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Abstract

Wireless sensor network (WSN) has been paid more attention by scholars due to the practical communication of a

system of devices to transfer information gathered from a monitored field through wireless links. Precise and

accurate data of aggregating messages from sensor nodes is a vital demand for a success WSN application. This

paper proposes a new scheme of identifying the correctness data scheme for aggregating data in cluster heads in

hierarchical WSN based on naive Bayes classification. The collecting environmental information includes

temperature, humidity, sound, and pollution levels, from sensor nodes to cluster heads that classify data fault and

aggregate and transfer them to the base station. The collecting data is classified based on the classifier to

aggregate in the cluster head of WSN. Compared with some existing methods, the proposed method offers an

effective way of forwarding the correct data in WSN applications.
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1 Introduction

Wireless sensor network (WSN) refers to a set of

spatially dispersed and dedicated sensors for recording

and monitoring the physical conditions and organizing

the data collected at a central location [1, 2]. WSNs are

a low-cost network that is widely used in numerous ap-

plications [3–5]. The needed environmental information

like temperature, light, sound, humidity, wind, air, and

water pollution levels could be captured and measured

by sensor nodes of WSN [6–9]. A good designed and

employed WSN often follows the clustering fashion as

efficient ways of saving energy networks that is to gener-

ate clusters by arranging the sensor nodes into groups

[10]. The power consumption of WSNs is affected dir-

ectly by the clustering criterion problem [11]. The clus-

ter composes node members (NM) and cluster head

(CH). CH is selected from among NM. The functions of

CHs are not only to collect the information from the

NM but also to aggregate captured data that forwarded

to the BS [12, 13]. Figure 1 shows an example of the

clustering fashion of WSN.

Clustering provides various advantages like energy effi-

ciency, prolonging lifetime, scalability, and less delay.

However, the clustered WSNs also have got the draw-

back such as the aggregated data fault problem at CHs

that caused the network reliability of the monitoring and

predicting applications decreased [10, 14].

This paper considers the correct data to transfer from

CHs to the base station (BS) of WSN. The decision

function of the classifier is deployed in the CH for aggre-

gating accuracy data. The cluster heads (CHs) in hier-

archical WSN aggregate the captured data by MNs, then

CHs send them to the BS or via hops (via other CHs).

The method of classification is used to detect the faults

based on the data learning model in making decisions by

combining expert knowledge and statistical learning

method. The accuracy of captured data has an essential

role in successful ones for several applications such as
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weather prediction, military monitoring, traffic monitor-

ing, seismic activity prediction, and healthcare monitor-

ing [6, 15, 16].

The faults of WSN occur commonly due to its charac-

teristic that is a network through wireless links of devices

on ubiquitous and deployed in uncertain and hazardous

areas, e.g., battlefields, forest, healthcare, volcanos, high-

ways. Thus, how to get reliable data to transfer from CH

to the BS for further processing will be an urgent require-

ment to guarantee proper functioning applications [17].

The distinction between normal and faulty data must be

determined correctly. The detection of fault data also

should be rapid and precise. Identifying the data fault

which occurs spontaneously is difficult as those faults may

cause continuous failures [18]. The faults will cause the

WSN application to increase data network traffic and

wastes battery power [19]. Data fault detection is a prom-

ising way to enhance bandwidth, integrity, and reliability.

The applied classification is one of the favors of solutions

for identifying faults in WSN [20].

In this paper, the decision function of the classification

technique is deployed in CHs of the hierarchical WSN

to classify sensing data from MNs and to detect its faults

for the next steps of processing, e.g., aggregating data.

The CHs should aggregate data of the sensed environ-

mental information from sensor nodes and transfer

them to the base station. Naive Bayes classifier is applied

to detect data fault in CHs to enhance the integrity and

reliability of the WSN application.

The rest of this paper is organized as follows: Section 2

describes the common types of faulty in WSN and related

work. Section 3 introduces the proposed method. In

Section 4, several experiments are carried on the scenario

to evaluate the performance of the proposed method.

Finally, the conclusion is discussed in Section 5.

2 Related works

2.1 Fault data issues in WSNs

As the WSN is a network through wireless links of devices

on ubiquitous that are deployed in uncertain and hazard-

ous areas, e.g., battlefields, forest, healthcare, volcanos,

highways [21–23]. The electronic components in the sen-

sor node are also easy to break down. Some models, such

as centralized, distributed, and hybrid fault detection, have

been introduced for solving the WSN failures [24]. The

frequent failures happen of WSNs are classified into some

types, such as hardware failure, software failure, and com-

munication failure [25]. Figure 2 depicts some types of

common faults that occur in WSNs.

Hardware failures occur due to the negligence of sens-

ing capability, power (battery failure) location, and pro-

cessing units of sensors—for example, the battery failure

causes the impairment of sensors; software failures, e.g.,

the fusion and aggregation that occurs due to problems

in sensor programs; and communication failures, e.g., a

transceiver that disrupts the sending and receiving data

from the sensors. Data faults might occur either separ-

ately or simultaneously together and also might happen

over a while or instantly. Defects in WSN also can be

categorized based on two aspects according to the time

of the error and location of the fault. The time span of

the failure indicates the duration of the fault. The

Fig. 1 A clustering scheme of a wireless sensor network. The clustering in WSN composes Node members (NM) and Cluster head (CH). CH is

selected from among NM. The functions of CHs are not only to collect the information from the NM but also to aggregate captured data that

forwarded to the BS. Clustering provides various advantages like energy efficiency, prolonging lifetime, scalability, and less delay. However, the

clustered WSNs also have got the drawback such as the aggregated data fault problem at CHs that caused the network reliability of the

monitoring, and predicting applications decreased.
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location of the fault suggests the environment where the

fault occurs [26]. The period the defects can be catego-

rized into persistent faults and transient faults. Persistent

errors are permanent faults that can be solved when the

system recovery made. Transient faults are temporary

faults that occur due to network congestion or climatic

condition. The location of responsibility is broadly cate-

gorized into data-centric and system-centric. Data-

centric failure consists of the offset fault, gain fault, drift

fault, data loss fault, hard over fault, spike fault, and fu-

sion fault. System-centric fault includes the calibration

fault, battery failure, and hardware failure that can cause

the malfunctioning of the entire network. The classifica-

tion is one of the effective solutions for identifying faults

in WSN [26–28].

2.2 Classification methods

Definition of classification is a method of identifying

new data belonging to which of a set of data (subset),

based on a training set of data containing observations

(or instances) whose category membership is known

[29]. The most popular methods of classification in-

clude supervised learning, unsupervised learning, and

semi-supervised learning [30]. Supervised learning is a

paradigm that is trained on a predefined set of train-

ing examples using which the accurate result can be

obtained when the new data is given. The paradigm

works based on labeled data. Unsupervised learning is

a paradigm that gives a bunch of data from which

the pattern has to be obtained [31]. The method exe-

cutes based on unlabeled data. Semi-supervised learn-

ing is a paradigm that its knowledge uses both

labeled and unlabeled data [32].

The different affecting factors of sensing data from

various sensor nodes in WSN, such as uncertain and

hazardous areas of battlefields, forest, volcanos, or high-

ways, are aggregated to model for classification. There

are often two phases in the processing of classification.

The aspect of learning data allows combining knowledge

expertise with the statistical method. The different attri-

butes affecting valid data in WSNs can be verified based

on experiences knowledge of the experts. The applied

pattern with the probability in the learning data based

on the expertise for decision function is carried out to

clarify the new capturing data [33].

Figure 3 shows a classification model from the data in

the learning methods. Data is a set of data capture from

the sensor nodes, i.e., the attributes of sending raw data

(also called examples, instances, or cases) described by k

attributes: A1, A2, …Ak. Each attribute is considered as a

class that is labeled with a predefined course. The goal is

to learn a classification model from the data that can be

applied to predict the classes of new data for aggregating

and forwarding to the base station of WSN.

The essential contributions introduced recently by the

community research engaging in fault detection in

WSNs are reviewed in this subsection. A method of

dealing with detecting failures in WSNs has been devel-

oped based on a probabilistic scheme that knows as

naive Bayes classifier [34]. This method worked out with

sensing data as well as remaining energy in the network.

Bayesian classification represented a supervised learning

method that provides practical learning algorithms, and

prior knowledge and observed data could be combined.

It assumes an underlying probabilistic model, and it

allows us to capture uncertainty about the model in a

Fig. 2 The common faults occur in wireless sensor network
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principled way by determining the probabilities of the

outcomes. It can solve diagnostic and predictive prob-

lems. The Bayesian classification [35] provides a useful

perspective for understanding and evaluating many

learning algorithms. It calculates explicit probabilities for

hypothesis, and it is robust to noise in input data. The

probability of the hypothesis is formulated as follows.

p hjdð Þ ¼
P djhð Þ � P hð Þ

P dð Þ
ð1Þ

where h and d are hypothesis and data vectors respect-

ively; P(h) is a probability of hypothesis as prior belief;

P(d| h) is a probability of the data if the hypothesis h is

true; the marginal probability of data PðdÞ ¼
P

hPðdjhÞP
ðhÞ is data evidence; and p(h| d) is posterior.

Moreover, the decision tree learning algorithm is a

greedy divide-and-conquer algorithm. Fault detection in

WSN has introduced through decision trees (DT) [36].

Assume attributes are categorical now (continuous traits

also can be handled). The tree is constructed in a top-

down recursive manner. At the start, all the training ex-

amples are at the root. Instances are partitioned recur-

sively based on selected attributes. Attributes are

selected based on an impurity function (e.g., information

gain). Conditions for stopping partitioning consist of

one of the conditions as follows. All attributes for a

given node belong to the same class. There are no

remaining attributes for further partitioning, i.e., the ma-

jority class is the leaf, and there are no examples left.

Additionally, a method of fault detection in WSN

based on the support vectors machine (SVM) with the

Gaussian kernel is deployed for real-time data classifica-

tion [26]. The SVM is a classifier that is the supervised

learning model to identify the optimal boundary separat-

ing data of two classes. The Lagrangian coefficients are

determined, and support vectors along with decision

function are defined that are composed of a data prepar-

ation block.

The Gaussian kernel scheme is applied in the SVM to

maximize the hyper margin plane allows the SVM to fit

the maximum margin in a transformed feature space.

The hyper-plane in the middle passes with the optimal

condition is as vi(w ∙ ui + b) > = 1. The decision function

of the SVM is modeled as follows.

S uð Þ ¼
X

i∈V
αivi ui; uð Þ þ b ð2Þ

The primary task of kernel function is to identify the

general structure of relations in the dataset. Operating

SVM with a kernel trick would convert the linear model

into a non-linear model. The model will be saved from

the input space to feature space.

K u; u
0

� �

¼ exp
− u−u

0k k
2σ2 ð3Þ

where σ is the kernel width parameter. The modeled

kernel width parameter in data-dependent obeyed the

cross-validation technique. The techniques of distrib-

uted, centralized machine learning, or hybrid based on

Fig. 3 A classification model from the data in the learning method
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neighbors, self-detection have been applied for data fault

detection schemes in WSN [24]. As the same style of the

solution, an approach detection errors in big data sets

WSN was developed based on the cloud computing

scheme (CLOUD) [37]. One of the centralized tech-

niques uses a hidden Markov model (HMM) to identify

offset fault, gain fault, and struck at fault [38]. A method

of minimum redundancy maximum relevance (MRMR)

proposed to find a subset of features that are used for

fault prediction for feature selection [39]. MRMR re-

duces redundancy in features and selects the relevant

features. The maximum relevance feature is found by

calculating mutual information difference, and the mini-

mum redundancy feature is found by calculating mutual

information quotient. The cloud-based technique is the

hybrid-based fault detection technique, where the data

collected from sensors are stored in cloud storage. Map-

reduce is used for parallelism of fault detection tasks.

The mentioned methods though several were archived

successfully, there still exist disadvantages, e.g., clean

data preparation and feature selection before classifying

data are not considered. Without noise removed from

the data, they would cause misclassification or maybe in-

crease the fault rate. It has failed to organize data if the

test data was small that is limited in data learning, so it

also leads to misclassification.

3 Fault detection scheme methodology
The aim of our proposed scheme is to establish a deci-

sion function in the CHs that can be used in real time

for aggregating the precise data that classified any new

collecting data from MNs and forwarding them to the

base station in WSN. The proposed scheme of fault

detection consists of the steps of collecting data, prepro-

cessing data, identifying faults, selecting features, and

classifying data. Figure 4 shows a flowchart of the steps

in designing scheme involves the collection of data,

preprocessing of data, identifying the fault, selecting the

features, and classification of data.

The detail of the steps of the designing scheme is

presented as following subsections.

3.1 Data collection

A dataset with the noise of the collected data from vari-

ous sources by the sensor nodes for a system input

would cause misclassification data. The datasets should

be “clean” data by removing the noisy before further

processing data. One of the preferred techniques used

for performing the data cleaning process is called Gaussian

smoothing [40]. Gaussian smoothing is like doing a filter

using the original function convolution with the Gaussian

weight. Data cleaning starts with the initial step of the de-

sign scheme after collecting data from sensors; filtering

noise out from datasets before processing classification is to

improve its performance and accuracy. An effective

smoothing technique with an approximating function

attempts to capture important patterns in the data while

filtering noise out of the data. A form of collecting data is a

vector of the data-points. Let Si be a smoothed value at

position ith with k is kernel size. The full width at half

maximum is used as an expression of the extent of function

given by the difference between two extreme values of the

independent variables at vector data is equal to half of its

maximum value.

F σ; uið Þ ¼
1

2
πσ2 � exp−

1
2

ui
σð Þ

2

ð4Þ

where σ is the width of the curve and ui is the distance

from the origin point i in the horizontal axis. If a current

spike occurs in collecting data, that could be the noise

value, and the smoothing cost will be calculated and

substituted them [41]. A weighted average of smoothed

value is for the new points that are calculated as follows.

Si ¼

1

2k þ 1

Xk

j¼−k
uiþ j; if no spikeð Þ

Xk

j¼−k
w j�uiþ j

� �

; otherwise

8

>

<

>

:

ð5Þ

where wj is the weighting factor of smoothing. The ad-

vantage of the weighted average is that considered for a

straightforward implementation that is for every attri-

bute in the resulting data, and fewer values in the

weighted sum.

3.2 Data preprocessing and attribute selection

3.2.1 Preprocessing data

There are some types of faults based on the data-centric

in WSN for sensor readings such as due to hardware

failure, software failure, and communication failure [42].

This model of data gathered consists of the triplet d (n,

t, f(.)) where n denotes the sensor which senses the data,

t means the time the information is detected, and f(.)

denotes the function of sensed data at time t by node n.

The selected features from the smooth dataset after

identifying the fault are selected by applying a technique

called minimum redundancy maximum relevance

(MRMR) as an effective filter [39]. The less redundant

and more irrelevant of selecting features are identified

by the MRMR algorithm to find the relevance with mu-

tual information difference and to find the redundancy

with mutual information quotient. The calibration fault

and battery fault are also a significant fault type that af-

fects the data-centric fault system. The time data fault

occurs when the sensor failure or due to environmental

conditions. The function of fault identification is formu-

lated as follows.

f xð Þ ¼ αþ β∙xþ γ ð6Þ
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where α, β, and x denote the offset, gain, and sensed data

respectively, and γ denotes the noise which can be

neglected. For example, it can be described as gain fault

when the sensed data is different from expectation, so

f(x) = x; offset fault is with f(x) = α + x, where α is a con-

stant value that is added to sensed data; hardware fault

describes as sensed data that is null or 0, so f(x) = null; a

hardcover fault is detected data increases above the max-

imum threshold, so x ≥ θ where θ is the maximum

threshold.

3.2.2 Attribute selection

Attribute selection is called variable selection, or feature

selection, or variable subset selection that is a process of

selecting the subset of relevant attributes concerning the

output category [43–46]. The data training time and the

over-fitting could be reduced due to applying attribute

selection. The models are easy to interpret if attribute

selection is figured out. Attribute selection on time-

series data is crucial as the redundancy among the fea-

tures. Attribute selection is distinguished into three main

categories, which included the filter, wrapper, and em-

bedded methods. The filter approach uses statistical

methods to set the score for each attribute. The rating

ranks the characteristics, and the elements with the

highest rank are considered, and the rest is ignored.

Some of the filter methods include chi-squared tests, in-

formation gain, and correlation coefficient scores. The

wrapper approach uses a stochastic process in which a

subset of attributes is evaluated and compared with

other combinations. These scores are assigned based on

the accuracy of the model. The heuristics of the features

Fig. 4 The proposed fault detection scheme. The figure shows a flowchart of the steps in designing scheme involves the collection of data, pre-

processing of data, identifying the fault, selecting the features and classification of data
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are also considered. Cross-validation is done to improve

feature selection. Characteristics are passed forward and

backward to add or remove attributes. Some of the

wrapper methods include recursive attribute elimination

algorithm and back-forward algorithm. The embedded

approach uses built-in feature selection methods. Inbuilt

functions are used to reduce over-fitting. Examples of

embedded methods include regularized trees and mi-

metic algorithms.

A filter approach as the MRMR is used in this paper

for connecting to output with maximum relevance and

left out elements that are redundant as minimum redun-

dancy. The attributes are selected by applying an object-

ive function as a greedy search function of relevance and

redundancy. Two types of objective functions commonly

are mutual information difference (MID) criterion to

calculate relevance and mutual information quotient

(MIQ) criterion to calculate excess. The MID measures

how much the information is shared between two inde-

pendent variables. Two variables u and v of the probabil-

ity distribution are independent, relating mutual

information is formulated as follows.

A U ;Vð Þ ¼
X

v∈V

X

u∈U
p u; vð Þ� log

p u; vð Þ

p uð Þ�p vð Þ

� �

ð7Þ

where A(U,V) is the relating mutual information with

probability distribution; p(u, v) is the joint probability of

U and V; p(u) and p(v) are the marginal probability of U

and V respectively; p(U = u|V = v) is the conditional

probability of U and V.

3.3 Training and classifying data

3.3.1 Training dataset

There are two phases of the fault detection solution in

the proposed scheme: the data learning and real-time

decision-making stages. In the data learning phase, the

essential elements of the data are respected and main-

tained in the process. The data learning stage also uses a

statistical learning method. The needed experience from

the expertise to resolve different problems affecting

WSNs is applied in learning data phrase because the

classification based on data learning allows using expert-

ise in making decisions. The classifiers and the decision

function are implemented in the cluster head in WSN

for aggregating accuracy data. The aim is to establish a

real-time decision function in CHs to classify any new

collecting data from sensor node members.

A labeled dataset is used as a learning database. It is

composed of a set of regular data and a set of erroneous

data. Figure 5 shows two phases in a model of the fault

detection solution.

In the decision-making phase, a new data vector is

constructed with blocks of data measurements Vt that

included three measures (Vt, Vt − 1, Vt − 2). The decision

function will makeover the new data vector. If its result

is positive, it belongs to the standard case (a class of nor-

mal data functionality); otherwise, it is considered as a

faulty case. The computationally inexpensive by applying

a simple decision function used in the cluster head that

makes the proposed scheme very efficient with sensors

as limited resource nodes.

3.3.2 Classifying data

A part of a dataset with the selected attributes would be

used to train the dataset by applying the model learning,

the kernel function, the cross-validation, and expert’s ex-

perience values. After the dataset is trained, the classifier

model would be applied to test data for classification.

Figure 6 shows a model of class attributes of fault detec-

tion solution. The decision function for fault detection

can decide whether the attribute data belong to a class

or not.

Let x0, . . , xn and c0, . . , ck be attributes and classes re-

spectively, where n and k are the numbers of attributes

and classes involved. The probability of the attributes

occurring in each category is determined and returned

to the most likely category. P(ci) is the proportion of the

dataset that falls in category ci.

The naive Bayes probability model is an independent

attribute model that can derive constructing a classifier.

The classifier combines the model with a decision rule.

The probability of a collected data is estimated character

belongs to a specific category that can process classifying

with naive Bayes. The most substantial likelihood re-

ceived data point’s attributes are to pick the ci by naive

Bayes. Each class, P(ci |x0, …, xn) is calculated for classi-

fication, and a faulty detection strategy is to predict as

policy follows.

z ¼ arg max
ci

P cið Þ
Yn

j¼1
P x jjci
� �

ð8Þ

One common practice is to pick the most probable

hypothesis; this is called the maximum a posteriori. The

corresponding Bayes classifier is the function that as-

signs a class label ci. In the classification, an attribute

can be replaced with a new adjusted set of attributes as

the category ci in collecting data.

4 Experimental results and discussions

4.1 Setting parameters

Assumed an N-node topology of cluster-based WSN was

deployed in scattering the area of M ×M randomly, where

N is a number of nodes that can be 100, 200, 300; M is a

length measurement of the deployed area that can be 200,

300, 400 m. The network has a base station (BS) that

Chu et al. EURASIP Journal on Wireless Communications and Networking         (2020) 2020:52 Page 7 of 15



operates with an unlimited power supply. BS receives

the aggregated data from CHs. The characteristics of

WSN operation were assumed that behaving like sched-

uling periods of packet transmission time. Table 1 lists

the initial values for setting the parameters of the

experiment.

The information of the packets such as data transmis-

sion time and source node IDs received by the CHs are

aggregated and forwarded to the BS. Data were ran-

domly picked up by member nodes and were forwarded

to the CHs. Then, the CHs will pack the data to be

packets and transmit them towards the BS node.

There are two circumstances: default and adjusted op-

tions of the cluster in WSN. The default option is the

formed clusters without any adjustment from its outside.

However, the customized option is applied to the un-

equal group for balancing energy in the WSN (men-

tioned in Section 4.4).

4.2 Visualization results with default option

The attributes, e.g., temperature, humidity, light, net-

work status, could be “normal” or “faulty.” For an ex-

ample of the network status, if the attribute is class

labeled “normal,” the network consists of no defective

sensor. Otherwise, the system includes at least one faulty

sensor in both the training and testing phase. Figure 7

shows a visualization of training and testing set results.

The collecting dataset is taken from outdoor data collec-

tion from multi-hop WSN with a total of 4001 samples

that consist of temperature measurements for 5-min

period of scheduling loop for packets data with a total of

60 min.

Different scenarios are simulated, such as some set

faulty nodes within the network, i.e., increasing or de-

creasing temperature, humidity, and sensed data dam-

aged in traffic congestion conditions. Under each setting

conditions, no-fault network and different numbers of

Fig. 5 Two phases in the model of the fault detection solution

Fig. 6 A model of class attributes in fault detection solution
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faulty nodes within the system are generated. For an N-

node topology, there are some combinations of faulty

nodes with varying from 1 to 5, respectively. There are

about 200 data packets under each scenario generated

by sensor nodes randomly.

4.3 Measurement results

The metrics of the detection accuracy (DA), the true

positive rate (TPR), and the false positive rate (FPR) are

used to evaluate the accuracy of the proposed technique

as follows.

DA ¼
number of faulty data identified

total number of faulty data present
ð9Þ

where DA is detection accuracy that is clarified as the

ratio of the number of erroneous data identified to the

total number of current incorrect data.

TPR ¼
number of faulty data identified as faulty

total number of faulty data

ð10Þ

where TPR is the true positive rate that is classified as

the ratio of some faulty data identified as faulty to the

total number of incomplete data. It refers to the quantity

that predicts the true positive as a positive.

FPR ¼
number of non faulty data identified as faulty

total number of faulty data

ð11Þ

Here, FPR is the false positive rate that is classified as

the ratio of some non-faulty data identified as faulty to

the total number of incomplete data. Table 2 summa-

rizes the results of the training accuracy of various fault

types.

The experimental results of the proposed scheme for

the classification dataset of collecting temperature are

compared with the cases of the methods, e.g., the sup-

port vector machine (SVM) [26], the decision tree (DT)

[36], the hidden Markov model (HMM) [38], and the

cloud computing scheme (CLOUD) [37] concerning the

false positive rate of training set. In the measurement of

the results of the proposed scheme in comparison with

other methods, a mathematical tool known as the Haus-

dorff metric [25] is used to determine the distance dif-

ference between two datasets. Assumed, there are two

non-empty of subsets A and B; the distance between

them calculated as follows.

DH A;Bð Þ ¼ max supx∈A inf y∈Bd x; yð Þ; supy∈B infx∈Ad x; yð Þ
n o

ð12Þ

Table 1 Initial values for setting parameters of the experiment

Parameters noticed Denoted
symbols

Initial values

Initial node energy Ej 0.5 J

Data aggregation energy EDA 5n J/bit/signal

Receiving and transmitting energy Efs 10 pJ/bit/m2

Radio electronics energy Eelec 50 nJ/bit

Number bit of a data message l 1024 bit

Amplifier energy Emp 0.013 pJ/bit/m4

Number of nodes in WSN N 100/200/300/nodes

Space distribution M 100/200/300 m

Generations MaxIter 2000

Number of runs runs 25

Fig. 7 A visualization of the training and testing set results
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where DH(A, B) is Hausdorff distance between two

subsets A and B; sup and inf are the supremum and infi-

mum respectively. Figures 8 and 9 depict the compari-

son of the proposed scheme for the classification of a

collecting temperature dataset with the SVM, DT,

HMM, and CLOUD methods on the faulty of hardware

errors and data-loss fault respectively in the scenario of

the adjusted option. It can be seen that our proposed

method outperforms other competitors in that the aver-

age outcomes of DA are at 93.1% and 89.0% on the

hardware faulty and data-loss fault respectively.

Figure 10 shows a comparison of the proposed method

according to FPR with the SVM, DT, HMM, and CLOUD.

The proposed method provides the best value of FPR that

helps to make a significant and essential improvement of

FPR as compared with others. The growth is starting from

59% compared with the SVM and reaches 59% compared

with the DT, HMM, and CLOUD.

4.4 Adjusted options results

Due to the topology of the clustering WSN fashion, the

system often falls into the hotspot problem. It means

Table 2 Summary of the effects of training accuracy of different fault types

Data-loss fault Hardware fault Drift fault Gain fault

Node ID TPR (%) DA (%) FPR (%) TPR (%) DA (%) FPR (%) TPR (%) DA (%) FPR (%) TPR (%) DA (%) FPR (%)

001 86.5 89 26 86.5 99 32 86.5 87 32 86.5 92 28

002 83.5 88 32 83.5 98 37 83.5 84 31 83.5 90 32

030 85.2 90 24 85.2 89 34 85.2 85 34 85.2 92 34

034 86.3 93 31 86.3 93 34 86.3 86 31 86.3 93 31

050 84.5 87 30 84.5 97 36 84.5 85 30 84.5 87 30

056 86.1 86 22 86.1 96 32 86.1 86 32 86.1 91 32

070 85.2 89 34 81.8 89 34 85.1 85 36 83.5 89 26

078 86.3 88 31 84.9 89 35 97.3 97 32 85.2 88 32

099 87.0 91 30 84.1 88 35 86.1 89 34 86.3 85 34

AVG 85.6 88.9 28.9 84.8 93.1 34.3 86.7 87.1 32.4 85.2 89.6 31.0

Fig. 8 Comparison of the proposed method for the classification of collecting data with the SVM [26], DT [36], HMM [38] and the CLOUD [33] on

the hardware faulty
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Fig. 9 Comparison of the proposed method for the classification of collecting data with the SVM [26], DT [36], HMM [38] and the CLOUD [33] on

the data-loss fault

Fig. 10 Comparison of the proposed method for the classification of a collecting temperature dataset with the SVM, DT, HMM and CLOUD

methods on concerning the FPR metric
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that the clusters that are closer to the BS is getting

hotter than the other groups that are far away [1, 10].

Because the group is the closer BS, the more profoundly

is the traffic load that causes coverage issues of hotspot

problems. It is necessary to adjust and amend this situ-

ation of faulty nodes according to the cluster WSN. The

affection of a faulty node can affect its distributed neigh-

bors of cluster size [1]. The calculations for the posterior

fault probability of every node can affect the results of

the classification. The fault node causes the similarity

status to its neighbors in the cluster. The fault probability

should be adjusted by exploiting the cluster’s size. The

new confidence of nodes is figured out as adjusting

follows.

cti j ¼ ct−1i j
� Rc ð13Þ

where cti j is the confidence of node j in the cluster i; t is

the current time of generation; Rc is the ratio adjusting

parameter that is determined as follows.

Rc ¼ 1−β
dmax−D j

dmax−dmin
−α 1−

Er

Emax

� �� 	

� Rmax ð14Þ

where dmax , dmin, and Dj are the maximum and mini-

mum distance of the CHs in the network to the BS and

the distance from node CHj to the BS; Rmax is the max-

imum value of competition radius; β and α are the

weighted factors with value in [0, 1]; Er presents the re-

sidual energy of CHj. The probability of the faulty nodes’

confidence is calculated as follows:

Pxij ¼ P cijjxij is fault
� �

¼

1

2
; if all confidence c < 0

1−Pxik ; choose xk with maximum c

Pxik ; if xi is not same cluster

8

>

<

>

:

ð15Þ

where Pxi and Pxik are the probability of the faulty node

xij and xik respectively.

Figure 11 shows a comparison of the proposed scheme

for the classification of a collecting dataset of WSN with

the SVM, DT, HMM, and CLOUD methods for different

faulty, e.g., data loss, hardware, drift, and gain fault ac-

cording to the DA measurements.

Figure 12 shows a visualization of the comparison

between the adjusted and default options of the testing

set results. Figure 13 depicts the comparison between

the adjusted and default options of the proposed

scheme for the testing set with different faulty, e.g.,

data loss, hardware, drift, and gain faults according to

the DA measurements. Observing the results from

Figs. 12 and 13, it is seen that the proposed scheme

with adjusted options can provide more improved accur-

acy that reaches at 95%, 98%, 91%, and 90% in comparison

with default cases for data loss, hardware, drift, and gains

fault according to the DA measurements.

5 Conclusion

In this paper, a new scheme of collecting data classi-

fication for aggregating data in cluster heads (CHs)

in hierarchical WSN based on the naive Bayes

Fig. 11 Comparison of the proposed scheme for the classification of a collecting dataset of WSN with the SVM, DT, HMM, and CLOUD methods

for different faulty, e.g., data loss, hardware, drift, and gain fault according to the DA measurements
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approach was presented. Due to the requirement of

the precise data in several successful WSN applica-

tions, a decision function of classification should be

deployed in CHs for faulty detection to aggregate

the usual data for the next process. The collecting

environmental information like temperature, humid-

ity, and pollution levels is classified as collecting

“fault” or “normal” data to aggregate and transfer

them to the base station (BS).

The system design of the proposed scheme consists of

majority components such as the collecting and prepro-

cessing data, identifying and normalizing attributes of

data, and training and testing datasets. The noise is re-

moved from the data that can be sufficient to obtain

more accurate. The elements of selected attributes in

datasets can enable detection accuracy. In the experi-

mental section, the system was tested with the collecting

data by naive Bayes classification. Compared with the

Fig. 12 A visualization of the comparison between the adjusted and default options of the testing set results

Fig. 13 Comparison between the adjusted and default options of the proposed scheme for the testing set with different faulty, e.g., data loss,

hardware, drift, and gain faults according to the DA measurements
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other methods in the literature, e.g., the support vector

machine (SVM), decision tree (DT), hidden Markov

model (HMM), and cloud computing scheme (CLOUD),

it shows that the proposed method offers an effective

way of forwarding the correct data for WSN applica-

tions. The system provides an accuracy of more than

97% throughout the data learning process. In data test-

ing, the efficiency of the improved data fault detection

offers more precise than any other competitive systems.

In future work, the proposed scheme may be further

improved by adopting some efficient approaches [47–49]

for optimal classification parameters; and it also may

hybridize with the method of the neural network [50].

Abbreviations

BS: Base station; CH: Cluster head; CLOUD: Cloud computing scheme;

DT: Decision tree; HMM: Hidden Markov model; NB: Naive Bayes; NM: Node

members; SVM: Support vector machine; WSN: Wireless sensor network
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