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Abstract

We propose a framework for identifying discrete behavioural types in experimental 

data. We re-analyse data from six previous studies of public goods voluntary con-

tribution games. Using hierarchical clustering analysis, we construct a typology of 

behaviour based on a similarity measure between strategies. We identify four types 

with distinct stereotypical behaviours, which together account for about 90% of 

participants. Compared to the previous approaches, our method produces a classi-

fication in which different types are more clearly distinguished in terms of strategic 

behaviour and the resulting economic implications.

Keywords Behavioural types · Cluster analysis · Machine learning · Cooperation · 

Public goods

JEL Classi�cations C65 · C71 · H41

1 Introduction

The heterogeneity in decision-making behaviour observed in both field settings and 

their laboratory counterparts is by turns a great joy and a great frustration to prac-

titioners of behavioural economics. The richness in the variety of individual behav-

iour is evidence that people are indeed different, and approach the same economic 
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decision-making task in a variety of ways. However, parsimonious, practical, and 

tractable economic models try to capture the commonalities in behaviour. Extract-

ing those commonalities from the embarrassment of riches offered by the data is an 

important challenge in the development of behavioural economics and game theory.

One approach is to group behaviour into a small number of distinct types, which 

we refer to as a typology. In this paper, we will focus on the case of public goods 

voluntary contribution games (VCGs), for which Fischbacher et  al. (2001) (FGF) 

have proposed one such typology, which groups participants into four types. We 

choose this as an interesting setting, because the P-experiment protocol introduced 

by FGF, based on the linear VCG (Ledyard 1997), has been employed as a standard 

methodology by many studies conducted in various languages and locations (Kocher 

et al. 2008). The analysis we conduct in this paper benefits from being able to re-use 

data from a number of studies using a sufficiently similar protocol.

Although a number of papers have used variants of the FGF typology, the litera-

ture in experimental economics has not employed a framework for defining or evalu-

ating candidate typologies. To address this, we introduce techniques from machine 

learning, in which exactly these types of classification problems have been studied 

in depth. Ideally, a typology represents the data well when the behaviours of two 

participants classified as the same type are similar, while the behaviours of two par-

ticipants classified as different types are dissimilar. Machine learning provides meth-

ods for evaluating the trade-offs between within-type similarity and across-type dis-

similarity and for constructing classifications which are optimal according to some 

criterion with respect to these trade-offs. Machine learning is commonly associated 

with data sets with large numbers of observations, a problem experimental econ-

omists rarely face. However, it also studies the organisation of multi-dimensional 

data. In the data we analyse, a participant’s type is determined based on a 21-dimen-

sional conditional contribution strategy elicited by the P-experiment protocol.

We use data from six previous studies using the P-experiment protocol to con-

struct alternative typologies using hierarchical cluster analysis (Kaufman and Rous-

seeuw 1990). Our typologies differ from FGF in the organisation of conditionally 

cooperative participants. FGF propose to categorise these participants primarily into 

conditional cooperators and non-monotonic “hump-shaped” contributors. In con-

trast, cluster analysis identifies a group of strong conditional cooperators, centred 

on participants who match group contributions on a one-for-one basis, and a group 

of weak conditional cooperators, centred on those who match group contributions at 

approximately a one-for-two rate.

Machine learning offers tools for visualising the properties of classifications of 

high-dimensional data, such as our behavioural typologies. We use silhouette analy-

sis (Rousseeuw 1987) to assess the cohesion of types using both approaches, and 

illustrate that, in the FGF typology, participants grouped in the same type exhibit 

behaviours with heterogeneous consequences in the VCG.

To be useful in understanding economic and strategic behaviour, the classifica-

tions in a typology should correlate with choices made by the same participants 

which are not used in the classification process. In the P-experiment, participants 

make two types of choices: conditional contributions, which are used in the classi-

fication, and unconditional contributions, which are not. Across our data set, FGF’s 



240 F. Fallucchi et al.

1 3

conditional cooperators and hump-shaped contributors do not differ in their uncon-

ditional contributions. In contrast, participants classified as strong conditional coop-

erators make generally higher unconditional contributions than those classified as 

weak conditional cooperators. This supports the strong/weak conditional cooperator 

distinction as being a more insightful description of the data and that the underpin-

nings of the behaviour of weak conditional cooperators may be distinct from those 

of strong conditional cooperators.

2  The game

The experiments used in our analysis involve one-shot interaction among partici-

pants in a VCG. Participants are anonymously placed into groups with M members. 

Each participant receives G tokens. She can allocate any number of tokens between 

0 and G to a group account; tokens not allocated to the group account are kept 

in her private account. We refer to the tokens allocated to the group account as 

her contribution. The participant receives a point for each token kept in her private 

account. Each token contributed to the group account yields P > 1 points, which 

are then split equally among the group members. The parameters P and M are cho-

sen, so that the marginal per-capita return (MPCR), P/M, is less than one. With 

these parameters, a participant who cares only about maximising her own earnings 

has a strictly dominant strategy, which is to contribute no tokens. In contrast, the 

strategy profile that maximises total earnings of the group is for each member to 

contribute all G tokens.

In the P-experiment protocol, contributions are made in two stages. In Stage 1, 

M − 1 members make their contributions. The remaining member learns the average 

contribution of other members, and then decides on her contribution. A participant 

does not know whether she will make her contribution in Stage 1 or Stage 2, nor, if 

she is to be the Stage 2 contributor, what the average contribution of the other mem-

bers in Stage 1 will turn out to be. Decisions are, therefore, elicited using the strat-

egy method (Selten 1967). Each participant i states what her contribution will be if 

she is chosen to contribute in Stage 1; we write the unconditional contribution of 

participant i as ui . She also states her contribution in Stage 2, for each possible reali-

sation of the average contribution of the other members of her group.1 We call these 

Stage 2 contributions the contribution strategy. We write the contribution strategy of 

i as a vector ci . The component ci
g
 is the contribution of participant i in Stage 2 if the 

other members contribute g tokens on average in Stage 1. The contribution strategy 

is the basis for identifying behavioural types.

1 In the P-experiment protocol, the average contribution of other members is rounded to the nearest  

integer.
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3  Typologies

Let   denote the set of participants, and  = {(i, c
i)}

i∈ be the set of all partici-

pants paired with their contribution strategies. We define a typology T as a parti-

tion of  into equivalence classes. Each equivalence class is interpreted as a distinct 

behavioural type. We write T(i) as the type of participant i in typology T.

The existing state-of-the-art in the literature is the typology based on Fischbacher 

et al. (2001), which we will call TF . TF partitions participants into one of four types.

• Free riders (FR) always maximise individual earnings by keeping all tokens in 

the private account, irrespective of the outcome of the first stage.
• Conditional cooperators (CC) increase their contributions to the group account 

based on higher contributions by others in the first stage. A participant i is 

deemed a conditional cooperator by testing whether the Spearman’s � correla-

tion coefficient between the vector [0, 1,… , G] of possible average contributions 

g and the participant’s strategy 
[

c
i

0
, c

i

1
,… , c

i

G

]

 is significantly positive at signifi-

cance level ≤ 0.001 . We separately tabulate exact conditional contributors (XC), 

who match exactly one-for-one, labeling other CC as inexact conditional con-

tributors (IC).
• Hump-shaped (HS) contributors are identified based on visual classification of 

contribution strategies, in which ci

0
 and ci

G
 are small, but ci

g
 is larger for some 

intermediate values 0 < g < G ; these strategies often have a triangular shape 

when plotted.
• Others (OT) is the residual type, comprised of participants, whose contribution 

strategies do not satisfy the criteria defining the other types.

The TF procedure is implemented by defining a stereotypical behaviour, combined 

with a formal or informal criterion for deciding when a given contribution strategy 

is “similar enough” to the stereotype. This similarity is a matter of judgment; alter-

native proposals for inclusion criteria have been made in subsequent papers (e.g., 

Rustagi et al. 2010; Fischbacher et al. 2012). By adjusting the classification crite-

ria, one can make the residual “other” group smaller, but with the possibility that a 

participant’s contribution strategy might satisfy the criteria for more than one other 

type. The most recent refinement of the criteria by Thöni and Volk (2018) encoun-

ters this problem, requiring a further criterion for assigning contribution strategies 

that satisfy their versions of both the CC and HS criteria.

The stereotypical behaviours in TF are chosen based on an ad-hoc combination of 

theoretical models and inspection of the data. We are interested first in assessing the 

performance of this classification in identifying coherent types.

Question 1 How does the four-type typology T
F compare with other candidate 

groupings of the data into four types?

One approach to systematically constructing alternate candidate typologies with a 

specified number of types is hierarchical cluster analysis with Ward’s minimum 
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variance method (Ward 1963). Cluster analysis takes as a starting point a metric of 

(dis-)similarity between two objects. We define the dissimilarity between the contri-

bution strategies ci of participant i and cj of participant j as the Manhattan distance 

d(ci, cj) =
∑G

g=0

�
�
�
ci

g
− c

j
g
�
�
�
 . This is the expected difference between the Stage 2 contri-

butions of participants i and j if the average contribution g of other group members 

is chosen uniformly at random. Two contribution strategies separated by a smaller 

distance are more similar.

For any fixed C = 1, 2,… , || , Ward’s method generates a candidate typology 

T
H(C) which partitions  into exactly C groups. The partition TH(C) is one that min-

imises the within-group sum of squared errors among all possible partitions with 

exactly C groups. We propose the typology TH(4) as an alternative to TF maintaining 

the same number of types.2

By maintaining the same number of types, two candidate typologies will differ 

only in which four types they identify. Therefore, one can, for example, read off any 

differences in the stereotypical behaviours of the types between typologies. How-

ever, there is no a priori reason to have exactly four types, and it may be that more 

(or fewer) types provide a more satisfactory description.

Question 2 Given the distribution of contribution strategies in the data, what is an 

appropriate number of types to include in a typology?

Ward’s method proposes a partition for each C, which has the property that the 

partition TH(C) can be computed efficiently given TH(C + 1) by combining together 

the two “most similar” elements of TH(C + 1) . The trade-off in having more (resp., 

fewer) types is that the variability within a type will be less (resp., more). For exam-

ple, there is a trivial, but unsatisfying, clustering which assigns each contribution 

strategy to its own distinct type. The resulting types are by definition perfectly 

coherent, having zero variability, but fail to capture that there may be many strate-

gies which differ, for example, by only one token in one contingency.

There are several approaches in the literature to analysing this trade-off. Recall 

that solutions TH(C) and TH(C + 1) differ in that one cluster in T(C) is divided into 

two in T
H(C + 1) . There are exactly two members t1, t2 ∈ T

H(C + 1) , such that 

t
1
≠ t

2
 and t

1
∪ t

2
∈ T

H(C) . Let W(t) denote the sum of squared errors in cluster t. 

Duda and Hart (1973) define the index

(1)Je(2)/Je(1) =
W(t1) + W(t2)

W(t1 ∪ t2)
.

2 There are other approaches to clustering. In the Online Appendix, we report clusters based on k-means, 

another popular algorithm. Our key results on the number and character of clusters are unchanged. We 

use Ward’s method in the article, as the computational problem posed by the minimum variance method 

can be solved efficiently. In contrast, the k-means problem is NP-hard; no polynomial-time algorithm for 

solving it is known, and an exact solution is, therefore, infeasible on data sets of interesting sizes. Meth-

ods to approximate solutions to the k-means problem are dependent on the initial conditions set for the 

computation.
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Because Ward’s method minimises the within-cluster sum of squared errors, 

Je(2)/Je(1) ≤ 1 . This is considered in conjunction with the value of a pseudo-T2 

statistic:

where |t| is the number of members of cluster t. Duda and Hart recommend prefer-

ring clusterings with relatively high Je(2)/Je(1) and relatively low PT
2 values.

The criteria of Duda and Hart refer specifically to the output of hierarchical 

clustering. Another measurement of type coherence, which can be applied to any 

typology T, is silhouette analysis (Rousseeuw 1987). For any participant i, the 

average distance from i’s contribution strategy to the contribution strategies of 

other participants of a given type t ∈ T  is

For i, the distance to the “closest” type which is different from the type to which i is 

assigned is

The participant’s silhouette index is then defined as

The silhouette index ranges from − 1 to + 1. Values greater than zero indicate that 

the members of i’s type are closer, on average, than the members of the next closest 

type.

In the trivial typology that assigns each distinct strategy to its own cluster, 

the silhouette index is + 1 for all strategies. Taken to the other extreme, fixing 

a small number C of groups and assigning strategies at random to the groups 

leads to silhouette indices distributed with a median near zero and small abso-

lute values. Although hierarchical clustering does not construct its solution for 

C groups at random, but by combining two similar groups from its solution for 

C + 1 groups, any grouping of heterogeneous strategies under one type neces-

sarily decreases the silhouette index. Kaufman and Rousseeuw (1990) suggest 

selecting an appropriate number of clusters C by analysing the levels and dis-

tributions of silhouette indices as an indicator of the trade-off between within-

cluster similarity and across-cluster dissimilarity.

(2)

PT2 =

{
1

Je(2)/Je(1)
− 1

}
×
{
|t1| + |t2| − 2

}
=

{
W(t1 ∪ t2)

W(t1) + W(t2)
− 1

}
×
{
|t1| + |t2| − 2

}
,

(3)a(i, t) =

∑

j≠i∶T(j)=t d(ci, cj)
∑

j≠i∶T(j)=t 1
.

(4)b(i) = min
t≠T(i)

a(i, t).

(5)s(i) =
b(i) − a(i, T(i))

max{b(i), a(i, T(i))}
.
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4  Results

We re-analyse the data from six VCG experiments using the P-experiment protocol, 

published between 2001 and 2016. We surveyed the literature for studies which met 

these criteria:

• P-experiment protocol published in a peer-reviewed journal as of September 

2016.
• Participants played the VCG in groups of 4.
• Participants were endowed with 20 tokens.
• MPCR equal to 0.4 points per token.

We identified a total of nine studies satisfying these criteria; the authors of six of 

these kindly provided us with their data sets.3 These six experiments were conducted 

in four different countries and four different languages, with a total of N = 551 par-

ticipants: Fischbacher et  al. (2001) (Switzerland, N = 44 ); Herrmann and Thöni 

(2009) (Russia, N = 160 ); Fischbacher and Gächter (2010) (Switzerland, N = 140 ); 

Fischbacher et al. (2012) (United Kingdom, N = 136 ); Cartwright and Lovett (2014) 

(United Kingdom, N = 31 ); and Préget et al. (2016) (France, N = 40).

There are 397 distinct contribution strategies chosen by the 551 participants. Of 

these, 86 are perfect free riders, with c
g
= 0 for all g; a further 44 are perfect one-to-

one matchers, with c
g
= g for all g. There are 5 who unconditionally contribute all 

their tokens, c
g
= 20 for all g. Overall, only 16 contribution strategies are chosen by 

more than one participant, leaving 381 participants, whose contribution strategy is 

unique within the data set. The objective of a typology is to offer an organisation of 

this heterogeneous data.

4.1  De�nition of the typology

Result 1 T
H(4) creates a more cohesive grouping than the four-type typology TF.

We begin by visualising, using heatmaps, the patterns of behaviour associated with 

the different types in TH(4) compared to those in TH . The heatmap for type t is 

produced from the contribution strategies of all participants assigned to t by con-

structing the set {(k, c
i

k
)}

T(i)=t,k=0,…,20 . The frequencies of the ordered pairs in this 

set are used to generate the heatmaps, as shown in Fig. 1; darker shades correspond 

to higher frequencies. For each type, we plot the medoid of the type using unfilled 

diamonds. The medoid is defined as the contribution strategy which has the smallest 

average distance from other strategies in the type, and is one method of expressing 

3 In the case of the other three papers, we either received no response, or the authors were not able to 

find the data.
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a “typical” member of the type. These medoids motivate our naming of the four 

types:4

• Own maximisers (OWN, 25.8% of participants), with a modal allocation of zero 

in all contingencies;
• Strong conditional cooperators (SCC, 38.8%), who match average contributions 

exactly or approximately one-for-one;
• Weak conditional cooperators (WCC, 18.9%), who have generally increasing 

contribution strategies, but at a rate of less than one-for-one;
• Various (VAR, 16.5%), which as the residual type includes various behaviours, 

such as those who contribute most or all tokens irrespective of what others do, 

with an average contribution of about one-half the endowment in all contingen-

cies.

Each participant has a type generated by TH(4) and one generated by TF.5 Table 1 

compares the typologies by giving the shares of participants classified in each pos-

sible pair of types (th, tf ) ∈ TH(4) × TF . The key difference between the two typolo-

gies is in their categorisation of the modes of conditional cooperation. TH(4) pro-

duces types which capture strong versus weak versions of conditional cooperation, 

with the strong version anchored by the 44 participants who match exactly one-for-

one (XC), while the weak version clusters around a medoid in which contributions 

are matched roughly one-for-two. Conversely, the conditional cooperators in T
F 

Table 1  Comparison of the TF 

and TH(4) typologies

Cells report the number of participants overall to be classified in the 

row type in TH(4) and the column type in TF . The last column/row 

report overall percentages

Classification In typology TF

FR CC HS OT Total %

XC IC

OWN 87 0 24 18 13 142 25.8

SCC 0 44 159 6 5 214 38.8

In typology TH(4) WCC 0 0 77 13 14 104 18.9

VAR 0 0 24 2 65 91 16.5

Total 87 44 284 39 97 551

% 15.8 8.0 51.5 7.3 17.4

4 We carry out the clustering using the builtin clustering facilities in STATA, and the silhouette indices 

using the STATA package silhouette. There are packages for hierarchical clustering in most com-

mon data-analysis languages, including R, Python, and Julia.
5 The typology TF is generated by the procedure proposed in Fischbacher et al. (2001) as given above, 

and, therefore, differs slightly from the percentages quoted in the corresponding papers, where the 

authors used a variant approach.
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appear in all four types in TH(4) . Hump-shaped contributors split primarily between 

own maximisers and weak conditional cooperators.

These observations suggest that conditional cooperators and hump-shaped con-

tributors under TF are not cohesive types, insofar as they group within the same type 

behaviours with dissimilar contribution consequences. Figure 2 plots the silhouette 

indices of the members of each type. The plot is generated by sorting members of 

each type in decreasing order by their silhouette index s(i), and plotting those sorted 

s(i) values against the participant’s sorted rank. In TF , a majority of participants 

identified as hump-shaped contributors (25 of 39) have strategies which are on aver-

age closer to one of the other three types’ strategies, than to other hump-shaped con-

tributors. Among those identified as others, 65 of 97 have strategies closer on aver-

age to one of the other three types than to the rest of those considered others. Many 

conditional cooperators likewise have negative indices.

We compare this with the silhouette plot for the types generated by typology TH.6  

All own maximisers have positive indices, as do most strong conditional coopera-

tors (197 of 214). The distinction between strong conditional cooperators and weak 

conditional cooperators eliminates the large negative indices observed among TF ’s 

conditional cooperators. The heterogeneity of the remaining participants classi-

fied as various is evident in the range of indices among the participants; although 

a majority (54 of 91) have negative indices, the magnitudes are much smaller than 

those measured for the others type in TF . Overall, 66.6% of the participants have a 

higher index in TH(4) than TF . The average index increases from 0.17 in TF to 0.40 

in TH(4) , and the median from 0.23 to 0.43. The medians are significantly different 

( p < 0.001 using sign-rank test).

Result 2 The typology TH(5) identifies a unconditional high contributors as a dis-

tinct type.

We address Question 2 with a two-stage procedure. In the first stage, we select 

a range of possible candidate typologies, using the Duda–Hart selection criterion. 

The Duda–Hart Je(2)/Je(1) and PT
2 exclude typologies with fewer four clusters; 

solutions with four or more clusters all exhibit high Je(2)/Je(1) and low PT
2 values. 

Among these candidate solutions, we calculate in the second stage the mean silhou-

ette index for each. The choice of five clusters provides the highest index (0.42), 

compared to 0.40 for TH(4) and 0.37 for TH(6).7 We, therefore, select the five-type 

6 The silhouette index measures the average distance from a strategy to members of different types, 

while the T̃H(C) computed by Ward’s method minimises the sum of within-cluster sum of squared errors. 

Therefore, negative silhouette indices can result from clustering. Consider the data set consisting of 

seven elements in ℝ , (0, 8, 15, 20, 20, 20, 20). The two-cluster solution via Ward’s method places the 

four values of 20 in one cluster, and 0, 8, and 15 in the other. 15 has a negative silhouette index ( −0.318 ). 

However, 15 is not clustered with the four instances of 20, because doing so would increase the variance 

of that cluster by more than it would decrease the variance of the other cluster. This example is robust to 

perturbing the four values of 20 by small amounts to be distinct. The possibility of negative silhouette 

indices, therefore, means that silhouette analysis provides a useful cross-check on the clustering output.
7 Details for each candidate solution are presented in the Online Appendix.
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typology TH(5) as the most appropriate. This typology differs from TH(4) by identi-

fying as a distinct type unconditional high contributors, comprising 4.7% of subjects 

who contribute most or all tokens irrespective of what others do.8 Figure 3 provides 

the heatmaps after the disaggregation of unconditional high contributors from the 

remaining contributors classed as Various. Among the 26 participants classified as 

unconditional high contributors, 25 have a positive silhouette index, with an average 

of 0.47 across the cluster.

4.2  Out-of-sample prediction of unconditional contributions

Experiments using the P-experiment protocol all generate Stage 1 unconditional 

contributions u
i for each participant i. These are not used in constructing T

F or 

T
H(5) . There is no previous evidence that the TF typology is useful in explaining 

variations in Stage 1 contributions.

Result 3 In contrast to TF , different types in TH(5) generate distinct patterns of Stage 

1 contributions.

Figure 4 shows the distributions of Stage 1 contributions, grouped by type assign-

ment based on Stage 2 contribution strategies. In the TF typology, free riders allo-

cate on average 2.15 tokens (with a mode at zero), while the other three types have 

dispersed distributions of Stage 1 contributions with means and medians near half of 

the endowment of 20 tokens. The Stage 1 contribution of free riders is different from 

other types (all Bonferroni multiple comparisons tests p < 0.001 ), while there is no 

significant difference in Stage 1 allocations among the remaining types.

Using TH(5) , the ranking and magnitude of average allocations are consistent 

with the classification based on Stage 2 strategies. Own maximisers contribute the 

least (3.20 tokens), followed by weak conditional cooperators (8.23), strong condi-

tional cooperators (10.04), various (11.42) and unconditional high (13.96). Stage 1 

contributions are significantly different across the five types. The mean allocation 

of own maximisers is significantly lower than all other clusters (one-way analysis 

of variance with multiple comparisons and Bonferroni correction, all p ≤ 0.001 ). 

There is a significant difference in contributions between weak conditional coop-

erators and strong conditional cooperators ( p = 0.088 , Bonferroni corrected), but no 

significant differences between the strong conditional cooperators and various, nor 

between the various and unconditional high (all other comparisons p < 0.011 , Bon-

ferroni corrected).9

This analysis of Stage 1 contributions is convenient, because all P-experiment 

protocols generate this data, and so are included in all the studies we survey. 

This can be interpreted as an internal validity check on the protocol. If the types 

8 We break out the (th, tf ) ∈ TH(5) × TF comparison for each study in the Online Appendix, using fre-

quencies.
9 The substance of the results is unchanged if TH(4) , combining UCH and VAR, is used instead.
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constructed from Stage 2 strategies are meaningful, at minimum, they should cor-

relate with Stage 1 decisions made in the same play of the game. A theory of types 

would be even more robustly founded if types predicted playing other iterations of 

the game, or in other games. In a companion paper, Fallucchi et al. (2018), we use 

the five-type classification and confirm that strong and weak conditional cooperators 

react differently to changes in the financial incentives across non-linear versions of 

the VCG. This provides additional support for the strong–weak conditional coopera-

tion distinction.

4.3  A deterministic version of the clustering-based typology

The qualitative structure of the clusters reported in TH(4) and TH(5) is robust to 

using subsamples of the data set: the four-cluster and five-cluster solutions centre 

consistently on the medoids plotted in Fig. 1. However, with 397 distinct contribu-

tion strategies in the data set, most participants do not exactly match one of the ste-

reotypical strategies. Classification, therefore, inherently requires some measure of 

what it means for a contribution strategy to be “similar enough” to a stereotype. The 

classifications we report as TF are based on the original (Fischbacher et  al. 2001) 

criteria. As noted, subsequent authors have proposed modifications to the inclusion 

criteria. The effect of these variations on what it means to be “similar enough” is 

to change which contribution strategies are included at the periphery of the types, 

while not significantly affecting the type’s medoid.

Clustering differs in its approach to defining inclusion criteria. The criteria devel-

oped by clustering are determined by the data; that is, what constitutes “similar 

enough” is defined relative to the distribution of the data. This endogenous determi-

nation is implemented in Ward’s method by minimising the sum of squared errors 

within types. Nevertheless, for some applications, it is useful to have a determin-

istic rule for determining a priori the type membership for any given contribution 

strategy.

The key insight from the clustering approach is the identification of a set of can-

didates for the type-defining stereotypical behaviours, which are distinct from the set 

used in TF . In the spirit of the approach used by TF , clustering suggests, for a typol-

ogy with five types, this stepwise classification scheme: 

Step 1  SCC: all ci “similar enough” to the stereotype strategy of matching exactly 

one-for-one.

Step 2  OWN: all ci “similar enough” to the stereotype strategy of always contrib-

uting zero.

Step 3  UCH: all ci “similar enough” to the stereotype strategy of always contribut-

ing all tokens.

Step 4  WCC: all ci not yet classified who contribute less than the exact one-for-one 

matching amount in a “substantial majority” of contingencies g.

Step 5  All remaining strategies are in VAR.

 To construct a four-type version, omit Step 3.
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Fig. 1  Heatmaps of contribution strategies of the participants classified in each type
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As with TF-like schemes, this method requires the user to fill in what it means 

for a contribution strategy to be “similar enough” to one of the stereotypes. In the 

Online Appendix, we use the results of the clusters generated on our data set to sug-

gest parameters for distance bounds to determine inclusion in these types.

Our data set is drawn from experiments conducted in traditional laboratory set-

tings. Even within these settings, heterogeneity in contribution strategies is substan-

tial. In studies conducted in the field (e.g., Rustagi et al. 2010) or in natural experi-

ments targeting broader, more representative samples of participants (e.g., Slonim 

et  al. 2013), heterogeneity in responses often increases. Cluster analysis offers a 

framework for measuring and evaluating whether a given typology continues to be a 

satisfactory organisation of the data when an experiment is taken to these new envi-

ronments. In these situations, the endogenous determination of “similar enough” as 

a function of the data may be seen as a strength, as it provides a way of distinguish-

ing whether coherent-looking types remain even in the face of potentially greater 

heterogeneity.

5  Discussion

We introduce hierarchical cluster analysis as a useful tool for evaluating whether a 

model with a discrete number of behavioural types is an appropriate description of 

experimental data. In VCGs using the P-experiment protocol, we confirm that own 

maximisers and strong conditional cooperators (matching the contributions of others 

one-to-one) emerge as the cores of clearly distinguished behavioural groups. Impor-

tantly, strong and weak conditional cooperation are identified as distinct modes of 

behaviour. This provides an independent justification for a similar distinction among 

types of conditional cooperator which has been proposed in several previous studies, 

including Chaudhuri and Paichayontvijit (2006), Rustagi et al. (2010), Gächter et al. 

(2012), and Cheung (2014).

The toolkit of cluster analysis provides methods to evaluate and select from com-

peting potential solutions. Therefore, one can evaluate, for example, the candidate 

T
H(4) against TH(5) , or even whether any discrete clustering at all is a satisfactory 

description of the data. Silhouette plots like those in Fig. 2 help to provide a meas-

ure of the coherence of types according to some metric. In the case of these plots, 

we are comparing types generated by clustering on the same distance metric, versus 

those generated by FGF, which uses a different notion of similarity. Therefore, they 

illustrate the differences in character of the type classifications produced by the two 

approaches. This does not reduce to a “horse race” between the approaches; different 

descriptions of data may prove to be useful for different purposes. Indeed, a theme 

in the application of machine-learning techniques is the interaction between prov-

able guarantees (e.g., that the solutions TH(C) minimise the sum of within-cluster 

sum of squared errors) and heuristic judgments (e.g., using silhouette indices and 

the criteria of Duda and Hart to recommend a preferred number of clusters).

Machine learning emphasises the importance of cross validation in evaluating 

clustering. In this paper, we do this by an out-of-sample comparison of the levels 

of unconditional contributions by the same participants in the same experiment, 
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and find that the cluster-based typology distinguishes these better than the 

FGF approach. Out-of-sample validation can also be done by applying cluster-

ing techniques to two or more sets of decisions made by the same participants. 

(a)

(b)

Fig. 2  Silhouette plots of type clusters. Each participant is assigned an index in [−1, 1] , comparing the 

average distance between the participant’s strategy and the strategies of participants of the same type, 

against the average distance to participants’ strategies who are classified in the next closest type. a 

Typology TF . b Typology TH(4)
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Poncela-Casasnovas et al. (2016) cluster subjects into four different types based on 

their behaviour in a set of dyadic games. Results show that subjects are consist-

ent across games and that differences exist between young and adults, and between 

male and female participants. Similarly, in our companion paper (Fallucchi et  al. 

2018), we apply clustering techniques to contribution strategies of the same partici-

pants in linear and non-linear VCGs, as a measure of the consistency of behaviour 

and portability of types.

Interesting experimental designs often generate unanticipated results, which call 

for the development of improved or new models. Unsupervised classification meth-

ods such as clustering are one option for a structured approach to informing that 

process. Parametric mixture models (Bardsley and Moffatt 2007) likewise organise 

experimental data through the lens of multiple discrete types. However, to imple-

ment a mixture model, one must first specify the types. The medoids arising from 

cluster analysis can provide a first glimpse for the types to consider in a mixture 

model analysis.10

Fig. 3  Heatmaps of clusters combined in TH(5) to yield TH(4) . Unconditional high contributors are con-

sidered a distinct type in TH(5)

10 Everitt et al. (2010) provide an extensive discussion of the links between the two approaches.
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range of the distribution; unfilled diamonds indicate medians. a Typology TF . b Typology TH(5)
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