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ABSTRACT

Motivation: The expression of genes during the cell division process

has now been studied in many different species. An important goal of

these studies is to identify the set of cycling genes. To date, this was

done independently for each of the species studied. Due to noise and

other data analysis problems, accurately deriving a set of cycling genes

from expression data is a hard problem. This is especially true for some

of the multicellular organisms, including humans.

Results: Here we present the first algorithm that combines micro-

array expression data from multiple species for identifying cycling

genes. Our algorithm represents genes from multiple species as

nodes in a graph. Edges between genes represent sequence similarity.

Starting with the measured expression values for each species we

use Belief Propagation to determine a posterior score for genes. This

posterior isusedtodetermineanewsetofcyclinggenes foreachspecies.

We applied our algorithm to improve the identification of the set of

cell cycle genes in budding yeast and humans. As we show, by

incorporating sequence similarity information we were able to obtain

a more accurate set of genes compared to methods that rely on

expression data alone. Our method was especially successful for the

human dataset indicating that it can use a high quality dataset from

one species to overcome noise problems in another.

Availability: C implementation is available from the supporting

website: http://www.cs.cmu.edu/�lyongu/pub/cellcycle/
Contact: zivbj@cs.cmu.edu

1 INTRODUCTION

The cell cycle system has been studied using microarray expression

data in several species. These include humans (Whitfield et al.,
2002), budding and fission yeast (Spellman et al., 1998; Rustici
et al., 2004), plants (Menges et al., 2002) and bacteria (Laub et al.,
2000). One of the first questions researchers face when analyzing

such experiments is how to identify the set of cycling genes. Many

methods have been developed for identifying such genes in a single
species. These include methods that rely on Fourier transform

(Spellman et al., 1998; Wichert et al., 2004), sinusoids (Schliep

et al., 2003; Zhao et al., 2001), deconvolution (Bar-Joseph, 2004;

Lu et al., 2004) and methods that combine expression amplitude

with Fourier analysis (de Lichtenberg et al., 2005). All of the above
methods rely on thresholds and other parameters which are not

always easy to determine. Indeed, while these methods have

been successful for some species, their success varied depending

on the quality of the microarray data and the noise level (Shedden

and Cooper, 2002).

The recent expression profiling of the cell cycle system in fission

yeast provided a good opportunity for researchers to compare the set

of cycling genes in two closely related species (budding and fission

yeast). Surprisingly, the results indicated that cell cycle expression

is not well conserved among these two species. As Rustici et al.
(2004) write: ‘‘Our comparisons with budding yeast data revealed a
surprisingly small core set of genes that are periodically expressed
in both yeasts.’’ There could be many reasons for the disagreement

between the list of cycling genes in different species. One possibility

is that cell cycle expression is not well conserved (though cell cycle

function may still be conserved on the post-transcriptional, or pro-

tein, level). However, there may be other reasons for this discrep-

ancy. The different computational methods used to determine the

set of cycling genes, noise in the data and differences in the quality

of the data may result in one list being more accurate than the other.

In such cases it may be possible to rely on one species to improve

our detection of cycling genes in the other. This process may yield

higher quality lists for both species.

In this paper we present a method for combining experiments

from multiple species. Our algorithm combines sequence and

expression data to identify the set of cycling genes. By considering

sequence information we can use homologs to overcome noise and

cutoff problems in individual species. By using expression data we

can detect functional conservation, that is, sets of genes that are not
only similar in sequence but also similar in function.

We use probabilistic graphical models, and in particular Markov

random fields, to combine these data sources. We represent genes as

nodes in the graph, with edges corresponding to sequence similarity

as determined by a BLAST score. Each node (gene) is assigned an

initial score which is determined by the expression experiment.

Starting with this score we propagate information along the edges

of the graph until convergence. Thus, if a node with a medium score

is connected to a set of nodes with high scores, the information from

the neighboring nodes can be used to elevate our belief in the

assignment of this node, and vice versa.

Because the algorithm assumes expression conservation it leads

to better agreement between cycling genes in different species.

In order to test this algorithm it is thus important to show that
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this agreement does not come at the expense of a high quality set in

either species. To show that our algorithm actually improves the

quality of the identified set of cycling genes we tested it using two

species for which additional information is available: Budding yeast

and humans. As we show, by combining sequence and expression

data our algorithm was able to detect a more accurate set of cycling

genes in both species when compared to methods that rely on

expression data only. While the improvement was mild for the

high quality budding yeast expression data, it was much more

substantial for the more noisy human cell cycle expression data.

1.1 Related work

Many methods have been suggested to identify the set of cycling

genes from one or more expression datasets in a single species. For

example, Spellman et al. (1998) used Fourier transform to identify

cycling genes in budding yeast. Wichert et al. (2004) presented

statistical methods for identifying periodically expressed genes

and applied them (separately) to human and yeast. Lu et al.
(2004) and Bar-Joseph et al. (2004) presented methods for decon-

volving yeast expression data in order to improve the identification

of cycling genes. de Lichtenberg et al. (2005) used scores that look

at both, the amplitude of the expression value peak as well as the

peak in the Fourier spectrum around the cell cycle period. Unlike the

above methods, our method combines information from multiple

species using sequence similarity. This allows us to overcome noise

and improve the identification of cycling genes.

A number of previous papers combined sequence and expression

data to study similarities in expression between different species.

For example, Bergmann et al. (2004) clustered data from six dif-

ferent species to identify modules of genes that are co-expressed.

Stuart et al. (2003) identified ‘metagenes’, a group of homolog

genes from four different species (one gene from each species),

and then used correlation coefficients to link metagenes forming

a co-expression network. Our work differs from these papers in

several important aspects. First, unlike prior work that relied on

clustering to identify groups of co-expressed genes under a wide

range of conditions, our approach uses a classification framework to

achieve a different goal: identifying a set of conserved cycling

genes. Second, prior work only looked at pairwise expression simi-

larities, whereas our algorithm utilizes the complete graph topology

to propagate information. Finally, previous papers used sequence

similarity as a binary value (similar or not). In contrast, our frame-

work uses the extent of this similarity to determine edge weights.

The higher the similarity the greater the importance of neighboring

genes for determining the cyclic score.

Recently, a number of papers compared the regulatory networks

of various species (Sharan et al., 2005). These papers used graph

theoretic methods to compare networks across species and identify

similar pathways in these species. The focus of these papers and

their goals are very different from ours. While we are focused on

identifying the set of cycling genes using expression data the above

papers relied on the regulatory information in each species. Such

information may not be accurately available for all genes and tran-

scription factors in various species. Specifically, the networks they

relied on were not systems specific but rather general, and the goal

was to extract global and local similarities as opposed to the cell

cycle oriented goal in our paper.

A number of papers used belief propagation to combine different

biological data sources. These include the physical networks model

by Yeang et al. (2004) and methods for determining protein func-

tions (Letovsky and Kasif, 2003). These are very different in their

goal from our work, and use different types of data. In addition,

these papers did not try to combine information from different

species, as we do here.

2 MODELING EVOLUTIONARY
CONSERVATION USING GRAPHICAL
MODELS

We formulate the problem of assigning cyclic status to genes using

probabilistic graphical models. In such models, random variables

are represented by nodes in a graph and conditional dependencies

are represented by edges. The structure of the graph and the con-

ditional dependencies it implies specify a joint probability distri-

bution on the random variables. By taking advantage of the

structural relations in the graph, efficient algorithms have been

proposed to either learn the parameters of graphical models or

do inferences on learned models.

Here we use Markov random fields (MRF) to represent

dependencies between genes in different species. Unlike Bayesian

networks, MRFs are undirected graphical models, in which depen-

dency among nodes is represented using potential functions. There

are two types of nodes in the graph we use for this problem (see

Figure 1). The first represents genes and the second represents

expression scores from the related cell cycle experiments. Edges

between gene nodes correspond to sequence similarity, and carry a

weight which depends on that similarity. These edges are used to

capture the conditional dependencies of phylogenetically related

genes. All edges between a gene node and its corresponding

score node have the same weight and correspond to the gene

nodes’ potentials.

To generate the edges between potential homologous genes, we

run BLAST between all pairs of genes in the two species. We insert

an edge between two gene nodes (either belonging to the same

species or to two different species) if their BLAST score is higher

than a fixed threshold. We use a conservative cutoff such that we are

fairly confident that when an edge is added to the graph, the two

genes it connects are very likely to be homologous. While we use a

cutoff to determine whether we place an edge or not, edges that

are present in the graph are weighted based on their BLAST score.

The resulting graph comprises of a set of connected components,

as demonstrated in the diagram in Figure 1.

To represent the latent status of a gene (whether or not it is a cell

cycle gene) we associate a hidden variable Ci with each gene node.

Ci¼ 1 means that this gene is cell cycle regulated, otherwise Ci¼ 0.

…

…

Species 1

Species 2

…

…

Species 1

Species 2

Gene Node

Score Node

Gene Node

Score Node

Fig. 1. A graphical model for two species. Dark nodes are score nodes,

representing the score derived from such experiments. The lighter nodes

are genenodes.Genenodes are connected by edges if their sequence is similar.
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Based on the definitions above, the joint probability distribution

over the random variables Ci of this model is defined as follows

(Pearl, 1988)

L ¼ 1

Z

Y
i

ciðCiÞ
Y
i‚ j

cijðCi‚CjÞ ð1Þ

where ci (Ci) is the node potential function (derived from the

score node), cij (Ci, Cj) is the edge potential function, and Z is

the partition function, i.e. the normalization term. Potential functions

capture constraints on a single variable or between a pair of depen-

dent variables. For example, if two gene nodes i and j are connected
by an edge with a large weight, it is likely that they are functionally

related. Thus, the potential function will penalize assignments that are

different in the different nodes (e.g., settingCi to 0 andCj to 1). Below

we discuss the potential function in detail.

2.1 Score distribution

A key to our algorithm is the derivation of an expression score

which is consistent across all species used. Once such an expression

score has been derived, each score node is assigned the correspond-

ing gene’s score, Si. We assume that Si is drawn from a mixture

distribution. Specifically, we assume two different distributions

(for each species): a cell cycle specific distribution, which applies

to all genes that are cell cycle regulated, and a null, or background

distribution which applies to all other genes.

An important practical issue is to choose the form of the two

component distributions of the Si scores. While the Gaussian dis-

tribution has been successfully applied to model expression values,

here we are modeling scores that are derived from such values, and

not the values themselves. In many cases, such scores are derived

by taking the max value of some transformation. Cell cycle score

calculation involves taking the maximum peak of the expression

time series or the Fourier transform and the resulting distribution

often has a heavy tail and is more appropriately modeled as an

Extreme Value Distribution (EVD). This heavy tail property is

clearly noticeable in the scores assigned to known cycling genes

as can be seen in Figure 3.

The EVD is defined using two parameters: location (a) and scale

(b). Its PDF is given by:

pðxÞ ¼ 1

b
e�expf

a�x
b ge

a�x
b

The location and scale parameters of EVD are similar to the

mean and variance parameters of the Gaussian distribution. As in

a Gaussian, they control the mode and the spread of the distribution,

though they do not necessarily correspond to the mean and variance.

Using the EVD mixture model we need to fit four parameters for

each species a0, b0, a1, b1 where

Si jCi ¼ 0 � EVDða0‚b0Þ
Si jCi ¼ 1 � EVDða1‚b1Þ

The values of these parameters are fitted to the score distributions

using an EM-type algorithm. As with any EM algorithm, the initial

guess plays an important role in reaching a good local maximum. To

initialize the parameters for the null distribution we permute each of

the original time series randomly to simulate the expression levels

of non cell-cycle genes. Scores are calculated from these artificial

expression data, and are subsequently used to estimate the parame-

ters of the null score distribution. To initialize the score for

cell-cycle genes, we compile a list of such genes that appear in

the corresponding papers and use the scores of these genes to derive

a maximum-likelihood estimate of the parameters.

2.2 Node potential function

The node potential function is defined using Bayes rule as

ciðCiÞ ¼ PrðCi j SiÞ

¼ PrðSi jCiÞPrðCiÞ
PrðSi jCi ¼ 0ÞPrðCi ¼ 0Þ þ PrðSi jCi ¼ 1ÞPrðCi ¼ 1Þ

Using the EVD mixture assumption, the potential function becomes

cið0Þ ¼ PrðCi ¼ 0 j SiÞ ¼
ti0

ti0 þ ti1
‚

cið1Þ ¼ PrðCi ¼ 1 j SiÞ ¼
ti1

ti0 þ ti1

where

ti0 ¼ ð1 � PcÞ ·
1

b0
e
�expfa0�Sib0

g
e
a0�Si
b0

ti1 ¼ Pc ·
1

b1
e
�exp

�
a1�Si
b1

�
e
a1�Si
b1

and Pc is a prior probability for cycling genes in the species to which

i belongs.
In practice, we require b0 ¼ b1 so that the two score distributions

have a similar spread. This guarantees that the posterior score will

have the same ranking as the expression scores when there are no

edges in the graph.

2.3 Edge potential functions

Our edge potential functions capture the a-priori functional simi-

larity between gene pairs. This is based on our assumption regarding

evolutionary conservation of gene functions, namely, that genes that

are highly similar in sequence are likely to be similar in function.

We use BLAST (Altschul et al., 1997) to determine sequence simi-

larity. As mentioned earlier, we do not transform these BLAST

scores into binary features. Rather, we use the similarity score to

determine the edge potential which penalizes contradictory assign-

ments. The penalty is proportional to how close the two genes’

sequences are.

For each query sequence, the BLASTALL program returns an

E-value and a bit score S. The relation between them is E ¼ mn2�S

where m is the length of the query sequence and n is the length of

the genome of the second species. Note that bit scores are not

‘‘symmetric’’ as they depend on the total genome length. To over-

come this, and generate a single similarity score for pairs of genes

we set the weight on edge (i, j) to

wij ¼
1

2
ðbij þ bjiÞ

where bij is the BLAST bit score of gene i against gene j. Using
wi,j we define the edge potential as

cijðCi‚CjÞ ¼ 2�lwijðCi�CjÞ2 :

This potential function penalizes assignments that do not agree

between connected nodes. l is an externally specified parameter

that controls the impact of edge potentials relative to the node

potentials.
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3 LEARNING THE PARAMETERS OF
OUR MODEL

The model parameters we need to learn are the score distribution

parameters for each species. We learn the score distribution para-

meters (a0, b0, a1, b1) in an iterative manner using an EM-style

algorithm. We start with an informative guess for the score para-

meters, as mentioned above. Based on the score distributions we

determine a posterior assignment to nodes using belief propagation,

as we discuss below. Following convergence of the belief pro-

pagation algorithm we use the (soft) label assignments to update

the score distribution parameters. We then repeat these steps by

performing belief propagation again based on the updated score

distributions and so forth until both the label assignment and

score distribution parameters do not change anymore.

3.1 Iterative step 1: inference by belief propagation

To infer the node status variables Ci, we need to compute the

marginal posterior label distribution on each gene node. This pos-

terior is hard to compute directly because of the intractable nor-

malization term Z in Formula (1). Fortunately, for these types of

graphical models, we can use a standard belief propagation algo-

rithm for inference avoiding the direct calculation of the Z term

(Pearl, 1988). Note that our graph is loopy and thus the belief

propagation algorithm is not guaranteed to converge to a global

maximum. Still, as was shown in Yedidia et al. (2003) in practice

these algorithms achieve good results in loopy networks as well.

The belief propagation algorithm consists of two steps: ‘Message

passing’, where each node sends its current belief to all its neigh-

bors, and ‘belief update’, where nodes update their belief based on

the messages received. In our case the messages depend on the

node’s expression score and the belief of genes that are similar

in sequence. The algorithm is summarized below.

(1) ‘Message passing’. Themessages sent by node i to node j about
its belief in an assignment of 1 to j is:

mi‚ jð1Þ 
X
k¼0‚ 1

�
ðciðkÞcijðk‚1Þ

Y
n2NðiÞ\j

mn‚ iðkÞ
�

Where N(i) is the set of neighbors of node i in the graph.

Intuitively, this message informs j about i’s agreement with

an assignment of 1 to j. In order to determine this, i takes into
account its own belief (from its score node), the strength

of the edge between i and j and the belief of i’s neighbors

about the right assignment to i. For the belief in a 0 assignment

we simply replace every 1 with 0 in the above equation. Note

that the weighting parameter l is already incorporated into

the edge potential function and so it is incorporated into the

message as well.

(2) ‘Belief update’. The belief of i in an assignment of 1 is

computed by setting:

bið1Þ ¼ ð1/vÞcið1Þ
Y

j2NðiÞ
mj‚ ið1Þ

where v is a normalization constant to make beliefs sum to 1.

As can be seen, i’s belief depends on both its original score

and the messages it received from its neighbors about what

they ‘believe’ should be assigned to i.

3.2 Iterative step 2: updating the score distribution

Using the belief computed in the inference step, we update the score

distribution parameters. Our goal is to maximize the auxiliary func-

tion Q(Q,Q(g)), which is defined as the expected log likelihood of

the complete data over the observed scores given the parameters

QðgÞ ¼ ðaðgÞ0 ‚a
ðgÞ
1 ‚bðgÞ) at the g’th iteration.

We were unable to find a reference for deriving update rules for the

EVD mixture distribution. We have thus derived these ourselves. In

general, to derive an update rule for this distribution we need to

simplify the Q function and separate the parameters into two

terms which can be maximized independently. If we require that

b0¼ b1, then for each species we have three parameters: two location

parameters a0 and a1 and one scale parameter b. We can find the

location parameters that maximizeQ easily if we know b, but there is
no close form solution for b. However, we can use numerical methods

to solve for b. The final update rules for each species are as follows

a
ðgþ1Þ
l ¼ 1

b
log

PN
i¼1 PilPN

i¼1 e
�bSiPil

‚ l ¼ 0‚1

bðgþ1Þ ¼ 1

b

where N is the number of genes in that species, Pil represents

p(Ci ¼ l j Si, Qg), l ¼ 0, 1, and b is the root of the equation:

1

b
¼

P
l¼f0‚ 1g

PN
i¼1 SiPilP

l¼f0‚ 1g
PN

i¼1 Pil

�
X

l¼f0‚ 1g

XN
i¼1

Pil

PN

i¼1 e
�bSi SiPilPN

i¼1 e
�bSi Pil

" #. X
l¼f0‚ 1g

XN
i¼1

Pil

ð2Þ

Equation (2) can be solved using linear line search since the

reasonable range of b is not large. Note that the Newton-Raphson

method does not work here, because the solution is very close to the

local extrema of the function. See Appendix for more details.

We can also extend our model to use the Generalized Extreme

Value Distribution which in some cases gives better results.

For details please refer to our supporting website (Lu et al., 2006).
Our algorithm is summarized in Table 1 above.

Table 1. Algorithm for combining microarray expression data frommultiple

species

Input

1. For each gene, expression score Si
2. Graph structure (edge weights)

Output:

For each gene its posterior cycling status, Ci

Initialization:

For each species compute estimates for a0, a1 and b using permutation

analysis and original lists

Iterate until convergence:

1. Carry out Belief Propagation to determine a posterior Ci for each gene

2. Use the computed posterior to recompute the EVD parameters for the

score distribution in each species

Cycling genes from sequences and expression
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4 RESULTS

We tested our algorithm on simulated and real biological data.

For the biological species we selected budding yeast and humans.

While budding and fission yeast are closer from the evolutionary

standpoint, there is less complementary information for the set of

cycling genes in fission yeast. In contrast, many of the human cell

cycle genes have been extensively studied leading to good anno-

tation databases for these genes. This makes it easier to evaluate a

new list of cycling human genes when compared with a list for

cycling fission yeast genes. Another advantage of looking at human

instead of fission yeast is that it indicates that even if the two species

are relatively far, they can still benefit from a joint analysis of their

cell cycle expression experiments.

4.1 Simulated data

To test our model using simulated data we first generated the

graph structure from the two species as discussed before. We

then generated labels (i.e. cycling or not) for nodes in the graph

using a Gibbs sampler method that took into account previously

assigned neighboring nodes when assigning labels to individual

nodes. See the supporting website (Lu et al., 2006) for complete

details on the label assignment.

After generating the labels we assigned scores to nodes. We used

two (overlapping) score distributions, one for the nodes with Ci ¼ 1

and the other for those withCi¼ 0. In all experiments we used a fixed

distribution for one species. However, each experiment used a dif-

ferent distribution for the second species. These distributions varied

in their separability, ranging from highly separable to highly

overlapping (see Figure 2). We have next hidden the node assign-

ments, and used our algorithm to infer these assignments.

We repeated this process 10 times for each set of score distributions.

Figure 2 presents the results of two of these experiments. As can

be seen, by relying on the graph structure we were able to improve

the recovery of the true label assignments when compared to label

assignments that are based on a cutoff of the score alone. As the

separation between the two distributions became smaller the

difference between the two methods became more apparent. For

the less separable distributions our algorithm performed much

better than the score only method by relying more heavily on the

distribution of the other species.

These results indicate that under the evolutionary assumptions we

stated in the introduction, our algorithm can improve the assignment

of cycling genes and correctly recover more such genes.

4.2 Cell cycle expression data

To date, cell cycle expression was measured in more than six spe-

cies. As mentioned above, the two most studied species are budding

yeast and humans. Both provide access to a number of different

validation sets, and are thus useful for comparison of our algorithm

and score based methods.

We downloaded expression data from the corresponding websites

for the budding yeast (Spellman et al., 1998) and human (Whitfield

et al., 2002) cell cycle papers. All protein sequences for genes in

these species were downloaded from the NCBI ftp server (http://ftp.

ncbi.nlm.nih.gov). We used Blastall (Altschul et al., 1997) to
score all pairs of genes in both species.

For this data we tested our algorithm using an Intel Pentium 4 PC

with single 2.40GHz CPU. It typically took less than 6 minutes to

converge.

Expression Scores: As mentioned earlier, it is important to use

the same method to derive scores for genes in different species. We

derived such scores based on the observed expression values. As

was recently noted for yeast by de Lichtenberg et al. (2005), scores
that look at both amplitude of the expression value peak as well as

the peak in the spectrum around the cell cycle period seem to

provide the best results for identifying genes using expression

data only. We thus applied a similar method to extract such scores

for all genes in both species (see the supporting website Lu et al.,
(2006) for details). To validate this method we compared our results

to the benchmark provided by de Lichtenberg et al., (2005) and
determined that our results for budding yeast were comparable to

the best method presented in their paper. The results below use this

scoring method. However, using the Whitfield et al. (2002) scoring
method did not change the results. See the supporting website

(Lu et al., 2006) for more details.

Comparison sets: As far as we know, this is the first method to

combine sequence and expression data for the task of identifying

cycling genes. In order to compare our results to previous methods

we use two different alternative lists. The first list is the list of

cycling genes (in each species) based on the expression score

alone. As mentioned in the introduction, this is the method used

by previous approaches. We have also compared our results to a

more naive method for combining expression and sequence. Unlike

our probabilistic approach, this naive method first computes ranking

independently for each species based on expression score alone.

Next, we identify conserved genes in both species and compute

a joint ranking based on the average ranking for the orthologs in

each species. While we do not claim that this method is ideal, it can

at least serve as a baseline for evaluating the more sophisticated

algorithm we present in this paper.

Identifying cycling human genes: To test the success of our

algorithm for the task of identifying cycling human genes we

used the GO human annotations. Of the 7254 human genes in

the dataset we used, 498 were annotated by GO as cycling. We

first ranked human genes using expression scores and the naive

method mentioned above. Next, we ranked them using the posterior

score computed by our algorithm.

Figure 3 (left) presents the precision recall curve for GO anno-

tated cycling genes for the top ranked 1000 human genes. Based on

the analysis in the original paper (Whitfield et al., 2002), roughly
1000 genes are determined to be cycling, which is why we

focus on the top 1000. As can be seen, all three methods perform

substantially better than a random ordering (dashed-dotted curve).

Comparing our method with a score based method we see that while

at the very high expression score (bottom left) we do slightly worse,

overall, and in particular for lower scores our algorithm provides

results that are superior to score based methods. Specifically, for the

top 1000 genes our algorithm was able to recover 23% more genes

(135 vs. 110) when compared to both, the score only method and the

naive method for combining sequence and expression data.

Note that while we relied on the GO list for this analysis, it is not

complete. It is possible that there are many cycling genes which

are not on that list. Thus, the recall rate is probably much higher
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than the one we report here. Figure 3 (right) presents the expression

score distribution of genes annotated as cycling in GO and genes

that do not belong to this category. Note that there is substantial

overlap between the two distributions making it hard for a

score only method to identify a large set of cycling human

genes. In contrast, our graph based method was able to partially

overcome this problem by relying on the graph neighborhoods as

we discuss below. Another issue is the possible homology bias of

GO annotations. To account for this, we repeated the validation

procedure using a smaller set of GO annotated human cell cycle

genes. Specifically, we removed the 256 human genes that are

annotated in GO as "cell cycle" based on homology evidence.

Even with this reduced set of GO cycling genes our method out-

performs the score based method by a similar margin. See website

for details.

To further explore the differences between score based and graph

based methods we examined the differences in cell cycle assign-

ments between the two. We generated two lists. The first contained

genes that appear in the top 1000 using our method but were not in

the top 1000 of the score based method and the second contained

genes in the top 1000 of the scoring method but not in our method.

To test which of these list is more relevant we used GO to analyze

both lists. On the supporting website (Lu et al., 2006) we present a
number of figures comparing the GO enrichment p-values of both

lists. As we show there, the majority of cell cycle related categories

are more enriched for genes in the list derived based on our method

when compared with the score based list.

Identifying cycling yeast genes We have used a dataset for protein-

DNA binding (Lee et al., 2002) to compare our budding yeast results

Fig. 2. Simulation results. 20% of the nodes were labeled with 1 and the rest were labeled with 0. (a) Score distribution and (b) Recovery rate for a well separated

distribution. Both score based (dashed line) and graph based (solid line) methods were able to correctly recover the node assignments. (c) Score distribution and

(d) Recovery rate for an overlapping score distribution. Note that while our graph basedmethod can still achieve good precision and recall the score basedmethod

does significantly worse, especially for the higher recall rates (above 40%).

Cycling genes from sequences and expression

e319

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/22/14/e314/228181 by guest on 21 August 2022



with the original list of Spellman et al. which was based on score

alone. We extracted the binding information (p-value< 0.005

for the nine transcription factors that have been previously

shown to play key roles in regulating cell cycle progression

(Simon et al., 2001). We found 2.5% more interactions between

these nine TFs and the top 800 genes on our list when compared

with the Spellman list (621 vs. 606, note that a gene could be

counted multiple times if more than one TF interacts with it).

We also tested a stricter version of the binding data (p-value <
0.001). As with the higher p-value, our method still resulted in

slightly more interactions (477 vs. 474) when compared to the

score based list. While these improvements are far less dramatic

than the results presented for the human data above, it still implies

that our method can improve cell cycle assignment even for high

quality datasets, like the yeast cell cycle expression data (Wichert

et al., 2004).
Graph neighborhoods To further explore how our method helps

in correct assignment of cell cycle status we have plotted two of the

subgraphs in our graph. The shape of the nodes in each subgraph

represents the species, and the different shades of node color

represent the cycling expression score of the gene. Darker shades

represent higher expression scores, and the darkest shade means that

the expression score is within the top 1000 for human and top 800 for

yeast. The first subgraph (Figure 4) contains members of the Rho

family of genes in yeast and humans. These genes are involved in cell

wall formation which is an integral part of the cell cycle system.

Specifically, the cell wall integrity signaling pathway is controlled by

Rho1 (Levin, 2005) . Based on its expression score Rho1 was not in

the top 800 yeast genes. However, since its expression score is high

enough, and since its local neighborhood is all assigned cyclic status,

our algorithm assigns a posterior score that is at the top 800 for yeast

genes allowing us to correctly recover this gene.

Why expression scores are not sufficient? Expression value,

especially in time series experiments which usually do not contain

repeats for individual time points, are very noisy. To determine why

our algorithm is able to correctly identify genes that cannot be

detected using their expression score we looked at a number of

genes that received high posterior scores and low expression scores.

One such gene is Mcm3, shown in Figure 5. Human Mcm3 is

essential for the initiation of DNA replication and also participates

in a checkpoint that ensures DNA replication is initiated once

per cell cycle (Madine et al., 1995; Takei and Tsujimoto, 1998).

On the top of Figure 5 we plot the graph neighborhood of Mcm3.

As can be seen, it contains many known cycling genes from both

species. On the bottom we plot the expression of Mcm3 in three

different human cell cycle datasets (each done using a different
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Fig. 3. Left: Identification of Human Cell Cycle Genes. The Y axis is the number of GO annotated human cell cycle genes in the top 1000 genes with highest

posteriors. Our method (solid line) performs better than the score only method (dashed line) and the naive method for combining sequence and expression data

(dotted line). Specifically for lower score thresholds our method achieves an improvement of over 20% over both other methods in terms of the number of
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Fig. 4. Cluster containing the yeast cell wall gene Rho1. Node shades cor-

respond to expression derived scores. Circles correspond to yeast genes

and hexagons to human genes. Rho1 is not in the top 800 genes based on

its score, but was identified by our algorithm because of its neighborhood.
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arrest method). As can be seen, in at least one of these conditions

Mcm3 seems to be cycling (bottom left). However, either because

its expression levels are low in the other experiments or because of

other experimental problems, it does not seem to be cycling in

the other conditions. Using expression data alone, we would not

assign a cyclic status to this gene. However, because of its medium

expression score and its strong neighborhood score, our algorithm

was able to correctly determine that it is a cycling human gene.

5 CONCLUSIONS AND FUTURE WORK

Many researchers have used gene expression experiments to study

biological systems in various species. We presented an algorithm

that combines information from studies in multiple species for

the task of identifying cycling genes. Our algorithm constructs a

graph where nodes represent genes and edges represent sequence

similarity. We then use belief propagation to update the status of

genes based on their graph neighborhood.

We applied our algorithm to combine cell cycle expression data

from budding yeast and humans. Using our approach we were able

to recover a more accurate set of cycling human genes when com-

pared to the score based methods that have been used in the past.

We have also shown that by looking at the neighborhood extracted

from the graph we can infer properties that cannot be determined

using expression alone.

While this paper focuses on cell cycle analysis, our algorithm is

general and can works with any expression data as long as an

expression score can be extracted from that data. An obvious future

direction is to apply it to other biological systems that have been

studied in multiple species such as immune response and circadian

rhythm. Another direction is to combine regulatory data with the

sequence data we currently use to infer sets of genes that are con-

served in terms of regulation, sequence and function across multiple

species.
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Fig. 5. Top: Gene cluster containing the human gene Mcm3, which is

essential for the initiation of DNA replication. Bottom: plots showing the

expression time series for both Mcm3 and Mcm4. Mcm4 scored in the top

15% but Mcm3 did not. Our algorithm was able to recover both genes.
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6 APPENDIX

6.1 Derivation of update rules for EVD mixture

model

Here are some facts of the Type I EVD, or the Gumbel distribution.

The CDF and PDF of the EVD are

� CDF

FðxÞ ¼ exp �exp � x � a

b

� �h in o
‚ �1 < x <1

� PDF

pðxÞ ¼ 1

b
exp �exp � x � a

b

� �h in o
exp � x � a

b

� �n o

In the EM algorithm, we define the Q function to be

QðQ‚Qði�1ÞÞ ¼ E½log pðX ‚Y jQÞ jX‚Qði�1Þ� where X is the obser-

ved data, i.e. expression scores, and Y represents the hidden vari-

ables, i.e. the cycling status of the genes. In each E-step, we evaluate

the above expectation, and in each M-step we maximize this

expectation. For mixture models, the expectation can be written

as (Bilmes, 1998)

QðQ‚Qði�1ÞÞ ¼
XM
l¼1

XN
i¼1

logðalÞpðl j xi‚QgÞ

þ
XM
l¼1

XN
i¼1

logðplðxi j �lÞÞpðl j xi‚QgÞ

where xi is the i-th observed data point (i.e. the score Si for the i-th
gene), al is the mixing coefficient of the l-th component, pl is the
PDF for the l-th component, and p(l j xi,Qg) from now on denoted as

Pil for simplicity, is the probability xi being generated by the l-th
component, given the parameters Qg.

To maximize this expression, we can maximize the two terms

independently. Using Lagrange multipliers, we solve for al that

maximizes the first term, and get

al ¼
1

N

XN
i¼1

Pil

The maximization of the second term depends on the PDF of the

component distributions. For the EVD mixture model, the second

term becomes

B ¼
XM
l¼1

XN
i¼1

Pil logðplðxi j �lÞÞ

¼
XM
l¼1

XN
i¼1

Pil � log bl �
xi � al

bl
� exp �xi � al

bl

� �� �

Note that we also require the two components to have the same scale

parameter, so we can drop the subscript and denote bl as b. Now we

maximize B by want to solve

@B

@b
¼

XM
l¼1

XN
i¼1
½�bþ b2ðxi � alÞ

� b2ðxi � alÞexpf�bðxi � alÞg�Pil

¼ �b
XM
l¼1

XN
i¼1

Pil þ b2
XM
l¼1

XN
i¼1

xiPil

�b2
XM
l¼1

ebal
XN
i¼1

e�bxi xiPil

¼ 0

where b ¼ 1/b. The above equation can be transformed to

1

b
¼

PM
l¼1

PN
i¼1 xiPilPM

l¼1
PN

i¼1 Pil

�
XM
l¼1

XN
i¼1

Pil

PN
i¼1 e

�bxi xiPilPN
i¼1 e

�bxiPil

" #	 XM
l¼1

XN
i¼1

pðl j xi‚QgÞ

Define

f ðbÞ ¼ 1

b
�

PM
l¼1

PN
i¼1 xiPilPM

l¼1
PN

i¼1 Pil

þ
XM
l¼1

XN
i¼1

Pil

PN
i¼1e

�bxi xiPilPN
i¼1 e

�bxiPil

e�bxiPil

" #	 XM
l¼1

XN
i¼1

Pil

and the b we are looking for is the root of f(b) ¼ 0. In this case,

since the root is near a local extremum (limx!+0 f(x)!+inf),
the Newton-Raphson method can fail. Fortunately, we can

simply use a root bracketing algorithm to search for it,

because we don’t expect the variances of the distribution to be

too big.
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