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Abstract. Renewable energies have an increasing share in the energy supply. In order to ensure the security of
this supply, the reliability of the systems is therefore increasingly important. In photovoltaic modules or in
manufacturing, defective solar cells due to broken busbars, cross-connectors or faulty solder joints must be
detected and repaired quickly and reliably. This paper shows how themagnetic field imagingmethod can be used
to detect defects in solar cells and modules without contact during operation. For the evaluation of the
measurement data several neural networks were used, which were trained with the help of results from finite
element simulations. Different training data sets were set up in the simulation model by varying the electrical
conductivities of the different parts of the solar cell. The influence of the neural network type and the variation of
the training data sets as well as an advantage of a combination of simulated and experimental training data are
presented and discussed.

Keywords: Solar cell defect detection / magnetic field imaging / neural networks / machine learning /
AI training / finite-element-analysis
1 Introduction

In Germany, photovoltaics (PV) account for the second-
largest share of electricity generation systems among
renewable energies after wind power. Renewable energies
accounted for 42.3% of the total amount of electricity fed
into the grid in Germany in 2019 [1]. To ensure a safe power
supply, the reliability of PV systems is becoming
increasingly important. Typical defects of PV modules
are defect solder joints, busbars or cross connectors as well
as broken solar cells, which are all leading to a decreasing
yield. The mentioned defects are typically detected and
analyzed by electroluminescence (EL) or thermography.
Both methods have disadvantages. EL measurements are
usually performed at night or at dusk, since the signal-to-
noise ratio is significantly better at night due to the lack of
daylight. Daylight measurements are possible but involve
special challenges of image filtering and background
subtraction. Also, the modules must be powered by an
external power source [2]. Thermographic measurements
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should be carried out on a cloudless day, if possible, as
clouds also emit thermal radiation which is reflected in the
module glass. As another analyzing technique, the
magnetic field imaging (MFI) method which allows to
measure contactless the amount and direction of electric
currents changed due to defects is used [3]. The sensor can
be attached to a motorized table for automated measure-
ments or integrated into a hand-held instrument. The
measurement itself is done by moving the sensor across
the solar module surface to generate three images of
the components Bx, By and Bz of the magnetic flux density
(see Fig. 1a).

In [3–6], results of investigating the magnetic field of a
solar cell or module using a line sensor were presented. The
publications give an overview of the detectable defects and
their effects on the resulting magnetic field and compares
the MFI with electroluminescence. The sensor technology
used is less important here, only the measurement range
from a few mT to a fewmTmust be covered, since the usual
current strengths in solar modules generate magnetic flux
densities in this range. Compared to electroluminescence
MFI provides direct access to the strength and direction of
flowing currents. MFI can be used for solar module
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Fig. 1. (a) Measurement with handheld MFI device, (b) as an example a four-busbar cell with broken cross connector does not allow
current to flow through the faulty region, this leads to a reduced magnetic field in the corresponding busbar (c).
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production, e.g., to check the solder connections to the
cross-connector before lamination, or for PV systems in the
field for park maintenance or condition assessment
purposes.

If solar modules are measured in production or even in
field, a big amount of data will be generated and needs to be
analyzed reliably and automatically. Thus, DENKweit
provides a platform for vision AI. The AI can detect
different defects, based on the training data set. In order
to optimize the data set, the results of a finite element
(FE) simulation were used for the AI training, which has
become an increasingly common practice in recent years as
in [7–10].

In this work, an electromagnetic FE model of a four-
busbar solar cell is presented, which is used to generate
training data for artificial neural networks which are then
used to analyze real measurement data. The advantages of
using a finite element model for the data generation are:

–
 Increasing number of training data leading to an
improved and more accurate prediction by the AI
–
 Saving time for measuring but having a sufficient amount
of training data
–
 Wide variation of possible defects regarding size or
position can be considered
–
 Getting data before a technical system is in operation and
measurable (e.g. new solder or busbar concept).

Thus, the FE simulation model is applied in this work
and results are presented and discussed.

2 Materials and methods

2.1 Magnetic field imaging and experimental setup

In working conditions or when power is supplied, solar
modules show a characteristic distribution of electric
current. The largest current density is located in the
busbars. In general, electric current generates a magnetic
field, which can be described by a fundamental relationship
in magnetostatics, the Biot-Savart law [11],

d~B ~rð Þ ¼ m0

4p
Id~ℓ � ~r �~r

0

j~r �~r
0 j3

where B is the magnetic flux density, I is the current dℓ, an
element of the conductor, the constant m0 is the
permeability of free space, and ~r0 and ~r the locations of
the conductor and sensor respectively. Especially in the
case of busbars, which can be approximated as line
conductors, this model can be used. Defects, e.g. due to
broken solder joints, lead to changes in the magnetic field
due to the locally changed current flow, which in turn can
be detected.

For the investigation of the magnetic field of solar
modules, two cases, the measurement in the laboratory
under forward voltage and the measurement in the field
under illumination, needs to be distinguished. In the
laboratory, a forward voltage is applied to the module and
an electric current of 8 A is applied which is 15–20% less
than a current typical module at 1000W/m2 for the cell size
of 156� 156 mm2. In the field, the electric current is
generated by solar irradiation. The magnetic field
generated by this is directly proportional to the electric
current flowing in the cell, i.e. proportional to the
irradiance but dependent on the maximum power point
behavior of the module type. Typical values range from 9 to
10 A und standard AM 1.5 conditions. The test set in the
laboratory measurements shown in this paper were made
using a DENKweit B-Lab laboratory instrument. Here a
16 cm wide line sensor with 64 data points along the line is
integrated. The measuring frequency is 30Hz. Measure-
ments for testing the performance of the neural networks
are carried out with a hand-held device in the lab as well
(see Fig. 1a). Here, the integrated magnetic field sensor is
the same as in the B-Lab (16 cm wide with 64 data points).



Fig. 2. FE-model of a four-busbar solar cell showing the electric boundary conditions (a) a cross section of the layer stack (b) as well as
an overview of the numbering of busbars and defect positions (c).
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For field measurements, the effect caused by shadowing
by the sensor or also by the person taking the measurement
must be considered. This locally reduces the charge carrier
generationandthusalso thecurrentdistribution in thecell or
module. For monofacial modules, this effect can be circum-
vented by measuring on the rear side. As an example,
Figure 1 shows a solar cell with a broken connector to the
cross-connector under forward bias with an applied current
of 8A. The measurement was done on the cell area only, the
cross connector being outside the measurement area. The
brokenbusbarmeans that no electrical current canflow from
the cross connector into the busbar. In the magnetic field
image, this is shown by a reduced flux density in the busbar
concerned. Since the cell has cross-conductivity due to the
grid fingers, the current density in the busbars is equalized
over the length of the cell.

2.2 Simulation

In order to generate data for AI training, a model for a
magnetostatic analysis was set up using the FE software
ANSYSMechanical.A four-busbar solar cell (156� 156mm2)
wasmodelled inconsiderationof the real layer stackconsisting
of the busbars, solder connections, grid fingers, the silicon
wafer as well as well as a metallization of the entire back side
(see Fig. 2b). For simplification, the grid fingers were not
explicitly modeled, but substituted by one volume with the
same thickness as the original grid fingers. In this volume, the
electrical resistivity was reduced and the conductivity was
restricted to the x and z direction to represent the electrical
properties correctly. This procedure has already been shown
in [12]. For busbar defects, the busbars are constructed from
different volumes with corresponding electrical conductivi-
ties.As showninFigure2cexemplarily forbusbars1and2,the
resistance of all busbars can be adjusted individually at the
solar cell inlet andbefore andafter each solderpadon the cell’s
backside. The cross-connectors were modeled with a better
conductivity than the busbars to ensure that the electric
current in all four busbars is the same and not distorted by
ohmic losses. An additional ambient surrounding volumewas
modeled with the material properties of air to calculate the
magnetic field around the solar cell. For more information
about thedimensions,material andproperties of the layers see
Table 1. The model is based on ohmic resistors and neglects
solar cell physics like p-n junction or diodes. This is justified
because the measurements mainly show the surface currents
in x and y direction. These currents flow through the busbars
and the grid fingers or the back contact. All currents in z



Table 1. Information about the material properties and dimensions of the layers used in the FE-model.

Body Specific El. Resistance [V ·m] Thickness (z) [mm] Width (x) [mm]

Busbars 1.7 � 10�8 200 3
Cross connector 1.7 � 10�11 200 5
Solder 1.45 � 10�9 top = 50

pad = 30
point = 10

top = 3
pad = 5
point = 3

Grid finger 4.5 � 10�8 10
Metallization 1.0 � 10�6 40
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direction are locally very low with about 50mA/cm2 because
they are distributed over the entire cell area. In addition, a
current perpendicular through a surface directly above the
surface shows no measurable magnetic field, since x and y
components cancel everywhere except at the surface edges.
The relative permeability of all bodies was set to be 1.

The electric boundary conditions were applied on low-
resistance cross connectors (CC) connecting the upper and
lower busbars respectively. On the top CC, a current of 8 A
was set, on the bottom CC the electrical potential was set
to 0V (see Fig. 2a). A parallel magnetic flux on the outer
surfaces of the model was defined as the magnetic boundary
condition. The global mesh size was set to be 3mm,
however, each line in the x-, y- and z-direction was divided
into at least two elements. A simulation using one CPU
core takes about 3 h.

The model described above is used for both, validation
of the FE model and AI training data generation. For this
purpose,variationsof themodelarecalculatedandcombined
into “simulation sets” according to their usage. The electrical
conductivity of some solar cell components was adjusted in
the simulation set in accordance with real solar cells, which
can exhibit electrical and therefore magnetic behavior that
deviates from that of a perfect solar cell. This may happen
due to variation in manufacturing, subsequent assembly or
slight damage during operation. In this way, for example,
faulty solder points or defects can bemodeled. The following
simulation sets were set up and calculated:

For validation of the finite element model
– Solar cell without defect: For the FE model

validation, the solar cell without defects was calculated as
described above.

– Solar cell with one defect busbar: For further FE
model validation, the solar cell was calculated with a
defective busbar (busbar 1 at the cell inlet “defect position 0”,
see Fig. 2c).

For AI training
– Solar cell with small variations of the conduc-

tivities: In order to train the AI for anomaly detection,
simulations without busbar defects were performed. In this
set, the electrical conductivities of the individual busbars,
the grid fingers and the various solder connections were
changed. The values from Table 1 were varied randomly in
a range of 90% to 110%.

– Solar cell with greater variations of conductiv-
ities:This set is basically like set number 3, except that the
conductivities have been varied from 33% to 300%.
– Busbar defects with small variations of
conductivities: In order to train the AI to recognize
busbars and defective busbars (feature detection), simu-
lations were carried out in which the electrical conductivity
of the busbars was increased at various points (seec). In
addition, the input resistors of the busbars into the cell, the
electrical conductivities of the individual busbars, the grid
fingers and the various solder connections were varied
randomly from 33% to 300%.

The used specific electrical resistances in V ·m for the
different cell components are shown in Table 2.
2.3 Neural networks
2.3.1 Datasets for training and validation

To be able to apply networks trained with artificial data
to real data, the training data must have a similar
variation with respect to typical characteristics as the
real measured data. In the case of solar modules, this is
the current strength in each busbar, which then
determines the strength of the magnetic flux density in
the measurement. In addition, measurements with a
hand-held device are affected by variations due to the
operator. This includes a change in the measurement
distance, which can result from tilting or a slight lifting of
the measurement system. The simulated training data
was varied as described in Section 2.2. The variation of
the material parameters in the simulation model resulted
in significantly different flux densities in the busbars. In
the data sets for the training, this was 38% (small
variation) and 83% (large variation). With these
variations, effects that occur in the field due to local
shading are covered as well.

In order to evaluate the influence of this variation, two
training data sets of 75 images each were created from sets
(set 3 and set 4). These two datasets were each duplicated
and supplemented with a few real measurement data to
test the training with mixed data (simulation and
measurement).

For the training of the networks for busbar defects, a
data set with low variation was used, in which in each
case one of four busbars was broken at the cell edge. In
total, this data set also consisted of 82 images. Here, two
classes, “busbars okay” and “busbars broken” were
introduced to distinguish both cases. Table 3 summarizes
the datasets.



Table 2. Variation of the used specific electric resistances of the FE model parts in the simulation sets for training the
neural networks.

Specific El. Resistance [V ·m] Set 1 Set 2 Set 3 Set 4 Set 5

Busbars 1.7 � 10�8 1.7 � 10�8 1.5...1.9 � 10�8 6.5...51.0 � 10�9 6.5...51.0 � 10�9

Grid finger
(x & z direction)

4.5 � 10�8 4.5 � 10�8 4.1...5.0 � 10�8 1.5...13.5 � 10�8 1.5...13.5 � 10�8

Solder 1.45 � 10�9 1.45 � 10�9 1.3...1.6 � 10�9 5.0...43.5 � 10�10 5.0...43.5 � 10�10

Busbar input resistance 1.7 � 10�8 1.7 � 10�8 1.5...1.9 � 10�8 1.0...2.4 � 10�8 1.0...2.4 � 10�8

Busbar defects – 1.0 – – 1.0

Table 3. Training data sets.

Dataset Busbar intensity
variation (Bx)

Training
images

Validation
images

Network
types

S = Simulation data
M = Measured MFI data

S M S M

BB detection
Low variation
Simulation data only

38%
50 0 25 0

Instance segmentation/
Object detection

BB detection
Low Variation
Simulation + MFI data

38%
50 7 25 4

Instance segmentation/
Object detection

BB detection
High variation
Simulation data only

83%
50 0 25 0

Instance segmentation/
Object detection

BB detection
High variation
Simulation + MFI data

83%
50 7 25 4

Instance segmentation/
Object detection

BB defect detection
Simulation data only

38%
55 0 27 0

Instance segmentation

Table 4. Test data sets and the corresponding number of busbars.

MFI Images Sum of Busbars Defect Busbars

Busbar Detection 58 212 0
Busbar Defect Detection 6 16 6
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2.3.2 Dataset for testing

In order to test the busbar networks, 58MFImeasurements
of single cells from the same solar module under forward
bias conditions (8A) were used. The measurement was
done with a handheld device. Some measurements
contained 4, some three busbars, the total amount of
visible busbars on the test images was 212. After
preprocessing, the variation of the busbar intensity (min
to max on each single image) was about 44% with a
standard deviation of about 6%.
For testing the neural networks for detecting defect
busbars, a dataset consisting of 6 images was used, each
showing a solar cell with a single broken busbar. Again, all
measurements were performed with a handheld device (see
Tab. 4).

2.3.3 Data preprocessing

In the field, measurements might be slightly rotated with
respect to each other, i.e. that the busbars are not parallel
to the sensor bars, especially with the handheld device.



Fig. 3. Magnetic flux density Bz component of a simulated solar cell (a) and the same simulation with an applied Gaussian gradient
filter (b).
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This results in the Bx component losing intensity with
increasing rotation, but By gaining intensity. Bz shows
invariance to rotations and is therefore used as a basis
neural network training. A Gaussian gradient filter is also
applied to the image, to allow easy annotation (see Fig. 3).
The filter first reduces the noise and then outputs the local
gradient for each point. The result is similar to Bx but
rotation invariant and represents qualitatively the
position of electric conductors on the image. This filter
also ensures that measurements of adjacent strings on a
module are comparable. Otherwise, a backward current
flow will result in opposite sensor readings of the
components Bx, By and Bz. The Gaussian gradient of Bz
on the other hand will lead to the same result.
Furthermore, the background, such as that created by
the earth’s magnetic field, is removed.

After applying the filter, the current paths appear as
line-like structures and are well suited to generate the
necessary annotations for training. The training data set is
additionally artificially augmented by reflections, random
rotations and contrast variations to account for effects such
as a rotated sensor or differences in illumination. In
addition to the reflections, the image is randomly rotated at
an angle between �30° and 30°. Overall, the number of
images in the training set is not increased because the
images are modified on-thy-fly during training. Thus, an
image that is usedmultiple times for training does not enter
the training identically each time.

2.3.4 Training

Two types of convolutional neural networks were trained
comparatively using the DENKweit AI platform. In-
stance segmentation networks and object detection
networks are widely used methods to detect objects on
images. In this work, the two methods will be compared
for the case of training with simulated data in the field of
photovoltaics.
Instance Segmentation: This mesh type evaluates the
image at pixel level, i.e. each pixel is assigned whether it
belongs to an object class or not. In the second step, the
pixels are separated to objects, something like a busbar.
The result is a mask that indicates which pixels belong to
an object. Object detection: This net type finds objects, e.g.
busbars, on the image and provides them with a bounding
box. Training took place on a Nvidia RTX 2080Ti and took
approximately 30min for each of the networks.

For object detection we use a FCOS-based architecture
[13]. The feature extraction backbone is a proprietary
development and its structure is dynamically adjustedbased
on the analyzed dataset. The resulting feature maps are fed
into the feature pyramid network and its results are then
analyzed by the head network for prediction of the bounding
boxes. For instance segmentation,weagainusedproprietary
developed network for feature extraction as a backbone.
Here, the centre mask approach was used [14]. The feature
map is the fed into the heads for saliency, shape, size,
heatmap and offset. Results of the (coarse) shape head are
multiplied by the relevant area of the saliency map to
separate individual instancesofobjectsontheoriginal image.

For each training dataset without defects, an object
detection network and an instance segmentation network
were trained first. The goal was to determine the basic
suitability of the training data sets and network types for
the detection of busbars.

Based on these results, networks with the two classes
“busbarokay”and “busbardefect”were thentrainedtodetect
both variants simultaneously. The mAP (mean average
precision) score for each of the trained networks was 1.0.

3 Results

3.1 FE model validation

In the first step, a validation of the FE model is carried out
to check whether the results of the simulation agree with



Fig. 4. X-component of the magnetic field Bx of a solar cell without busbar defects as heatmaps (a) and as a line plot perpendicular to
the busbars (b) comparing the simulation and the experiment.
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the experimental measured values. As described in
Section 2.2, a model without defects was modeled and
calculated, and a model with a defective busbar near the
cell edge was calculated.

3.1.1 Validation using a solar cell without defect

Figure 4 shows the magnetic flux density in the x direction
1.5 mm above the upper busbars as a heatmap (Fig. 4a) as
well as the results along the shown path across the solar cell
(Fig. 4b). One can clearly see the four busbars, since the
largest current flows through them in the y-direction,
which leads to amagnetic field perpendicular to the current
flow direction (x). Both figures show a good agreement
between simulation and experiment.

The measurements were made with the handheld
device, which is the reason for the x-axis label of the
experimental values only showing the number of “data-
points” and not a distance. If the handheld device would
have been used to measure at different velocities along
the cell, the distances between the busbars would vary
in the plot.
3.1.2 Validation using a solar cell with busbar defect

Figure 5 shows the magnetic flux density in the x direction
1.5mm above the upper busbars as a heatmap (Fig. 5a) as
well as the results along the shown path across the solar cell
(Fig. 5b). Simulation and experiment fit well. One can
clearly see the defective busbar (1), aswell as the three intact
ones (2–4). The first busbar shows no magnetic field at the
inlet tothesolar cell (y=0mm)which is causedbynoelectric
current at this position. Busbars 2-4 have increased currents
at this position compared to Figure 4 the missing electrical
connection in busbar 1. Along the busbars, the electrical
currents equalize due to the cross-conductivity of the grid
fingers. The wave-like structures along the busbars of the
experimental data (see Fig. 5c) being caused by the solder
points are less visible in simulation.
3.2 Automatic data analysis by AI
3.2.1 Detection of busbars

The effectiveness of the neural networks for busbar
detection in general is tested by application to the test



Fig. 5. X-component of the magnetic field of a solar cell with a defect first busbar as heatmaps (a) as a lineplot perpendicular to
(b) and along (c) the busbars comparing the simulation and the experiment.

Table 5. Percentage of found busbars.

Dataset Correctly labeled busbars [%]
Instance segmentation Object detection

BB detection
Low variation
Simulation data only

98.11 83.96

BB detection
Low variation
Simulation + MFI data

100.00 99.53

BB detection
High variation
Simulation data only

100.00 100.00

BB detection
High variation
Simulation + MFI data

99.53 100.00
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Fig. 6. Unlabeled image from test data set (a) bounding boxes done by object detection network with the according probabilities
(b) and labels done by instance segmentation network (c).
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data set containing only real measurement data. As well as
for training, the set was preprocessed using the Gaussian
gradient filter.

In the inference step, objects found on the test images
are marked and assigned a probability. Results with
probability less than 30% were ignored, because within this
limit all busbars could be distinguished from misclassifi-
cations with smaller probability. The number of busbars
found that had a probability greater than 30% was then
determined and compared in terms of training sets and
network types. The results can be found in Table 5.

To determine the number of training images needed,
the set of training images was reduced to 25 per network
and then to 10 per mesh. In particular, for instance
segmentation, misclassifications occurred for 25 and 10
training images, meaning that additional areas on the
images outside the busbar were detected as busbars.
Misclassifications occurred in 13 (high variation) and 8
(low variation) training images for 25, and 14 (high
variation) and 19 (low variation) for 10 training images. No
misclassifications occurred during object detection, but
individual busbars were not detected. With high variation,
all busbars were detected; with low variation, 1 busbar
(25 images) and 17 busbars (10 images) were missing. For
50 images, the results in Table 5 were obtained. Detection
was generally at a rate of more than 99%, except in data set
“BBdetection, LowVariation, Simulation data only”. Here,
lower values were obtained, 83.96% for the object detection
network, 98.13% for the instance segmentation network.
Thus, it is assumed, that the variation datamust be at least
as high as the variation in the real measurements, to get
high detection rates.

The addition of real measurement data, even on a small
scale, increases the probability of individual detected
busbars. This is true for both types of neural networks.
Thus, themeshes can bemademuchmore robust by adding
a small number of real measurements.

Figure 6 shows an example result for the two network
types using one arbitrarily picked measurement, including
the probabilities given by the network. For object detection
networks the result is a bounding box, for the instance
segmentation it is the colored pixels that were detected as
belonging to the busbars and the overall probability for
each instance.

In this example, the second busbar from the top shows
a reduced magnetic field, which may be caused by
reduced contact quality to the cross-connector. The
trained network also detects these busbars with
reduced current. Here, additional filtering can be done
after detection to additionally allow a quantitative
evaluation.

For certainty of detecting the busbars, the associated
probabilities of a correct detection were statistically
evaluated for each instance found. The results are
summarized in the box plots in Figure 7.

Adding real measurement data on a small scale of 14%
(see Tab. 3), leads to an increase in detection probability
(see Fig. 7 “simulation only” vs. “simulation+MFI). It is
noticeable that the networks trained with the data mix
show more outliers in the boxplots. This can be explained
by narrower probability distributions, still containing
some low values. Since the wisker limits are determined
by the interquartile intervals, narrow distributions lead
to more outliers. Increasing the variance in the training
data has a much smaller effect on the probabilities.
Depending on the application, however, it may be useful
to train with higher variation in order to make the
networks robust for more strongly varying, real mea-
surement data.
3.2.2 Detection of functioning busbars and broken busbars

To detect defective busbars, the trained defect network
with the two independent classes (“busbar okay” and
“busbar not okay”) was applied to images of the test set.
100% of the busbars were found by the “busbar okay”
network. Also 100% of the defective busbars were found by
the “busbars not okay” network. In one case, a busbar that
was not defective was also found by the “busbar not okay”
network, resulting in one overall misclassification.

Figure 8a shows an example result of a measurement
evaluated by the neural network. The broken busbar was
correctly marked, as well as the functioning busbars. The



Fig. 7. Probabilities of busbar detection for the two neural network types instance segmentation (left) and object detection (right),
depending on the variation of the training data sets and the addition of real measurement data. Real measurement data significantly
increase the probabilities, higher variation of training data had only a small effect, in some cases detrimental.

Fig. 8. Example result with both intact and broken busbars labeled by the neural network (a) and detection probabilities for intact
and broken busbars (b).
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classification probabilities assigned to each found object or
instance are in the range above 90% for both the intact
busbars and the broken busbars (see Fig. 8b).

4 Discussion

The simulation model being used could be validated by the
MFI measurements. The deviations between simulation
and experiment were small. The effect of a defective busbar
could be modeled correctly, although the model was
meshed relatively coarse in order to keep the simulation
times small. This is essential for an efficient creation of the
AI training data sets.

The results show that it is possible to train neural
networks by simulation data for analysing MFI magnetic
field data. Though, it is crucial that the simulation data
show a similar variation in typical properties as the real
measured data. The data sets from the simulation can be
extended with a few measurement data sets, if they are
available. This leads to an increased number of features
found as well as an increased probability to detect these
features by the neural networks.

Using a larger variation of the material properties in the
simulation usually leads to an improved recognition rate of
the features. Only in one case (see Fig. 7, instance
segmentation, sim only, variation low vs. high) a larger
variance of the simulation data led to a worse recognition
rate. Maybe the test data set was not variable enough.

In order to reflect a certain variance also within the
training images, the number should not be too small,
because there is a possibility that the intended high
variability is not achieved by the small number. In general,
two small data sets can differ strongly with respect to the
variability of the training set, which then leads to different
training results. The choice of the set should therefore be
made in such a way that the desired variability is also
reflected in the training set. Overall, simulation can help to
train an AI if no or not enough measurement data are
available. With simulation models the variance of the
results can be adjusted quickly and purposefully, allowing
the training regions to be extended in a physically correct
way, even if no measurement data are available for these
areas. The simulation also helps to improve the under-
standing of the relationship between defects and the
resulting magnetic field being measured. Furthermore, the
demonstrated method can be used to model and train other
solar cell defects such as defective solder points or short
circuits in the silicon wafer in order to extend the detection
capabilities. The procedure shown in this paper can also be
applied toothermeasurementmethods forPVmoduledefect
detection such as electroluminescence or thermography,
assuming that suitable simulation models are available.
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In this work, only 4-busbar cells were used. An extension
tomorebusbars is easily conceivablewithrespect tothemesh
types used since these are only trained locally to recognize
objects.As longas thebusbarsareseparated fromeachother,
the number of busbars on the solar cells does not matter.
However, incellswitha largernumberofbusbars, thecurrent
in each busbar is reduced. In this case, a further training step
may be required. Since the simulation was set up
parametrically, the number of busbars can be varied easily
to generate further training data. Another possibility is to
normalize the magnetic flux density for all training and
measurement data to create comparability and to compen-
sate for differences in illumination intensity.

5 Summary
This paper presented the Magnetic Field Imaging method
and showed how it can be used to identify features and
defects on solar cells and modules. The AI being used was
trained by the results of FE simulations. For this purpose,
an electromagnetic FEmodel of a four-busbar solar cell was
presented in this work. This model has been successfully
validated with MFI measurements. Subsequently, the
model was used for various defect scenarios providing
defined and large number of training data.

By varying the electrical conductivities of individual
cell components, training data sets with different ranges of
variation were generated. These sets were partially
supplemented by a few real measurements. With these
training data sets an AI was trained. By using a test data
set, the recognition probability was analyzed. The results
were very good on correctly labeled features.

Two network types were compared: instance segmen-
tation and object detection. It has been shown that
instance segmentation detects more features correctly with
higher detection probability based on the same training
basis. A larger variation of the simulation training data
leads to an improved recognition of the features. Extending
the simulation training data with a few measurement data,
the recognition rate could be even increased. Thus, FE
models for generating artificial and physically correct data
for AI training are beneficial for reliable AI usage.

This work was funded by the German Federal Ministry for
Economic Affairs and Climate Action as part of the ‘Central
innovation programme for small and medium-sized enterprises
(ZIM)’within the mobiInspec�MagPV project (funding number:
16KN083023), which is gratefully acknowledged by all authors.
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