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ABSTRACT

The ectomycorrhizal (EM) canopy tree Dicymbe corymbosa (Fabaceae subfam. Caesalpinioideae) forms monodominant forests in the Pakaraima Mountains of western
Guyana. Like other tropical monodominants, D. corymbosa has several life-history traits that promote conspecific clumping, in contrast to density-dependent
recruitment limitations characterizing most tropical trees. Dicymbe corymbosa forests, occurring in Guyana as patches within a largely non-EM mixed-species forest
matrix, are important habitats for a diverse assemblage of EM fungi. Ground-based studies have not adequately determined the regional extent of D. corymbosa forests,
nor are they practical due to the rugged, remote nature of the Pakaraima Mountains. We assessed the suitability of Landsat satellite imagery for mapping regional
distribution of D. corymbosa forests in Guyana’s Upper Potaro River Basin. Supervised image classification was performed on images from August 1989 (Landsat-
5 TM) and October 1999 (Landsat-7 ETM+). In situ forest reference data were used to quantitatively assess accuracy of output classification maps. Classification
performed well in distinguishing monodominant from mixed-species forests. For both images, D. corymbosa forest class accuracy was good (1989 user’s accuracy =
89.8%, Khat = 0.74; 1999 user’s accuracy = 80.7%, Khat = 0.59). The resulting output classification maps will be useful for planning fungal surveys and ecological
studies in forests of the Pakaraima region. Classification of Landsat images may be effective for identifying monodominant forests in other remote regions of the
tropics.
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DOMINANCE OF TROPICAL RAIN FORESTS BY A SINGLE SPECIES OF

CANOPY TREE (monodominance) is a phenomenon of interest to
tropical ecologists (Connell & Lowman 1989, Torti et al. 2001,
Henkel 2003). Monodominance, occurring when over 60 percent
of the number of canopy individuals, basal area, or both consist
of a single tree species on well-drained soil, may result from life-
history traits of the dominant tree species that alter the understory
environment, promote self-persistence and recruitment, and lead
to clumped distributions, such as the ectomycorrhizal (EM) habit,
mast fruiting, limited dispersal, shade tolerance, and reiteration
(Connell & Lowman 1989, Hart et al. 1989, Torti et al. 2001,
Henkel et al. 2005, Mayor & Henkel 2006, Woolley et al. 2008).
Monodominant forests allow study of ecological processes circum-
venting those leading to the typically high tree species diversity in
tropical rain forests (Connell and Lowman 1989, Hart 1990, Torti
et al. 2001, Leigh et al. 2004, McGuire 2007).

Monodominance has been documented in the Paleo- and
Neotropics, but the phenomenon is not uniformly distributed.
Caesalpinioid legumes (e.g., Gilbertiodendron dewevrei) form ex-
tensive monodominant stands across portions of the Congo Basin
(Torti et al. 2001). In lowland tropical Asia certain dipterocarps
(e.g., Dryobalanops aromatica) achieve monodominance (Whitmore
1984, Richards 1996). Monodominance is less well known in the
Neotropics, where the only well-documented examples of persistent
dominance (e.g., overstory dominance with ample regeneration of
the dominant species, unrelated to edaphic influence, flooding, or
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succession) involve the caesalpinioids Peltogyne gracilipes in northern
Brazil (Nascimento & Villela 1997) and Dicymbe spp. in Guyana
(Zagt 1997, Henkel 2003). Of interest is the fact that most trop-
ical monodominant forests are dominated by tree species that are
EM, a root symbiosis otherwise poorly represented in the tropics
(Alexander & Lee 2005).

The EM canopy tree Dicymbe corymbosa Spruce ex Benth.
achieves dominance levels among the highest recorded for upland
monodominant species in the Neotropics. In the Pakaraima Moun-
tains of western Guyana, D. corymbosa comprised 63–95 percent
of the basal area in stands ranging from one to several hectares
(Henkel 2003). In these stands, the species dominated all levels of
forest strata due to reiteration and persistence of mature individuals
as well as high recruitment of shade-tolerant seedlings and saplings
(Henkel et al. 2005, Woolley et al. 2008). In the Upper Ireng and
Upper Potaro River Basins EM fungi appear largely restricted to
Dicymbe stands (Henkel 1999; Henkel et al. 2002, 2006; Fulgenzi
et al. 2007). The spatially limited, site-specific distribution of EM
fungi in an otherwise non-EM forest matrix suggests that Dicymbe
forests may be the primary habitats for these obligately symbiotic
fungi in Guyana.

Despite the emerging importance of Dicymbe forests, ground-
based observations have been inadequate for determining their dis-
tribution (Fanshawe 1952, Richards 1996, Henkel 2003), nor are
monodominant forests in the Pakaraima Mountains region rep-
resented on existing vegetation maps of Guyana (i.e., country-
scale maps produced using a combination of ground, soil, and
remotely sensed data; Huber et al. 1995, Guyana Forestry Commis-
sion & H. ter Steege 2001). Several factors suggest satellite remote
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sensing may be a useful tool for examining these unusual tropical
forests.

Remote sensing can be a cost-effective solution for determining
land cover in inaccessible tropical regions where ground-based data
are difficult to obtain (Clark et al. 2005). Spectral reflectance data
from remote optical sensors are useful in extracting information
about target vegetation (Cohen & Goward 2004, Boyd & Danson
2005). This technology has been applied to tropical forests to detect
changes in phenology, type, and extent of vegetation (Green et al.
1994, Bohlman et al. 1998, Carreiras et al. 2006, Cayuela et al.
2006); investigate forest structure, succession, community compo-
sition, and species diversity (Vieira et al. 2003, Gillespie et al. 2004,
Salovaaraa et al. 2005, Palace et al. 2008); document anthropogenic
and natural disturbance (Skole & Tucker 1993, Read et al. 2003,
Souza et al. 2005); and create land cover maps (Mayaux et al. 1998,
Eva et al. 2004). Remote sensing can be a powerful technique to
generalize from traditional site-specific plot studies to landscape,
regional, and global scales (Foody et al. 2003, Clark et al. 2005).

Remotely sensed data from Landsat satellites have been used to
map forests in tropical regions, although difficulties in discriminat-
ing distinct forest types persist because high plant diversity, struc-
tural heterogeneity, and cloud cover introduce complexity into radi-
ance signals (Asner 2001, Foody et al. 2003, NASA 2003, Cohen &
Goward 2004, Powell et al. 2004, Thenkabail et al. 2004, Salovaaraa
et al. 2005, Carreiras et al. 2006, Cayuela et al. 2006, Fuller 2006,
Zhang et al. 2006). In addition to its relatively low cost, Landsat
imagery has a globally comprehensive data-acquisition policy, cen-
tralized, searchable online data bases, and 30-m spatial resolution
across six optical bands (Fuller 2006). Landsat’s spectral resolution
is well-suited for vegetation classification as it includes near-infrared
(NIR) and shortwave-infrared (SWIR) portions of the electromag-
netic spectrum (NASA 2003). These bands are most effective in
separating spectra of tropical canopy tree species (Cochrane 2000,
Clark et al. 2005).

In order to identify a specific plant community in satellite
imagery, target vegetation must have a unique spectral signature
within the context of its surroundings (Lillesand et al. 2004, Clark
et al. 2005, Zhang et al. 2006). This spectral signature is depen-
dent on the chemical and structural properties of plant tissues,
the physiognomic structure of the vegetation, and numerous other
factors (Lillesand et al. 2004). Successful differentiation of vegeta-
tion type classes is generally determined by the degree of spectral
variation within classes (intraclass) and between classes (interclass;
Clark et al. 2005, Zhang et al. 2006). Given these parameters,
D. corymbosa stands in western Guyana may have a high probability
of classification success due to their uniformity of crown structure,
leaf composition, and vertical stratification, in contrast to the sur-
rounding heterogenous forest matrix (Henkel 2003, Woolley et al.
2008).

Here we examine the utility of Landsat satellite imagery for
identifying D. corymbosa monodominant forests in Guyana’s Upper
Potaro River Basin. Specifically, we asked: Can supervised image
classification of Landsat-5 TM and Landsat-7 ETM+ data allow
us to distinguish monodominant Dicymbe stands from other for-
est types in the Pakaraima Mountain region? If successful, this

approach could potentially be used in the future to develop distri-
bution estimates of D. corymbosa and other ecologically important
monodominant forests in the tropics.

METHODS

STUDY AREA.—Our work was conducted in the central Pakaraima
Mountains of western Guyana, an area thought to encompass
the geographical distribution center of D. corymbosa (Fanshawe
1952, Henkel 2003; Fig. 1). The central Pakaraimas are blanketed
with dense primary forest, predominantly of the seasonal evergreen
Eschweilera–Licania association, with an elevational range of 700–
2200 m (Fanshawe 1952). Limited small-scale mining and slash-
and-burn agriculture have occurred in portions of the region; how-
ever, these activities have not caused visible changes in regional
forest structure. Primary stands dominated by D. corymbosa have
been noted within hilly, intermountain valleys of the Upper Potaro,
Mazaruni, and Ireng River Basins (Myers 1936, Fanshawe 1952,
Henkel 2003). These stands vary in size from roughly one to several
hectares, and have relatively well-defined boundaries with the sur-
rounding, diverse, mixed-species forest matrix that lacks D. corym-
bosa (Fanshawe 1952, Henkel 2003, Henkel et al. 2005). Stands
dominated by the non-EM Micrandra glabra Schultes (Euphor-
biaceae) and Micrandra spruceana Schultes occur in extensive con-
tiguous patches on poorly drained sandy soils overtopping hardpan
or sheetrock (Fanshawe 1952). Additionally, the EM tree species
Dicymbe altsonii Sandw., D. jenmanii Sandw., and Aldina insignis
(Benth.) Endl. occur as scattered individuals or small groves in the
mixed forest matrix (Henkel et al. 2002). A 200-km2 study site
within the Upper Potaro Basin was chosen to examine the utility
of Landsat imagery for identifying D. corymbosa monodominant
forests. Vegetation within this area has been virtually unchanged by
anthropogenic activity, and topographic variation within the inter-
mountain valleys containing D. corymbosa occurs at a relatively fine
scale, ca 0–30 m. For further details of climate, geology, and soils
see Henkel (2003), Henkel et al. (2005), and Mayor and Henkel
(2006).

REMOTELY SENSED DATA.—A digital elevation model (DEM)
of the three-arcsecond (ca 90 m) Shuttle Radar Topography
Mission (SRTM) finished C-band sensor data for the central
Pakaraima Mountains region was downloaded from the Global
Land Cover Facility of the University of Maryland (GLCF;
http://glcf.umiacs.umd.edu). Data were referenced to horizontal da-
tum WGS84, vertical datum MSE WGS84 EGM96 geoid (Slater
et al. 2006). These data were projected to Universal Transverse
Mercator, zone 20 N and datum WGS 1984. The SRTM DEM
was used in the preclassification masking process to remove areas
clearly outside of the elevational range of D. corymbosa. Because of
its coarse pixel size relative to the fine-scale variation in vegetation
and topography across the study site, SRTM elevation data were
not utilized in the final supervised classification.

Two Landsat satellite images (170 × 183 km) encompass-
ing the Upper Potaro Basin study area were obtained from the
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FIGURE 1. Study site showing position of Guyana in South America and topography of the Pakaraima Montane region.

GLCF (http://glcf.umiacs.umd.edu). Satellite data consisted of one
Landsat-7 ETM+ scene (path 232, row 056, WRS-2) acquired on
16 October 1999, and one Landsat-5 TM scene (path 232, row
056, WRS-2) acquired on 9 August 1989. Each image was acquired
during the dry season and selected for low (< 10%) cloud cover
over the study area. Both images were used in the forest classifica-
tion process, with the assumption that tree species distributions had
not changed significantly to the present. Spectral resolution of the
imagery is 0.45 to 2.35 μm with seven bands spanning the blue
to mid-infrared portion of the electromagnetic spectrum (NASA
2003). Bands 1–5 and 7 were included in the classification process.
Spatial resolution (pixel size) of the imagery is 28.5 m (NASA 2003).
Images were orthorectified and coregistered by EarthSat (GLCF
2007), then projected in Universal Transverse Mercator, zone 20 N
and datum WGS 1984. Imagery from the two dates was processed
separately, so atmospheric corrections were unnecessary (i.e., digital
number reflectance values did not have to be normalized; ERDAS
IMAGINE 2005). Topographic correction was not performed be-
cause the 90-m resolution of available raster elevation data was too
coarse to capture topographic variation across the study site. ER-
DAS Imagine Software version 9.1 was used for analysis of satellite
imagery data (ERDAS IMAGINE 2005).

PRELIMINARY DATA PROCESSING.—Preliminary supervised classifica-
tion of Landsat images was used to develop an effective stratified
sampling regime for wider-scale field data collection and accuracy
assessment. Supervised classification incorporates a priori knowl-
edge from field sampling into the classification process (through
the definition of training areas) and relates measured spectral re-
flectance properties directly to known vegetation cover. For each
predetermined category, training areas are identified on the im-
age and delineated so their spectral properties can be examined.

Classification of the remainder of the image is based on values
defined via these training sets (Lillesand et al. 2004). Preliminary
supervised classification was carried out using previously collected
data sets compiled from eight 1-ha forest inventory plots of known
structure and tree species composition (Henkel 2003, Henkel
et al. 2005, Woolley et al. 2008) and additional transect point sur-
veys. This work was conducted during June–August 2006 within
a 5-km radius of a permanent base camp located along the Upper
Potaro River at 5◦18′04.8′′ N, 59◦54′40.4′′ W, at 710–750 m asl.
Forest data were simplified for classification, and field sites were
assigned to one of three classes: (1) D. corymbosa dominant (> 60%
of stems ≥ 30 cm dbh; diameter at 1.37 m above the ground) to
monodominant (> 80% of stems ≥ 30 cm dbh); (2) Micrandra
dominant (> 60% stems ≥ 30 cm dbh); or (3) mixed-species forest
lacking D. corymbosa and Micrandra spp., with no clearly dominant
canopy tree species. Field sites that did not fit these classes were
excluded from the classification data set. We utilized this three-class
forest composition data set, Global Positioning System (GPS) data,
and topographic maps to digitize polygons around areas of known
forest types in a Geographic Information System (GIS; Environ-
mental Systems Research Institute 2006). The polygons digitized
were subsequently used as training areas for preliminary supervised
classification of Landsat images. The output classification was used
to identify a suitable pool of sampling targets (i.e., contiguous forest
patches > 5 ha) for a second phase of fieldwork from which to col-
lect representative ground data over a broader area for subsequent
remote sensing analysis. The latitude and longitude of selected tar-
get patches’ weighted internal centroids were calculated in a GIS
and then uploaded to a handheld GPS (Garmin GPSMap76).

Fieldwork for the second phase of D. corymbosa classifica-
tion and accuracy assessment was conducted during January 2007,
within a 10-km radius of a camp located ca 3 km south of the
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TABLE 1. Characteristics of forest classes and subclasses used in vegetative classification for the Upper Potaro River Basin, Guyana.

Class Description Subclass Description

DCF Dicymbe corymbosa dominanta to monodominantb, DCD D. corymbosa dominant

Dicymbe altsonii absent, present, or codominant DCD D. corymbosa dominant

DCM D. corymbosa monodominant

DCDADC D. corymbosa dominant, D. altsonii present to moderately codominant.

DCDACM D. corymbosa dominant to monodominant,

D. altsonii present to strongly codominant.

MF Micrandra sp. dominanta MGD Micrandra glabra dominant

MSD Micrandra spruceana dominant

MX Mixed-species forest lacking D. corymbosa MXR Mixed-species riverine, lowland association

MX Mixed-species upland forest

a ≥ 60% stems ≥ 30 cm dbh; b ≥ 80% stems ≥ 30 cm dbh.

Upper Potaro River at 5◦17′22.6′′ N, 59◦52′23.9′′ W, ca 8 km east
of the base camp described above. From the base camp, patches of
target vegetation were located via a compass and GPS wherein a
minimum of three point locations were randomly chosen at which
to assess forest composition. Each point was located at least 60 m
into a contiguous forest type and 100 m from other survey points.
Four experienced tree spotters estimated and recorded the relative
abundance of canopy tree species (≥ 30 cm dbh) within a 15 m
radius of the GPS survey point. In total, 182 new survey points
were assessed within the study area, bringing our total number of
usable forest survey points to 224, when combined with previously
collected data (Fig. 2). Vegetation and coordinate data for each loca-
tion were added to a GIS database, and, for classification purposes,
all survey points were assigned to one of eight predefined subtype
classes as given in Table 1.

CLASSIFICATION PROCEDURE.—To improve vegetation classification
accuracy, 1989 and 1999 imagery areas unsuitable for target vege-
tation were excluded from the image classification process (Tottrup
2004, ERDAS IMAGINE 2005). SRTM data were used to elim-
inate areas where elevation exceeded 1000 m, a conservative esti-
mate of D. corymbosa’s upper elevation range (Henkel et al. 2002).
Nonforest savanna, scrubland, water, clouds, and shadows were
excluded from consideration using preliminary unsupervised clas-
sification of each image. Unsupervised classification is a purely sta-
tistical method and incorporates no a priori knowledge of target
characteristics into the classification process. Digital values from
combinations of spectral bands are used to identify inherent group-
ings in the image data (Lillesand et al. 2004). For each image, classes
representing nonforest areas were combined with areas of unsuitable
elevation, and the resultant pixels were masked during subsequent
classification procedures (ERDAS IMAGINE 2005). Forest survey
points occurring within masked areas of a given image were excluded
from the training and reference data sets used in classification and
accuracy assessment.

In keeping with our objectives, we chose a final classi-
fication scheme identifying: (1) D. corymbosa dominant and
monodominant forest; (2) Micrandra dominant forest; and (3)

FIGURE 2. Distribution of the 224 forest survey points used for training

supervised classification (40% of total; N = 81 for 1989; N = 69 for 1999)

and as reference data in accuracy assessment (60% of total; N = 122 for 1989;

N = 103 for 1999). Not all points are visible at the given map scale. Due to

areas obscured by clouds all 224 points were not used in analyses of each image.

Forest assessment points for the study site in western Guyana are shown on a

color composite (bands 5, 4, and 3 allocated to red, green, and blue channels,

respectively) Landsat-5 TM satellite image acquired on 9 August 1989.

mixed-species forest lacking D. corymbosa, serving as an ‘other’
forest class. Several subclasses existed within each parent class
(Table 1) and were retained in order to achieve maximum spec-
tral separability between classes (Lillesand et al. 2004). Subclasses
were pooled postclassification. Forty percent of forest survey points
from each subclass were randomly selected to train the supervised
classification process (N = 81 for 1989; N = 69 for 1999); the
remaining sixty percent were set aside for accuracy assessment (N =
122 for 1989; N = 103 for 1999). Figure 2 shows the distribution of
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all training and reference points used in analysis. To accommodate
the area covered by a forest survey and GPS error, all pixels within
30 m of training points were extracted from an image to gener-
ate class-specific spectral signatures (ERDAS IMAGINE 2005). A
transformed divergence calculation was used to determine spectral
separability between forest cover classes and as a guide to either ag-
gregate or discard classes (ERDAS IMAGINE 2005). A maximum
likelihood supervised classification was subsequently performed on
both Landsat images using spectral signatures of the retained classes.
Output thresholds were set at α = 0.05 to exclude pixels that did
not fit well in the given classes.

THEMATIC ACCURACY ASSESSMENT.—The output classification map
generated from remotely sensed data was compared with ground
reference data to assess accuracy (Foody 2002, Powell et al. 2004).
To accomplish this, sixty percent of the ground survey points in
each forest class were excluded from supervised classification train-
ing and used in accuracy assessment. Classification accuracy was
ultimately assessed using 134 independent reference points. To ex-
amine relationships between classification and reference data, error
matrixes were generated for each classification map and the follow-
ing statistics were calculated: (1) errors of omission; (2) errors of
commission; and (3) Khat , an estimate of the conditional Kappa
coefficient expressing the proportional reduction in accuracy, when
random chance agreement is removed (Congalton & Green 1999).
‘User’s accuracy’, the probability that a pixel classified on the image
actually is that land cover type on the ground, was selected as the
accuracy assessment parameter with the greatest utility for future use
of this approach for field survey design (Congalton & Green 1999).
Also in keeping with the purpose of the study, accuracy assessment
focused on successful classification of single-species dominant forest
classes (Foody 2002).

RESULTS

The classification error matrices for the 1989 and 1999 images
show a good agreement between the classified maps and reference

TABLE 2. Error matrix for maximum-likelihood supervised classification of Landsat-5 TM scene (path 232, row 056, WRS-2) acquired on 9 August 1989. Forest classes for

the Upper Potaro River Basin (Guyana) study site include: (1) Dicymbe corymbosa forest (dominant and monodominant); (2) Micrandra-dominant forest; and

(3) mixed-species forest lacking D. corymbosa.

Reference data

User’s Error of

Classification data DCF MF MX Total accuracy (%) commission (%) Khat

Dicymbe corymbosa forest (DCF) 44 0 5 49 89.8 10.2 0.735

Micrandra forest (MF) 2 20 1 23 87.0 13.0 0.841

Non-DCF, mixed-sp. forest (MX) 29 2 19 50 38.0 62.0 0.221

Total 75 22 25 122

Producer’s accuracy (%) 58.7 90.9 76.0

Error of omission (%) 41.3 9.1 24.0

data for the D. corymbosa and Micrandra forest classes (Tables 2
and 3). The Khat values for the D. corymbosa class were 0.735
and 0.587 for the 1989 and 1999 images, respectively, indicating
the classifications were 73.5 and 58.7 percent correct with chance
agreement discounted. The Micrandra forest class had the highest
class accuracy, with Khat values of 0.841 (1989) and 0.948 (1999).
For both image dates, the D. corymbosa class had lower errors of
commission (10.2% for 1989; 19.3% for 1999) than errors of
omission (41.3% for 1989; 23.6% for 1999). Classification of the
1989 image correctly identified 58.7 percent of the D. corymbosa
forest present (‘producer’s accuracy’). The probability of a pixel
labeled as D. corymbosa on the classified image actually being D.
corymbosa in situ was 89.8 percent (user’s accuracy; Congalton &
Green 1999). Producer’s accuracy for the 1999 image was 71.4
percent and user’s accuracy was 80.7 percent. Low Khat values for the
mixed-species forest class (0.221 for 1989; 0.347 for 1999) reflect
high omission and commission errors, which are to be expected
for such a diverse class. The most common misclassification was
D. corymbosa forest as mixed-species forest.

The classification output maps indicate D. corymbosa is locally
prevalent on a variety of soil types across the Upper Potaro study
area; its stands are interspersed with patches of mixed-species forest.
Micrandra-dominated forest is present in more internally homoge-
neous swaths north of the Potaro River (Fig. 3).

DISCUSSION

CLASSIFICATION OF FOREST TYPES.—Supervised classification of
Landsat imagery performed well in distinguishing forest types domi-
nated by a single tree species from mixed-species forest. We achieved
user’s accuracies of 80–90 percent for D. corymbosa-dominated
stands and 87–96 percent for Micrandra-dominated stands. These
accuracies are good given that > 85 percent accuracy is often set as
an upper target for less complex land cover classes (Foody 2002).
Dicymbe corymbosa forest was more accurately identified (89.9%
user’s accuracy) using the Landsat-5 TM scene (9 August 1989)
than the Landsat-7 ETM+ scene (80.7%; 16 October 1999). This
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TABLE 3. Error matrix for maximum-likelihood supervised classification of Landsat-7 ETM+ scene (path 232, row 056, WRS-2) acquired on 16 October 1999. Forest

classes for the Upper Potaro River Basin (Guyana) study site include: (1) Dicymbe corymbosa forest (dominant and monodominant); (2) Micrandra-dominant

forest; and (3) mixed-species forest lacking D. corymbosa.

Reference data

User’s Error of

Classification data DCF MF MX Total accuracy (%) commission (%) Khat

Dicymbe corymbosa forest (DCF) 42 1 9 52 80.7 19.3 0.587

Micrandra forest (MF) 1 25 0 26 96.2 3.8 0.948

Non-DCF, mixed-species forest (MX) 12 1 12 25 48.0 52.0 0.347

Total 55 27 21 103

Producer’s accuracy (%) 71.4 92.6 57.1

Error of omission (%) 23.6 7.4 42.9

likely resulted from significantly less cloud cover in the Landsat-5
TM scene, which allowed more survey data to be incorporated as
training input for the 1989 classification, yielding a higher user’s
accuracy.

The most common misclassification was D. corymbosa for-
est incorrectly classified as mixed-species forest (Tables 2 and 3).
This misclassification may have arisen from: (1) our combining
multiple types of non-D. corymbosa, mixed-species forest into two
general categories (Table 1) creating high spectral variation within
the class, and/or (2) relatively low spectral separability (i.e., shown
by low transformed divergence values) between D. corymbosa and
mixed-species forest classes. Spectral reflectance of monodominant
forests is likely influenced by within-stand uniformity of crown
structure, leaf composition, and vertical stratification, allowing it to
be discriminated from structurally complex, species diverse forests
with high epiphyte loads (Henkel 2003). In addition, D. corym-
bosa’s reiterative stem growth and minimal horizontal branching
may inhibit canopy liana development, thus reducing spectral vari-
ation of within-stand canopy reflectance in contrast to liana-rich,
mixed-species forests (Richards 1996, Henkel 2003, Clark et al.
2005, Woolley et al. 2008). The Micrandra forests, which are also
dominated by a single canopy tree species, have a SWIR spectral
signature indicative of high water content (Mayaux et al. 2000, Lille-
sand et al. 2004). This suggests that elevated soil moisture and/or
frequent inundation likely contribute to the high spectral separa-
bility and resulting excellent classification accuracies of Micrandra
forests.

Comparison of our results with other published research is
challenging because remote-sensing studies in the tropics often fo-
cus on mapping broad primary and secondary forest cover cate-
gories, with little fine-scale differentiation of forest types (Huber
et al. 1995, Hansen et al. 2000, Mayaux et al. 2000, Vieira et al.
2003, Eva et al. 2004, Stibig et al. 2004, Thenkabail et al. 2004,
Joshi et al. 2006). Difficulties for comparison also arise when stud-
ies lack detailed information on vegetation class definitions, sam-
pling design, and individual class accuracy assessment (Foody 2002,
Powell et al. 2004, Salovaara et al. 2005). In some cases, we
found that our Dicymbe and Micrandra forest class accuracies were

FIGURE 3. Thematic map showing predicted forest distribution for the Upper

Potaro River Basin study site in western Guyana. Supervised classification output

for 16 October 1999 Landsat-7 ETM+ scene is shown. Cloud covered areas

were filled with classification output from the Landsat-5 TM image acquired

on 9 August 1989. Dark grey areas represent Dicymbe corymbosa dominant and

monodominant forest, medium grey depicts Micrandra dominant forest, and

light grey indicates mixed-species forest lacking D. corymbosa.

comparable to those obtained for evergreen broadleaf tropical forests
in South America (Hansen 2000) and India (Joshi et al. 2006). Us-
ing Landsat ETM+ and elevation data from the Peruvian Amazon,
Salovaara et al. (2005) attempted to differentiate three floristically
defined types of closed-canopy primary lowland tropical forest, with
user’s accuracies ranging from 48.0 to 94.6 percent. Our accuracies
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for Dicymbe and Micrandra forest classes exceeded those of a number
of studies that, utilizing multispectral sensor data, could not accu-
rately separate various primary tropical evergreen forests from mixed
deciduous, flood plain, semi-evergreen, degraded primary, and late
secondary successional forests (Foody & Hill 1996, Mayaux 2000,
Stibig et al. 2004, Thenkabail et al. 2004, Carreiras et al. 2006).
Conversely, as with our Micrandra forests, both Hill (1999) and
Mayaux et al. (2000) found that low diversity, closed-canopy swamp
forests could be differentiated by spectral reflectance.

DISTRIBUTION.—Our classification map and field data indicate that
D. corymbosa monodominant forests occur most frequently within
the study area south of the Potaro River on ironstone hills and low-
lying alluvial sands, indicative of the broad edaphic amplitude of
the species (Fig. 3; Fanshawe 1952, Henkel 2003). The results are
consistent with previous suggestions that D. corymbosa forests are
prevalent over a 40-km stretch from the Upper Potaro River south
to the Upper Ireng River Basin (Fanshawe 1952, Richards 1996,
Henkel et al. 2005). Our estimation of D. corymbosa distribution
within the study area is likely conservative as classifications of both
the 1989 and 1999 images had lower errors of commission (pro-
ducer’s accuracy) than of omission (user’s accuracy). Consequently,
areas identified as D. corymbosa monodominant have a high prob-
ability of being correct, but some stands of the class were likely
missed.

Our D. corymbosa classification likely defines the core areas
of EM fungal habitat in the study area; however, EM fungi are
not entirely restricted to D. corymbosa stands. In particular, EM
fungi may occur in specific locales within the mixed forest ma-
trix in association with the congeneric EM tree D. altsonii (Henkel
et al. 2002). Over the course of our fieldwork D. altsonii was found
to occur in small groves of moderate conspecific density within lo-
cal areas of mixed-species forest and in some cases as a codominant
with D. corymbosa. In these cases we could not separate D. altsonii
from D. corymbosa or mixed-species forest by spectral reflectance.
This lack of discrimination may have resulted from: (1) our small
D. altsonii-containing forest sample size; (2) the potential com-
plexity and variability of D. altsonii forest types; and (3) the phys-
iognomy and structural characteristics of D. altsonii, which does
not dominate the forest’s vertical strata through stem reiteration to
the same degree as D. corymbosa (Zagt 1997, Henkel et al. 2002,
Woolley et al. 2008). Dicymbe altsonii may act as locally restricted,
low-density host reservoir for EM fungi within an otherwise non-
EM mixed species forest and may provide connectivity for EM
fungal dispersal between D. corymbosa stands (Henkel et al. 2002).

Our classification map also shows large swaths of Micrandra-
dominated forest extending north from the Upper Potaro River.
Little work has been conducted on these forests, which may be domi-
nated either by M. glabra or M. spruceana on shallow, poorly drained
sandy soils, and have blackwater drainage systems (Fanshawe 1952).
While this study focused on D. corymbosa, our methodology iden-
tified Micrandra-dominated forests accurately. As an example of
Neotropical heath forests Micrandra systems could serve in re-
gional investigations of these unique communities (Janzen 1974,
Whitmore 1990).

Our use of supervised classification of Landsat imagery to ac-
curately identify D. corymbosa- and Micrandra-dominated stands is
particularly promising given persistent difficulties in differentiating
primary tropical forest subtypes with remote sensing (Foody & Hill
1996, Mayaux 2000, Thenkabail et al. 2004). Nonetheless, analytic
refinements might improve future classification results. In partic-
ular, image segmentation, multidate analysis, and preclassification
image smoothing have been shown to increase Landsat classification
accuracies for tropical forests (Hill 1999, Tottrup 2003). Hyperspec-
tral sensors, which give detailed reflectance information for > 50
narrow spectral bands (spanning the visible, NIR, and SWIR spec-
tra), show great promise for detailed mapping of tropical forests
(Cochrane 2000, Thenkabail et al. 2004, Clark et al. 2005, Zhang
et al. 2006). Thenkabail et al. (2004) compared Landsat ETM+
image analysis with hyperspectral (Hyperion) data and found that
hyperspectral analysis allowed separation of complex tropical moist
forests with much higher class accuracy (96% vs. 42%). However,
high acquisition costs, current lack of operating platforms, the ad-
vanced data storage and processing capacity necessary for analysis,
and its limited geographic and temporal coverage indicate that the
use of hyperspectral data is not currently viable for most studies
(Fuller 2006, Zhang et al. 2006). Landsat data offer affordability
and availability, a globally comprehensive acquisition policy, and a
historic time series, making it an attractive choice for most tropical
studies (Cohen & Goward 2004, Fuller 2006). However, the newest
Landsat satellite (Landsat-7 ETM+) malfunctioned in May 2003,
ending over 30 yr of continuous Landsat series data acquisition
(Leimgruber et al. 2005). Thus, researchers seeking recent satellite
data may have to turn to other medium resolution sensors, such
as SPOT or IRS satellites (Carreiras et al. 2006, Joshi et al. 2006,
Short 2006) for which low-cost global imagery may be less readily
available (Leimgruber et al. 2005).

FUTURE APPLICATIONS.—Our study is the first to identify upland
tropical monodominant forests using remotely sensed data. This
approach should be useful in identifying sites for system-specific
ecological studies and EM fungal surveys. Additionally, given avail-
ability of training data and proper preprocessing of Landsat imagery
(Bruce & Hilbert 2004), this technique shows potential to estimate
the broader regional distribution of D. corymbosa forests, and help
guide conservation planning and studies involving regional-scale
processes contributing to monodominance, such as mast fruiting
(e.g., Henkel et al. 2005). High classification accuracy for Micrandra-
dominated forests offers a relatively straightforward, inexpensive
means of gaining a better understanding of this understudied asso-
ciation. We suggest that supervised classification of Landsat imagery
may be applicable to mapping monodominant forests elsewhere in
the Neotropics as well as tropical Africa and Asia.
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