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Abstract

We have developed a method for extracting

the coherence features from a paragraph by

matching similar words in its sentences. We

conducted an experiment with a parallel Ger-

man corpus containing 2000 human-created

and 2000 machine-translated paragraphs. The

result showed that our method achieved the

best performance (accuracy = 72.3%, equal

error rate = 29.8%) when it is compared

with previous methods on various computer-

generated text including translation and paper

generation (best accuracy = 67.9%, equal error

rate = 32.0%). Experiments on Dutch, another

rich resource language, and a low resource one

(Japanese) attained similar performances. It

demonstrated the efficiency of the coherence

features at distinguishing computer-translated

from human-created paragraphs on diverse

languages.

1 Introduction

Computer-translated text plays an essential role in

modern life. Such artificial text helps people,

who use different languages, can communicate each

other. Machine-translated systems thus significantly

support or even completely relieve human transla-

tors and interpreters from time-consuming burden.

Thanks to deep learning, neural machine transla-

tion have been drastically progressed recently. How-

ever, we can still tell “this text must be automati-

cally translated by a computer and reads strangely”

sometimes. The unexpected quality leads readers

to confuse or misunderstand the meaning of artifi-

cial text comparing with the original meaning such

as machine-translated web pages, especially in low

resource languages. Enhanced methods are thus

needed to identify machine-translated text.

Research on computer-translated text detection

has been of interest to the natural language process-

ing community. Most detection methods are aimed

at the sentence level and use a tree parser (Chae

and Nenkova, 2009; Li et al., 2015) to estimate the

naturalness of a text passage. However, the scope

of these methods is limited to individual sentences

and ignores the relationships among sentences. In

contrast, some methods are aimed at identifying the

translation by the POS N -gram model (Arase and

Zhou, 2013; Aharoni et al., 2014), but they extract

features from only a few adjacent words. Other

methods identify the translated documents (Nguyen-

Son et al., 2017) or generated papers (Labbé and

Labbé, 2013) using word distribution. However,

such methods are only suitable for huge text.

Of the various levels of text, i.e., word, phrase,

sentence, paragraph and document, the paragraph is

one of the most important. For instance, paragraphs

help readers to quickly receive important content

amidst large pieces of text on various topics, such as

abstracts of scholarly papers and news summaries.

Moreover, the paragraph is the main part of current

digital text (e.g., email and online product descrip-

tions). The paragraph level provides more informa-

tion compared with the sentence level. A large doc-

ument is often separated into individual paragraphs

whose sentences have meanings in common and co-

herence. In this paper, we are interesting in in-

vestigating what differentiate of the coherence from

machine-translated and human-written paragraphs.



Our hypothesis is that coherence at the paragraph

level is one of the factors causing such “artifacts” of

the computer-generated sentences. In order to em-

pirically prove this, we built several classifiers using

the coherence features and compare them with ones

using previously suggested features.

A machine-translated text has almost the same

meaning and structure as a genuine original one, but

the use of words is different. Figure 1 illustrates the

difference by italic words. Translated artificial text

tends to be shorter than the original text, as men-

tioned by Volansky et al. (2013). A human-created

paragraph1 (pH ) thus tends to have more supplemen-

tal words (the words in underlined) than a parallel

computer-translated one (pC). The translated text

also uses different similar words (bold). These dif-

ferences may be the cause of the lower coherence of

computer-translated paragraphs.

In this paper, we present a method for detecting

computer-translated text at the paragraph level. Our

contributions are threefold.

• We propose a metric, POSMat, to match sim-

ilar words for a partial paragraph related to a

part of speech (POS) pair.

• We present a matching penalty metric,

MatPen, to reduce the effect of unmatched

words. The MatPen is integrated with the

POSMat into a paragraph coherence metric,

ParaCoh, to estimate the coherence of a

paragraph.

• We suggest a method to use the ParaCoh for

determining whether a paragraph is translated

by a computer.

We evaluated the proposed method on 2000

human-transcribed TED paragraphs2 in English.

We also collected the corresponding 2000 Ger-

man human-created paragraphs. This text was then

translated into English by Google to create parallel

machine-generated paragraphs. The method-based

ParaCoh surpasses previous methods, which iden-

tify not only computer-translated but also paper-

1https://www.ted.com/talks/anant_

agarwal_why_massively_open_online_courses_

still_matter/transcript
2https://www.ted.com

generated text. Furthermore, experiments on an-

other rich language (Dutch) produced similar results

while a low resource Japanese language achieved

even higher performances. They demonstrate the

capability of the proposed method for recognizing

machine-translated text and for evaluating the qual-

ity of machine translators.

2 Related Work

Computer-translated text detection task has been in-

terested by numerous researchers. The previous

methods are summarized by a taxonomy derived

from text granularity falling into sentence, short text,

and document.

2.1 Sentence

Most primary methods detect computer-generated

text at the sentence level on the basis of a pars-

ing tree. For example, Chae and Nenkova (2009)

claimed that human-written sentences have a sim-

pler structure than computer-generated ones. The

genuine sentence thus contains shorter main phrases

including nouns, verbs, adjectives, adverbs, and

prepositional phrases. Therefore, they extracted

complexity features from the parsing tree, such as

parsing depth and average phrase length, in order to

distinguish computer-translated from human-written

text.

Li et al. (2015) also used parsing features to iden-

tify artificial translated text. They proved that human

parsing is more balanced in its structure than ma-

chine parsing. They extracted balanced-based fea-

tures from parsing trees such as the ratio of right

nodes to left nodes. The limitation of parsing-based

methods is that they generate parsings only for in-

dividual sentences. A general tree for multiple sen-

tences (e.g., paragraph, document) cannot be gener-

ated. Therefore, they cannot quantify relationships

among sentences.

2.2 Short text

Arase and Zhou (2013) suggested a method to es-

timate the text fluency of computer-translated text.

They claimed that translation leads to a “salad” phe-

nomenon (Lopez, 2008). The phenomenon points

out the generated text has the same meaning as the

original one, but the words in the translation are



Human-created 

paragraph pH
 

“The third idea that we have is instant feedback. With instant feedback, the 
computer grades exercises. I mean, how else do you teach 150,000 students? Your 
computer is grading all the exercises. And we've all submitted homeworks, and 
your grades come back two weeks later, you've forgotten all about it…” 

Computer-translated 

paragraph pC 

“The third concept is called immediate feedback. With immediate feedback, the 
computer rates the exercises. How else do you teach 150 000 students? The computer 
evaluates all tasks. We've all done homework and forgotten about it during the two-

week correction period. …” 
 

Figure 1: Coherence of parallel human-created vs. computer-translated paragraphs. The difference is presented in

italic. The using of various similar words is highlighted in bold. The missing words in computer-generated text are

described by underline.

more chaotic, so it affects the text fluency. The au-

thors used a POS N -gram language model to quan-

tify the fluency of consecutive words. Nguyen-Son

and Echizen (2017) also used a word N -gram model

to extract features combining with special features,

which they called as noise such as misspelled words.

However, such noise often contains in informal con-

versations. Furthermore, Aharoni et al. (2014) ex-

tended the POS N -gram model by integrate function

words features for improving computer-translated

identification. They argued that automatic trans-

lations contain more function words than human-

written translations. These N -gram models only ex-

tracted features from a limited number (up to three in

common) of adjacent words and ignored the coher-

ence between words separated by one or more other

words.

2.3 Document

Nguyen-Son et al. (2017) proposed a method to de-

tect a general document using Zipfian law. Word dis-

tribution is aligned with Zipfian distribution to dis-

tinguish computer- with human-generated text. The

authors proved that human-generated text has more

adoption with Zipf’s law than machine-generated

one.

On the other hand, Labbé and Labbé (2013) de-

tected another kind of computer-produced docu-

ment, i.e., paper generation. They pointed out that

generated papers contain many duplicated patterns.

They thus estimated word distribution of a candidate

paper with both fake and genuine papers on the ba-

sis of inter-textual similarity. The nearest similarity

was used to determine whether a human or a com-

puter creates the input paper.

The restriction of document-based methods is that

they need numerous number of words in order to es-

timate the word distribution. Their performances are

thus decreased in smaller text.

3 Proposed method

The four steps of the proposed method are illustrated

in Figure 2.

• Step 1 (Separate sentences): The sentences

in an input paragraph p are separated using

the Stanford CoreNLP splitter (Manning et al.,

2014).

• Step 2 (Match similar words): Each word is

matched with another word in the other sen-

tences if they are associated with a POS pair.

• Step 3 (Calculate coherence metric): The sim-

ilarities of the matched words in each sentence

pair are used to calculate the paragraph coher-

ence metric, ParaCoh.

• Step 4 (Classify the text): ParaCoh is used to

determine whether the input p is human-created

or computer-translated paragraph.

3.1 Separating Sentences (Step 1)

The sentences si in a paragraph p are separated from

the paragraph and placed in set S. Separation is done

using the Stanford CoreNLP splitter (Manning et al.,

2014):

S = Split(p) = {si}. (1)

For example, the first two sentences (sH1
and

sH2
) in the human-created text example in Figure 1

are separated from the paragraph:



Step 4:

Classify 

the text

Step 1:

Separate 

sentences

Step 3:

Calculate 

coherence 

metric

Human-created / 

computer-translated 

paragraph

Paragraph 𝑝 Step 2:

Match 

similar 

words

Figure 2: Schema for identifying a computer-translated paragraph.

sH1
: “The third idea that we have is instant feed-

back.”

sH2
: “With instant feedback, the computer grades

exercises.”

3.2 Matching Similar Words (Step 2)

English words exist in various grammatical forms

which often express similar meaning. For example,

a verb “be” can be represented by different variants

(e.g., “is, ” “were,” “being,” “’s”). We use the Stan-

ford lemma tool (Manning et al., 2014) to normalize

these words. For example, lemmas of several words

are shown from the sentence sH2
and sH4

in Fig-

ure 3.

A lemma in a sentence is kept if there is another

lemma in another sentence and their POSs conform

with a processing POS pair while the other lemmas

are removed. For example, suppose the processing

pair consists of two plural nouns {NNS, NNS}, and

the processing sentences are sH2
and sH4

. Because

both sentences each contain a plural noun, these plu-

ral nouns are preserved. The other lemmas are elim-

inated by strikethrough (Figure 3).

A remaining lemma of a sentence is matched with

at most one lemma in the other sentence by using

the Hungarian algorithm (Kuhn, 1955) to ensure that

the contributions of the remaining lemmas are bal-

anced. The algorithm is also used to match the pairs

with maximum similarity in total. The similarity of

two lemmas is estimated using path metric (Peder-

sen et al., 2004). This metric is calculated by the

shortest path of these lemmas in a Wordnet seman-

tic ontology. For example, a plural noun of sH2
is

matched with a corresponding plural noun of sH4

and the similarity of these identical lemmas equals

1.0.

On the other hand, although the meaning of

computer-generated text is similar to human-written

one (Figure 1). The use of other similar words ef-

fects to text coherence and thus influences to the

matching. For instance, Figure 4 demonstrates the

declined matching of two computer-generate sen-

tence sC2
and sC4

due to the use of another word

“tasks” in the second sentence. Other similar words

also result in the matching degradation of other POS

pairs, i.e., the use of “rates” and “evaluates” (in

bold).

3.3 Calculating Coherence Metric (Step 3)

The matching words are used to calculate the POS

matching metric POSMat for si and sj :

POSMat(si, sj) =

∑

wk∈s
′

i,wl∈s
′

j
path(wk, wl)

n
,

(2)

where wk and wl are pair-matched words for the

two sentences, n is the number of matched pairs,

path(wk, wl) is the path similarity metric of the two

matched words estimated using Wordnet (Pedersen

et al., 2004) while s′i and s′j are two sets which con-

tain remaining words in si and sj , respectively. For

example, the matching metric of sH2
and sH4

is:

POSMat(sH2
, sH4

) =
1

1
= 1. (3)

Since the number of words in s′i often differs from

the number in s′j , we use a penalty matching metric

p based on the machine translation METEOR met-

ric (Denkowski and Lavie, 2010) to reduce the dif-

ference:

p(si, sj) = 0.5× (
|UnMat(s′i)− UnMat(s′j)|

max(|s′i|, |s
′
j |)

)3,

(4)

where UnMat(s′) is the number of nonmatching

words. The final matching metric, POSMat, is

then updated:



𝑠𝐻2: With instant feedback , the computer grades exercises .

LemmaPOS(𝑠𝐻2): withIN instantJJ feedbackNN ,, theDT computerNN gradeVBZ exerciseNNS ..

LemmaPOS(𝑠𝐻4): youPRP$ computerNN beVBZ gradeVBG allPDT theDT exerciseNNS ..𝑠𝐻4: Your computer is grading all the exercises .

1.0

Figure 3: Matching plural nouns in human-generated sentence pair.𝑠𝐶2: With immediate feedback , the computer rates the exercises .

LemmaPOS(𝑠𝐶2): withIN immediateJJ feedbackNN ,, theDT computerNN rateVBS theDT exerciseNNS ..

LemmaPOS(𝑠𝐶4): theDT computerNN evaluateVBZ allDT taskNNS ..𝑠𝐶4: The computer evaluates all tasks .

0.25

Figure 4: Matching plural nouns in machine-generated sentence pair.

POSMat(si, sj) = POSMat(si, sj)×(1−p(si, sj)).
(5)

For example, the matching of sH2
and sH4

is re-

estimated using:

p(sH2
, sH4

) = 0.5× (
|0− 0|

1
)3 = 0, (6)

POSMat(sH2
, sH4

) = 1× (1− 0) = 1. (7)

Since all candidate words are matched, the p un-

changed the similarity matching of sH2
and sH4

re-

lated to plural nouns. Figure 5 shows another exam-

ple of matching adjectives of two human-generated

sentences sH1
and sH2

. The POSMat metric of

this matching is presented in Equation 9 demonstrat-

ing the effect of nonmatching bold word “third” into

the re-estimated metric.

p(sH1
, sH2

) = 0.5× (
|1− 0|

2
)3 = 0.125, (8)

POSMat(sH1
, sH2

) = 1× (1− 0.125) = 0.875.
(9)

The paragraph coherence metric for a paragraph

related to a POS pair is then calculated:

ParaCoh(p) =

∑

si∈p,sj∈p,si 6=sj
POSMat(si, sj)

max(1,
(

m
2

)

)
)

=

∑

si∈p,sj∈p,si 6=sj
POSMat(si, sj)

max(1,
m(m− 1)

2
)

,

(10)

where m is the number of sentences, the denomi-

nator presents for the number possible distinguished

sentence pairs in paragraph p, and the function max

covers a paragraph having only one sentence.

3.4 Classifying the text (Step 4)

The coherence features presented by ParaCoh for

each POS combination are used to classify human-

created and computer-translated text. Here, large

linear classification (LINEAR) (Fan et al., 2008)

outperforms other popular classification algorithms.

We thus chose LINEAR as the final classifier to de-

termine whether the input paragraph is written by a

human or translated by a machine.



𝑠𝐻1: The third idea that we have is instant feedback .

LemmaPOS(𝑠𝐻1): theDT thirdJJ ideaNN thatIN wePRP haveVBP beVBZ instantJJ feedbackNN ..

LemmaPOS(𝑠𝐻2): withIN instantJJ feedbackNN ,, theDT computerNN gradeVBZ exerciseNNS ..𝑠𝐻2: With instant feedback , the computer grades exercises .

1.0

Figure 5: Matching similar nouns in human-generated sentence pair.

4 Evaluation

4.1 Datasets

We created a dataset from 2100 scripts of recent

(2013 to 2018) TED talks3. These human-created

texts were manually transcribed by native English

speakers, and then, 2000 paragraphs were randomly

extracted. The paragraphs contained 14.41 sen-

tences on average. Then, we collected correspond-

ing 2000 paragraphs translated by native German

speakers. These paragraphs had the same content

as the English ones. The German paragraphs were

then translated into English by Google Translate to

create machine-translated paragraphs.

4.2 Comparison with previous methods

Accuracy (ACC) and equal error rate (EER) was

chosen as evaluation metrics, since the correspond-

ing F -measures would give equivalent results with

the accuracy. Four commonly classifiers, which are

mentioned in previous methods, including logistic

regression (LOGISTIC), support vector machine op-

timized by stochastic gradient descent (SGD(SVM),

SVM optimized by sequential minimal optimization

SVM(SMO), LINEAR were run with 10-fold cross

validation. The performances of previous methods

and the proposed method are shown in Table 1.

These all methods tended to focus on recognize

translation text in different granularity. The first

method, which was previously used for document-

level, compared word distribution with Zipfian

one (Nguyen-Son et al., 2017). In the sec-

ond method, Li et al. (2015) identified computer-

translated text using balancing properties of a pars-

ing tree. Because a parsing tree is only created for

3https://www.ted.com

individual sentences, the average of these sentence

features was used for the paragraph. For larger text,

another method quantified the frequency of text by

using the POS N -gram model combining with func-

tion words (Aharoni et al., 2014).

As shown in Table 1, the document-based method

is degraded their performances on lower granularity

because the alignment between word frequency and

Zipfician distribution is more effective in huge num-

ber of words. On the other hand, the sentence-level

method using parsing trees were ineffective at the

paragraph level as it does not take into account the

relationship among sentences in a paragraph. The

extension of N -gram features by combining them

with function words worked better than the two pre-

vious methods, but it only estimates the coherence of

consecutive words. In contrast, the proposed method

overcomes the problem and achieves the best perfor-

mance across all classifiers.

The experiments of previous methods are given

the identical or competitive results with the chosen

classifiers in corresponding methods. These clas-

sifiers are thus used for experiments below. With

our method, since LINEAR achieved the best per-

formance, it was chosen to create the final classifier.

Table 2 shows the top five performances of 990

in-duplicated POS combination pairs sorted by their

accuracies. These pairs affect to the coherence

machine-translated German text comparing with

human-created text. These pairs should thus be

taken more attention in order to improve machine

translators in this language.

4.3 Other languages

Finally, we conducted similar experiments with an-

other rich language (Dutch) and lower resource one

(Japanese). In each, 2000 human-written and cor-



Method
LOGISTIC SGD(SVM) SMO(SVM) LINEAR

ACC EER ACC EER ACC EER ACC EER

(Nguyen-Son et al., 2017) 64.8% 35.0% 65.0% 34.8% 65.2% 35.1% 65.0% 34.9%

(Li et al., 2015) 67.7% 32.5% 66.2% 34.2% 67.0% 33.6% 67.8% 33.4%

(Aharoni et al., 2014) 67.6% 32.3% 66.3% 33.8% 67.4% 32.6% 67.9% 32.0%

Our 69.7% 30.4% 69.8% 30.6% 70.9% 31.1% 72.3% 29.8%

Table 1: Comparison with previous methods on accuracy (ACC) and equal error rate (ERR) metrics. The best metrics

are shown in bold. The underline describes for the best classifiers, which are chosen in previous methods. The topmost

performance is highlighted by red.

Rank POS pair ACC EER

1 VB-VBG 63.7% 39.1%

2 VBG-RB 63.6% 39.5%

3 VBG-NN 63.5% 38.5%

4 VBG-VBG 63.5% 40.9%

5 IN-VBG 62.3% 40.3%

Table 2: Performances of top five POS pairs.

responding machine-translated human-written para-

graphs are used. Each paragraph has an aver-

age of 14.64 and 14.30 sentences in Dutch and

Japanese, respectively. Since the equal error rate

metrics are given similar results above, we only

show the accuracy metrics in this comparison. Fur-

thermore, we compared with another document-

based method (Labbé and Labbé, 2013), which dis-

tinguishes another kind of computer-generated para-

graph, i.e., paper generation. In contrast with other

previous methods, which extracted features and uses

classifiers for identifying translated-generated para-

graph, Labbé and Labbé compared word distribu-

tion of a candidate document with all training distri-

butions using inter-textual distance. The candidate

document is labeled as the same type of the nearest

comparing. The result of the comparison is shown

in Figure 6.

The experimental results showed that the pa-

per generation detector achieves the worst perfor-

mances. Because the translation generated the text

have almost same meaning with the original text, the

word distribution is almost synchronized. It signif-

icantly affects to the hypothesis of the Labbé and

Labbé’s method through all three languages. With

other methods, two rich resource languages acquired

the similar performances. On the other hand, experi-

ments on the lower resource language produced sig-

nificantly better performances. Our method reached

the best results in the three languages. This method

can be used to evaluate the quality of translated text

in various languages with different resources.

5 Conclusion

The coherence of human-created paragraphs is gen-

erally better than that of computer-translated ones.

The method we propose quantifies the coherence of

sentences in a paragraph by matching similar words.

Our evaluation showed that the coherence features

result in higher accuracy than that of state-of-the-

art methods on different granularity of German text.

Moreover, the evaluation of a similar resource lan-

guage (Dutch) and a low-resource one (Japanese)

achieved similar results. It also demonstrated an-

other capability of our method on measuring the

quality of machine translators on various languages

with different resource-levels. It significantly sup-

ports for current translators recognizing and improv-

ing the text generation.

To the best of our knowledge, current paral-

lel translation corpora support for sentence-level4.

Other larger level datasets use English as original

text such as TED talk5. Our future work targets

to create a human translated English dataset from

other languages in paragraph level. Then, we use

the coherence features to classify human-translated

and computer-translated text.

In another direction, the next research includes

using a deep learning network to improve the quan-

tification of the coherence and fluency features. We

also extend the matching algorithm to phrases for

4http://www.statmt.org/europarl/
5https://www.ted.com/
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Figure 6: Evaluation on various languages.

further enhancing the coherence metrics.
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