 1− tL = L−β with β < 3/4.

By (68), (70), (71), and (72) we have that

√
L(S̃†(t)− S̃(t)) φ′(M†(·)).

The result in (33) now follows by the FDM for the bootstrap (van der Vaart, 1998,

Theorem 23.5) and the same arguments as in the proof of Proposition 4, since F̃ † =

S̃†(Ĝ†).

The result in (34) holds by the bootstrap FDM, Proposition 3.1 in Chen and Lo,

(27), and since the functional ψcol is Hadamard differentiable on [v0, v] ⊂ (0, v].

To show (35), write

√
L(∆̂†

i (b)− ∆̂i(b)) =
√
L(Ĝ†

i (b)− Ĝi(b))−
√
L(Ĝpred,†

i (b)− Ĝpred
i (b)).

The result in (35) follows by the bootstrap FDM and the previous results of the propo-

sition as the functional ψi,pred defined in (30) is Hadamard differentiable.
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