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Abstract

We introduce a new cell population score called SpecEnr (specific enrichment) and de-

scribe a method that discovers robust and accurate candidate biomarkers from flow cy-

tometry data. Our approach identifies a new class of candidate biomarkers we define

as driver cell populations, whose abundance is associated with a sample class (e.g. dis-

ease), but not as a result of a change in a related population. We show that the driver cell

populations we find are also easily interpretable using a lattice-based visualization tool.

Our method is implemented in the R package flowGraph, freely available on GitHub

(github.com/aya49/flowGraph) and will be available BioConductor.

Key words: Automated analysis, Statistical analysis, Exploratory data analysis, Flow

cytometry, Bioinformatics
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Introduction

A major goal in flow cytometry (FCM) analysis is the identification of candidate biomark-

ers. The most common candidates are differential cell populations (DCPs). These are

cell populations whose proportional abundances (i.e., the relative quantity of cells in a

cell population) differ significantly between samples of separate classes (e.g. disease vs

healthy). Commonly used metrics for proportional abundance are cells per µL of blood

and proportion (i.e, the ratio between the count of cells in a population and some parent

population).

Here, we propose the concept of maximal differential cell populations (MDCPs). MD-

CPs are DCPs whose change in proportional abundance is only significantly associated

with its sample class, as opposed to being the result of a proportional abundance change

in a related DCP. For example, if there is a significant decrease in the proportion of helper

T-cells in samples from sick individuals compared to those from healthy individuals, then

helper T-cells is a DCP. However, if the proportional abundance of all types of T-cells

decrease at a similar rate, then we can hypothesize that the disease decreases the pro-

portional abundance of T-cells. It follows that T-cells and all of its child populations,

including helper T-cells, are DCPs but only T-cells is a MDCP. MDCPs are preferable

candidate biomarkers because their proportional abundance change is only driven by their

association with a sample class. We refer to such cell populations as driver cell popula-

tions. To our knowledge, while there are many methods that find biomarker candidates by

identifying DCPs, there are no methods that do so by isolating only the MDCPs among

those DCPs.

Most methods identify DCPs either as a byproduct of another procedure or by evalu-

ating a limited set of prespecified cell populations [2, 4–11, 13, 15, 19]. The latter group

of methods compare the proportional abundance of each cell population across samples

using some statistical significance test. Comparing proportional abundance of cell popu-

lations across samples is effective for finding DCPs but not MDCPs as they do not account

for the relationship between cell populations.

To address these shortcomings, we find MDCPs by comparing the SpecEnr of cell

populations across samples. SpecEnr is a novel cell population score, a numerical metric

that is derived from the proportional abundance metric, proportion, and accounts for the

relationship between cell populations. In this paper, we: 1) Define and formulate the
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problem of finding driver cell populations by identifying MDCPs; 2) Introduce a cell

population score, SpecEnr (specific enrichment), that accounts for dependencies between

parent and child cell populations; 3) Describe a method that harnesses SpecEnr properties

to find robust, accurate, and easily interpretable driver cell populations. We hypothesize

that identifying MDCPs will aid the understanding of disease etiology.
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Methods and Materials

Cell hierarchy

[Figure 1 about here.]

To visualize the relationship between cell populations, we use the cell population hi-

erarchy of a sample. A cell population hierarchy or cell hierarchy for short, is a directed

acyclic graph where nodes represent cell populations and arcs represent the relationship

between cell populations (Figure 1). We define a cell population as a set of cells with sim-

ilar fluorescent intensity (FI) values for a set of 0 ≤ ℓ ≤ L measurements (e.g. markers,

SSC, FSC). For simplicity, we define a measurement condition as a combination of a mea-

surement and a positive+ or negative− expression indicator. For example, A+B− contains

two measurement conditions (A+ and B−) and represents a cell population whose cells

have FI greater and less than the given thresholds for measurements A and B respectively.

Note our method is applicable for multiple thresholds per measurement (Supplementary

Material). We define the ℓ’th layer of the cell hierarchy as the set of all nodes whose label

contains exactly ℓ unique measurement conditions. It then follows that a cell hierarchy has

L+1 possible layers. The 0’th layer contains the root cell population comprising all cells.

Each arc points from a ‘parent’ cell population to its ‘child’ sub-population defined by the

addition of one measurement condition. For example, if there are three measurements

{A,B,C}, then there are arcs from the node representing the cell population labelled A+

to the nodes labelled A+B+, A+B−, A+C+, and A+C−.

Preprocessing

Our approach takes as input a vector of cell population proportions for each FCM sample

generated using any any suitable manual or automated approach. If users want to analyze

a cell population defined by more than two measurement conditions, we require that this

vector also contain all of this cell populations’ parent and grandparent cell populations

as defined on the cell hierarchy introduced in the previous section. For our experiments,

given a FCM sample containing a cell × measurement matrix and threshold gates obtained

via gating, we use flowType [9] to identify all possible cell populations and enumerate

their cell count. Next we normalize cell counts with respect to the total cell count by

converting counts into proportions by taking the cell count of each cell population over

the total number of cells in the sample.
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Cell population score: SpecEnr

To obtain SpecEnr, we compare the actual proportion of a cell population with its expected

proportion: the proportion we expect a cell population to have given the proportion of its

ancestors. By doing so, we can evaluate its proportion changes independent of the affects

incurred by its ancestors.

Expected proportion

We denote the actual proportion P of any node v1:ℓ in layer ℓ by P (v1:ℓ) where, 1:ℓ are

the indices of the measurement conditions its label contains. For example, cell population

A+B+C− has three measurement conditions and can therefore be denoted as v1:3; subse-

quently, we can denote its parents A+C− and A+B+ as v{1:3}\2 and v{1:3}\3 by excluding

the second and third measurement conditions.

We denote the expected proportion P ′(v1:ℓ) of a cell population v as its proportion

if it satisfies an assumption: let’s assume that P (v1) (e.g. A+) and P (v2) (e.g. B+) are

independent given P (v3:ℓ) (e.g. C−).

P ′(v1|v2:ℓ) = P (v1|v3:ℓ) (1)

P ′(v1:ℓ) = P (v2:ℓ)
P (v1, v3:ℓ)

P (v3:ℓ)
(2)

Generalizing this assumption to any p, q pair, p ∈ 1:ℓ and q ∈ 1:ℓ \ p, we get

P ′(v1:ℓ) = P (v1:ℓ\p)
P (v1:ℓ\q)

P (v1:ℓ\{p,q})
(3)

Our assumption requires P (v1:ℓ\{p,q}) to exist. Therefore, expected proportion is only

calculated for cell populations in layers ℓ ≥ 2. For the root node, we initialize its expected

proportion as 1. For the nodes in layer one, we initialize their expected proportions to .5.

In Equation 3, we assume all measurement condition pairs q, p should be independent

of each other. Now let’s suppose this assumption does not hold for cell population A+C−.

While A+ and C− are dependent on each other, B+ is independent of both A+ and

C−. In this case, the assumption we made in Equation 2 only holds for cell population

A+B+C− when q ∈ {1, 2} and p = 3. We do not want to flag A+B+C− as maximally

differential as its proportion change is completely dependent on cell populations A+C−

and B+. Therefore, we relax our assumption in Equation 3 to: there must be some p, q
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pair such that P (vp) is independent of P (vq). If so, then P (v1:ℓ) can be calculated as

follows.

P ′(v1:ℓ) = max
p∈1:ℓ

P (v1:ℓ\p) min
q∈1:ℓ\p

P (v1:ℓ\q)

P (v1:ℓ\{p,q})
(4)

In the context of MDCP, if P (v) = P ′(v), then v is not a MDCP. This is because v’s

proportion change can be attributed to its ancestor cell populations and it is therefore not

maximally differential.

Additional details on algorithmic & runtime and proof of correctness are provided in

the Supplementary Material.

SpecEnr

Given the expected proportion of cell population v calculated using Equation 4, we can

get SpecEnr by taking the natural log of the its actual proportion P over its expected

proportions P ′.

SpecEnr(v) = ln
P (v)

P ′(v)
(5)

SpecEnr accounts for the dependency of a cell population on its ancestors. For ex-

ample, if a cell population has a SpecEnr value of 0, then its proportional abundance is

completely dependent on that of its ancestors. Otherwise, it contains measurement con-

ditions that are all dependent on each other, where P (vp) is dependent on P (vq) for all

{p, q} ∈ 1:ℓ (i.e. Equation 3 does not hold for any p, q).

Maximal differential cell populations

A MDCP must v1:ℓ satisfy two conditions.

1. A MDCPs’ SpecEnr must be significantly different between samples according to

a filtered adjusted T-test we describe in the next section.

2. A MDCP must also be maximal, in that it must not have any direct descendants

who meet our first condition.

The second condition is required because our first is also satisfied by direct ances-

tors of a MDCP as its ancestor cell populations are defined by a subset of measurement

conditions defining the MDCP.
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Significance test

To test if a cell population satisfies our first condition for MDCPs (i.e. its SpecEnr is

significantly different across samples), we apply the t-test on SpecEnr values for each

cell population across two sets of sample from (e.g. the control and experiment group).

We adjust these p-values ρv for each cell population v using layer-stratified Bonferroni

correction to obtain our final adjusted p-values ρ′v . We do so by multiplying our p-values

with the number of cell populations in the layer on which cell population v resides mℓ

and the total number of layers L + 1 (including the layer 0; see Supplementary Material

for additional details). For example, if we are working with four measurements A, B, C,

and D, we multiply the p-value of A+ by 8 and 5, the number of nodes in layer one and

the total number of layers.

ρ′v = ρv ·mℓ · (L+ 1)

Note that users can use any significance test and p-value adjustment strategy they

deem suitable for their experiment. We use a p-value threshold < .05 to determine if a

cell population p-value is significant and potentially maximally differential.

Filters

In some cases, the p-value obtained by evaluating SpecEnr may be falsely significant

when dealing with small or noisy data sets. As a cell populations’ proportion gets close to

0, the actual vs expected proportion ratio used to calculate SpecEnr becomes inflated. As

well, if we are conducting significance tests on cell populations with SpecEnr values of

0 (i.e. actual and expected proportions are the same) model-based significance tests (e.g.

T-test) are highly influenced by outliers and rank-based significant tests (e.g. Wilcoxan)

are influenced by random ordering of 0’s. To ensure our SpecEnr p-values are valid, we

mark cell populations as insignificant if they do not 1) have a mean count of > 50 events

to prevent inflated ratios, 2) have significantly different actual vs expected proportions for

at least one of the sample classes, and 3) contain actual and expected proportions that are

different at different rates across both sample classes. See Supplementary Materials for

details. Note that we use a significance threshold of < .05 for all t-test p-values on filter

related significance tests. We show an example of these filters in the Supplementary Ma-

terial. For brevity, we call the p-values obtained using SpecEnr and proportion, SpecEnr

p-values and proportion p-values respectively.
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Experiment data

To confirm that our approach is able to identify known MDCPs we prepared synthetic

negative and positive control data sets and used two previously published biological data

sets.

Synthetic data

• neg1 (Negative control): For each cell, we assigned it to be positive+ for each

measurement with a 50% probability.

– Samples: 10 control vs 10 experiment (300,000 cells/sample).

– Measurements: A, B, C, and D.

• pos1 (Positive control 1): Same as neg1, except in the experiment samples, cell

population A+ is increased by 50%. More specifically, in each R × L matrix, we

duplicated a random sample of half the rows with a measurement A FI higher than

our given threshold gate.

• pos2 (Positive control 2): Same as pos1, except instead of A+, A+B+C+ is in-

creased by 50%.

• pos3 (Positive control 3): Same as pos1, except instead of A+, A+B+ and D+ are

both increased by 50% causing a unique increase in cell population A+B+D+.

Biological data

• flowcap (FlowCAP-II AML data set): This data set is from the FlowCAP-II [15],

AML challenge, panel 6. It is known that AML samples have a larger CD34+

population [15].

– Samples: 316 healthy vs 43 AML positive subjects’ blood or bone marrow

tissue samples (~60,000 cells/sample).

– Measurements: HLA-DR, CD117, CD45, CD34, and CD38.

• pregnancy (Immune clock of pregnancy data set): So far, there has been no ex-

periments that identified ground truth driver cell populations for the pregnancy data

set [13]. However, the original authors were able to train classifiers on the same

patients using FCM and multi-omics data [14]. Therefore, we hypothesize that we
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will be able to find MDCPs in this data set that are associated with the sample

classes listed below.

– Samples: 28 late-term pregnancy vs 28 6-weeks postpartum human maternal

whole-blood samples (~300,000 cells/sample); Samples are taken from each

of the 18 and 10 women of the training and validation cohort during late-term

pregnancy and 6 weeks postpartum.

– Measurements: CD123, CD14, CD16, CD3, CD4, CD45, CD45RA, CD56,

CD66, CD7, CD8, Tbet, and TCRgd.

– To account for possible batch effects associated with the subjects who pro-

vided the FCM samples, we used the paired t-test with respect to subject.
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Results

SpecEnr p-values are robust. In this experiment, we hypothesized that theoretically

similar data sets yield similar unadjusted p-values across all cell populations. When we

compared the unadjusted SpecEnr p-values across these two data sets using the Spearman

correlation, we obtained a perfect score of 1. We saw the same result with metrics recall,

precision, and F measure over the first set. These results indicate that significant cell pop-

ulations in the first set also show up as significant in the second set. SpecEnr p-values are

also statistically sound [16]. Using SpecEnr, we were able to generate a random uniform

distribution of unadjusted p-values on our negative control data set neg1. It follows that

5% of the SpecEnr p-values were below our .05 threshold (See Supplementary Material

for added detail).

SpecEnr p-values help identify accurate driver cell populations in synthetic data

sets. pos1 and pos2’s driver cell populations were A+ and A+B+C+ (Figure 2). While

both SpecEnr and proportion p-values flagged these cell populations, when we observed

SpecEnr p-values the descendants of these driver cell populations were not flagged as

significant. Therefore, we could quickly identify A+ and A+B+C+ as driver cell popula-

tions as intended. This was also true when multiple driver cell populations were present

in lower layers of the cell hierarchy. In pos3, where both A+B+ and D+ were increased

to cause a unique change in A+B+D+; we saw that SpecEnr p-values were only signifi-

cant for those cell populations and their ancestors. Results from our positive control data

sets were equivalent when the same cell populations decreased instead of increased in

proportional abundance (Supplementary Material).

SpecEnr p-values flag known and novel driver cell populations in real data

sets. For the FlowCAP data set, SpecEnr directs users down a branch of the

cell hierarchy from physical properties SS+ and FS− to FS−SS+CD117+45+ and

HLA+CD117−CD45+CD34+. While HLA and CD117 are variably expressed on cells in

FCM samples from subjects with AML [17, 18], CD34 and CD45 are expressed on blast

cells [1, 3]. This is important as the abundance of blast cells aid in diagnosis of AML

[15].

In the pregnancy data set, the top most significant cell populations displayed by our

statistical test shows an up-regulation in cell populations containing CD3, CD45, and
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CD45RA (e.g. CD3+CD45RA+CD56−Tbet−). SpecEnr p-values also indicate that cell

populations containing measurements CD8 and CD16 are significantly down-regulated.

Meanwhile, proportion p-values flag all DCPs in the cell hierarchy as significant.

[Figure 2 about here.]
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Discussion

In this paper, we introduced a new cell population score, SpecEnr, and a method that

integrates SpecEnr to identify MDCPs. We showed that the results of our method is

statistically sound, accurate, and easily interpretable.

In the FlowCAP-II challenge, the AML data set was used to evaluate how well meth-

ods are able to classify samples belonging to healthy and AML positive subjects. Among

the competing methods, those that used cell population proportions for classification were

DREAM–D, flowCore/flowStats, flowPeakssvm/Kmeanssvm, flowType/FeaLect, PBSC,

BCB/SPADE, SWIFT. All of these methods assume that cell count and proportion may

be used to differentiate between the two classes of samples. However, cell count and pro-

portion do not account for relations between cell populations, making it difficult to isolate

the MDCPs among the DCPs (Figure 2). To account for these relationship, one can man-

ually analyze the ratio of the count of cells in a population over all of its direct parent

populations. However, given L measurements, there are 3L · 2L
3

such relationships not

including the relationship between a cell population and its indirect ancestors [9]. In con-

trast to comparing 3L cell population scores, directly comparing cell population relations

becomes computationally impractical.

SpecEnr mitigates both challenges as it is a cell population score that accounts for

relations between cell populations. Its p-values isolated only the few ground truth driver

cell populations (MDCP e.g. SS−CD34+). Hence, our results not only reveal known

driver cell population CD34+ but also provide visualizations signifying that their change

may have come about because of a change in its descendants exposing novel driver cell

populations.

We also observed this contrast in behaviour between SpecEnr and proportion p-values

in the pregnancy data set. Our hypothesis for this data set was that we should be able to

find MDCPs because [13] were able to use L1, L2, and cell signal pathway regularized

regression to classify samples taken from women at different stages of pregnancy. The

original authors used the same assumption in [4] which implies that there exists MDCPs

in the pregnancy data set. However, because these methods find candidate biomarkers as

a byproduct of a sample classification method, there was no way of verifying whether the

candidate biomarkers they inferred are simply DCPs or are also MDCPs. Our method

answers this question by providing users a way to differentiate between the two while
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verifying our hypothesis validating the existence of MDCPs in the pregnancy data set.

Since SpecEnr is calculated using proportions, it is prone to the same issue that oc-

cur when using proportions directly. That is, changes in proportion of cell populations

must sum to 0 analogous to a zero-sum game. For example, in pos1, A+’s abundance

doubled, so its proportion increased from .5 to .66; but A−’s proportion decreased from

.5 to .33. More generally, if a cell population is differential, it will induce a change in the

proportion of all cell populations that are labelled using the same set of measurements as

it; because these cell populations are mutually exclusive. Another example of this are the

{A{+,−}B{+,−}C{+,−}} cell populations from pos2. If the driver cell population resides

in layers > 1, then it is easily identifiable as the cell population with the largest magnitude

of change. However, this is something we would like to account for in future work such

that we only flag the driver cell populations and not the cell populations it affects in the

context of proportions.

We mentioned that the SpecEnr p-values need to be further filtered to mitigate the

false positive results that may occur because of noise or lack of data. While the filters

work in practice, it would be best if SpecEnr itself provide more reliable p-values. For

example, instead of a ratio, there may be better ways of comparing actual vs expected

proportions.

Finally, we claimed that a t-test on SpecEnr will yield a significant p-value on driver

cell populations and their ancestors. While this makes driver cell populations intuitive to

find on a cell hierarchy plot, ideally, we should only flag the driver cell populations as sig-

nificant and not their ancestors. By preventing excessive flagging of ancestor populations,

we open the door for more expressive and detailed anecdotes in results interpretation.
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FIGURE 1: An example of a cell population hierarchy representation of a FCM sample

and its cell populations defined by measurements A, B, and C.
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FIGURE 2: Cell hierarchy plots for synthetic data sets pos1-3 and real data sets flowcap

and pregnancy. Only significant cell population nodes are emphasized.




